Circuit and Layout Techniques for Soft-Error-Resilient Digital Cmos Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Circuit and Layout Techniques for Soft-Error-Resilient Digital Cmos Circuits CIRCUIT AND LAYOUT TECHNIQUES FOR SOFT-ERROR-RESILIENT DIGITAL CMOS CIRCUITS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Hsiao-Heng Kelin Lee August 2011 © 2011 by Hsiao-Heng Kelin Lee. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/dn086pk6955 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Umran Inan, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ivan Linscott, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Christoforos Kozyrakis Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Radiation-induced soft errors are a major concern for modern digital circuits, espe- cially memory elements. Unlike large Random Access Memories (RAM) that can be protected using error-correcting codes and bit interleaving, soft error protection of sequential elements, i.e. latches and flip-flops, is challenging. Traditional techniques for designing soft-error-resilient sequential elements generally address single node er- rors, or Single Event Upsets (SEU). However, with technology scaling, the charge deposited by a single particle strike can be simultaneously collected and shared by multiple circuit nodes. The likelihood that a soft error caused by multiple circuit node disruptions, or Single Event Multiple Upset (SEMU), happens, increases ex- ponentially as separation between individual transistors decreases. Hence, soft error resilience techniques for sequential elements must focus on Single Event Multiple Upsets (SEMUs). In this dissertation, we address these concerns by presenting a design framework for soft-error-resilient sequential cell design with an overview of existing circuit and layout techniques for soft error mitigation. In order to address the growing concern over SEMUs, we introduce a new soft error resilience layout design principle called LEAP, or Layout Design through Error-Aware Transistor Positioning, which targets SEMUs by using circuit interactions and transistor placement to improve the soft error performance of a circuit without significant area cost. As an example of circuit and layout co-design for soft error resilience, we discuss our application of LEAP on the SEU-immune Dual Interlocked Storage Cell (DICE) by implementing a new sequential element layout called LEAP-DICE. LEAP-DICE retains the original DICE circuit topology, but employs a layout design efficient at using transistor interactions iv to reduce SEMUs. After comparing the soft error performance of SEU-immune flip- flops with the LEAP-DICE flip-flop with a test chip in 180nm CMOS under 200{MeV proton radiation, we conclude that • Our LEAP-DICE flip-flop achieved the best soft error performance among all SEU-immune flip-flop designs we investigated. LEAP-DICE encounters on av- erage 2,000X fewer errors compared to the reference D flip-flop. • Our LEAP-DICE flip-flop encounters 5X fewer errors compared to the DICE flip-flop, while both designs share identical circuit topology and transistor siz- ing. LEAP-DICE imposes negligible power and delay costs and 40% area cost compared to the DICE design. • In the evaluation of our design framework, we also discovered new soft error effects related to operating conditions such as voltage scaling, clock frequency setting and radiation dose. v Acknowledgement Throughout my graduate studies at Stanford, I have had the privilege of working with exceptional people, teachers and students alike. Although I am closing this chapter of my life and moving forward, I will always cherish the good times we had together. First, I would like to first thank my advisors, Prof. Umran Inan and Dr. Ivan Lin- scott, for offering me the unique opportunity of working on an independent research project, for giving me the freedom to explore various research ideas, for providing the support to continue my studies, and for always believing in me. I have not been the easiest student to mentor, but you have always been patient with me. T esekkur¨ ederim. I would also like to thank Prof. Christos Kozyrakis for chairing my oral defense committee and serving as the third reader for this dissertation. I am heavily indebted to Prof. Subhasish Mitra, who acted as a mentor and supporter for my work in soft errors, and who introduced me to the art of writing papers. Prof. Mitra was instrumental in helping me complete this work. Without Prof. Mitra, I would still be languishing in the abyss of graduate school (figuratively and literally speaking, given that I worked in the basement of the electrical engineering building for many unspeakable years). I would like to thank the various people who have given me technical guidance and support in the field of soft errors, notably Dr. Klas Lilja and Mounaim Bounasser of Robust Chip, and Norbert Seifert and Min Zhang of Intel. This work was heavily sponsored by Robust Chip and inspired by Dr. Lilja's vision of using layout as a design dimension for soft-error-resilient circuit design. I cannot forget the essential support of the administrative staff: Shaolan Min, vi Helen Niu, and Uma Mulukutla, who always made sure that students have sufficient funding support, and enough to get by from day to day. For two years, I had the chance to take part on the WIPER project, where I worked with Dr. Jack Doolittle, Robert Bumala and Clem Tillier from Lockheed Martin, and Dr. Dave Lauben from Stanford. Their collaboration was instrumental in contributing to my understanding of how to design satellite instrument. I also would thank Dr. Bennett Wilburn and Prof. Mark Horowitz for the op- portunity to be part of the Light Field Camera project during my first two years at Stanford. This experience gave me a peek at doing top notch independent research at Stanford. I am blessed to have a chance to work with exceptional peers at Stanford, namely Dr. Charles Wang and Dr. Benjamin Mossawir, former students of the Stanford VLF Group, who supported me at critical times in test chip tapeout, and offered helpful suggestions for radiation hardening ideas and radiation testing setup. I would also like to thank Prasanthi Relangi, Rakesh Gnana David Jeyasingh and Jumie Yuventi for helping me on my radiation experiments at New Mexico and Indiana. I would also thank other members of the VLF Group: Jeff Chang (whose board testing support was critical), Carsten Barth (whose late night company I enjoyed), former occupants of my Packard 037 basement office (including Dr. Robert Moore, Dr. Joe Payne, Dr. Ryan Said and Dr. Ben Cotts), and other fellow current and former members of the Stanford VLF Group and Stanford Robust Systems Group. Finally, I would like to thank my family, my father Eric, my mother Grace, and my brother Ben. No words can express the love and gratitude I feel for my family. At times I have almost given up, and without their support, I would not have had the courage and determination to find myself again. HSIAO-HENG \KELIN" LEE Stanford, California August 26, 2011 vii This work was sponsored by the following contracts and agencies: • NASA New Technology Initiatives Program, Grant No. NAG5-10822. • The Aerospace Corporation Subcontract No. 46000001624-9. • Air Force Research Laboratory, Contract No. AFRL FA8718-05-C0027. • Defense Threat Reduction Agency/Robust Chip Inc., Contract No. HDTRA1- 09-P0011. • National Science Foundation. This research was also made possible with generous fabrication support from National Semiconductor Corporation, as well as radiation testing support from Los Alamos National Laboratory and Indiana University Cyclotron Facility. viii Contents Abstract iv Acknowledgement vi 1 Introduction 1 1.1 A Brief Overview of Soft Errors . 2 1.2 Purpose . 3 1.3 Contributions . 4 1.4 Organization . 4 2 Radiation Effects in Electronics 6 2.1 Single-Event Effects . 6 2.1.1 Soft Errors . 8 2.1.2 Hard Errors . 8 2.2 Sources of Radiation . 9 2.2.1 Near-Earth Radiation Environment . 9 2.2.2 Terrestrial Radiation Environment . 10 2.3 Total Dose Effects . 15 2.4 Conclusion . 15 3 Circuit Soft Error Resilience Techniques 17 3.1 Soft Error Generation . 18 3.2 RC-Based Soft Error Resilience Techniques . 21 3.3 Triple Modular Redundancy . 25 ix 3.4 Dual Modular Redundancy . 27 3.4.1 C-Element Based Soft-Error-Resilient Latches . 27 3.4.2 Dual Interlocked Storage Cell (DICE) . 33 3.4.3 Differential Cascode Voltage Switch Logic (DCVSL) . 34 3.5 SEMU Vulnerability in SEU-Immune Techniques . 35 3.6 Conclusion . 38 4 Layout Soft Error Resilience Techniques 39 4.1 Charge Collection in CMOS Circuits . 40 4.2 Traditional Layout Techniques for Charge Collection Mitigation . 44 4.2.1 Guard Rings, Guard Contacts and Guard Drains . 45 4.2.2 Node Separation . 50 4.3 Layout Design through Error-Aware Transistor Positioning (LEAP) . 52 4.4 LEAP-DICE: A Case Study . 59 4.5 Conclusion .
Recommended publications
  • Radiation-Induced Soft Errors in Advanced Semiconductor Technologies Robert C
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 5, NO. 3, SEPTEMBER 2005 305 Radiation-Induced Soft Errors in Advanced Semiconductor Technologies Robert C. Baumann, Fellow, IEEE Invited Paper Abstract—The once-ephemeral radiation-induced soft error has bit upset (SBU). While MBUs are usually a small fraction of become a key threat to advanced commercial electronic compo- the total observed SEU rate, their occurrence has implications nents and systems. Left unchallenged, soft errors have the poten- for memory architecture in systems utilizing error correction tial for inducing the highest failure rate of all other reliability mechanisms combined. This article briefly reviews the types of [3], [4]. Another type of soft error occurs when the bit that failure modes for soft errors, the three dominant radiation mech- is flipped is in a critical system control register such as that anisms responsible for creating soft errors in terrestrial applica- found in field-programmable gate arrays (FPGAs) or dynamic tions, and how these soft errors are generated by the collection of random access memory (DRAM) control circuitry, so that the radiation-induced charge. The soft error sensitivity as a function error causes the product to malfunction [5]. This type of soft of technology scaling for various memory and logic components is then presented with a consideration of which applications are most error, called a single event interrupt (SEFI), obviously impacts likely to require soft error mitigation. the product reliability since each SEFI leads to a direct product malfunction as opposed to typical memory soft errors that may Index Terms—Radiation effects, reliability, single-event effects, soft errors.
    [Show full text]
  • MARS-C: Modeling and Reduction of Soft Errors in Combinational Circuits
    MARS-C: Modeling and Reduction of Soft Errors in Combinational Circuits Natasa Miskov-Zivanov, Diana Marculescu Department of Electrical and Computer Engineering Carnegie Mellon University {nmiskov,dianam}@ece.cmu.edu ABSTRACT completely masked before it reaches the latch; Due to the shrinking of feature size and reduction in supply voltages, • latching-window masking – only if the glitch reaches the latch nanoscale circuits have become more susceptible to radiation induced and satisfies setup and hold time conditions, it will be latched. transient faults. In this paper, we present a symbolic framework based In this work, we estimate the likelihood that a transient fault will on BDDs and ADDs that enables analysis of combinational circuit lead to a soft error. Our main goal is to allow for symbolic modeling reliability from different aspects: output susceptibility to error, and efficient estimation of the susceptibility of a combinational logic influence of individual gates on individual outputs and overall circuit circuit to soft errors. We further use this framework to reduce the cost reliability, and the dependence of circuit reliability on glitch duration, of radiation hardening techniques by selectively resizing the gates that amplitude, and input patterns. This is demonstrated by the set of have the largest impact on circuit error. experimental results, which show that the mean output error The rest of this paper is organized as follows. In Section 2 we susceptibility can vary from less than 0.1%, for large circuits and outline the contribution of our work. In Section 3 we give an overview small glitches, to about 30% for very small circuits and large enough of related work.
    [Show full text]
  • Scaling and Technology Issues for Soft Error Rates Allan
    Presented at the 4th Annual Research Conference on Reliability, Stanford University, October 2000 Scaling and Technology Issues for Soft Error Rates Allan. H. Johnston Jet Propulsion Laboratory California Institute of Technology Pasadena, California Abstract - The effects of device technology and scaling on Figure 2 shows how various contributions to the soft error rates are discussed, using information obtained from terrestrial error rate are affected by critical charge [3]. The both the device and space communities as a guide to determine work was done with SRAM cells, fabricated with a 0.35 µm the net effect on soft errors. Recent data on upset from high- CMOS process. For critical charge < 35 fC it is possible to energy protons indicates that the soft-error problem in DRAMs and microprocessors is less severe for highly scaled devices, in upset the cell with alpha particles. The largest contribution contrast to expectations. Possible improvements in soft-error from alphas comes from solder, but there is also a significant rate for future devices, manufactured with silicon-on-insulator contribution from impurities in the metallization. By technology, are also discussed. increasing the critical charge it is possible to eliminate errors from alpha particles, but terrestrial neutrons are still able to I. INTRODUCTION induce errors. The gradual decrease in neutron-induced error Soft-errors from alpha particles were first reported by rate with increasing critical charge is due to the distribution May and Woods [1], and considerable effort was spent by the of neutron energies, which extends over a very wide range. semiconductor device community during the ensuing years to Figure 2.
    [Show full text]
  • Radiation Hardening Efficiency of Gate Sizing and Transistor Stacking Based on Standard Cells
    Radiation hardening efficiency of gate sizing and transistor stacking based on standard cells Y.Q. Aguiar, Frédéric Wrobel, S. Guagliardo, J.-L. Autran, P. Leroux, F. Saigné, A.D. Touboul, V. Pouget To cite this version: Y.Q. Aguiar, Frédéric Wrobel, S. Guagliardo, J.-L. Autran, P. Leroux, et al.. Radiation hardening efficiency of gate sizing and transistor stacking based on standard cells. Microelectronics Reliability, Elsevier, 2019, 100-101, pp.113457. 10.1016/j.microrel.2019.113457. hal-02515096 HAL Id: hal-02515096 https://hal.archives-ouvertes.fr/hal-02515096 Submitted on 24 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Radiation Hardening Efficiency of Gate Sizing and Transistor Stacking based on Standard Cells Y. Q. Aguiara,*, F. Wrobela, S. Guagliardoa, J-L. Autranb, P. Lerouxc, F. Saignéa, A. D. Touboula and V. Pougeta a Institut d’Electronique et des Systèmes, University of Montpellier, Montpellier, France b Institut Materiaux Microelectronique Nanoscience de Provence, Aix-Marseille University, Marseille, France c Advanced Integrated Sensing Lab, KU Leuven University, Leuven, Belgium Abstract Soft error mitigation schemes inherently lead to penalties in terms of area usage, power consumption and/or performance metrics.
    [Show full text]
  • SRAM Read/Write Margin Enhancements Using Finfets
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 6, JUNE 2010 887 SRAM Read/Write Margin Enhancements Using FinFETs Andrew Carlson, Member, IEEE, Zheng Guo, Student Member, IEEE, Sriram Balasubramanian, Member, IEEE, Radu Zlatanovici, Member, IEEE, Tsu-Jae King Liu, Fellow, IEEE, and Borivoje Nikolic´, Senior Member, IEEE Abstract—Process-induced variations and sub-threshold [1]. Accurate control is essential for high read stability. Sim- leakage in bulk-Si technology limit the scaling of SRAM into ilarly, variability and device leakage affect the writeability of the sub-32 nm nodes. New device architectures are being considered cell. To maintain both desired writeability and read stability of to improve control and reduce short channel effects. Among the SRAM arrays, several radical departures from the conven- the likely candidates, FinFETs are the most attractive option be- cause of their good scalability and possibilities for further SRAM tional design have been considered as follows. performance and yield enhancement through independent gating. 1) Scaling of the traditional six-transistor (6-T) SRAM cell The enhancements to read/write margins and yield are investi- at a slower pace, since a transistor with a larger area is gated in detail for two cell designs employing independently gated more immune to variations. This is a common approach FinFETs. It is shown that FinFET-based 6-T SRAM cells designed in 65- and 45-nm technology nodes; while it still might with pass-gate feedback (PGFB) achieve significant improvements in the cell read stability without area penalty. The write-ability of be applicable to small arrays in future, it fundamentally the cell can be improved through the use of pull-up write gating undermines the objective of technology scaling.
    [Show full text]
  • Design and Implementation of 4 Bit Carry Skip Adder Using Nmos and Pmos Transmission Gate
    EasyChair Preprint № 2561 Design and Implementation of 4 Bit Carry Skip Adder Using Nmos and Pmos Transmission Gate Ashutosh Pandey, Harshit Singh, Vivek Kumar Chaubey and Utkarsh Jaiswal EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. February 5, 2020 CHAPTER-1 INTRODUCTION In the field of electronics, a digital circuit that performs addition of numbers is called an adder or summer. In various kinds of processors like computers, adders have many applications in the arithmetic logic units, as well as in other parts, where these are used to compute table indices, addresses and similar operations. Mostly, the common adders operate on binary numbers, but they can also be constructed for many other numerical representations, such as excess-3 or binary coded decimal (BCD). It is insignificant to customize the adder into an adder-subtractor unit in situations where negative numbers are represented by one's or two's complement. The usage of power efficient VLSI circuits is required to satiate the perennial need for mobile electronic devices. The calculations in these devices ought to be performed using area efficient and low power circuits working at higher speed. The most elementary arithmetic operation is addition; and the most basic arithmetic component of the processor is the adder. Depending upon the delay, area and power consumption requirements; certain adder implementations such as ripple carry, carry-skip, carry select and carry look ahead are available. When large bit numbers are used, the ripple carry adder (RCA) is not very efficient. With the bit length, there is a linear increase in delay.
    [Show full text]
  • Design of Robust CMOS Circuits for Soft Error Tolerance
    Design of Robust CMOS Circuits for Soft Error Tolerance Debopriyo Chowdhury, Mohammad Amin Arbabian Department of EECS, Univ. of California, Berkeley, CA 94720 Abstract - With the continuous downscaling of technology, take care of the problems and analyze the merits and lowering of supply voltage and increase of operating demerits. Finally, we want to design robust latches and frequency, integrated circuits become increasingly susceptible combinational blocks that have good soft-error tolerance. to single event effects (SEE) caused by high energy particles The report is organized into four sections; section II covers like alpha particles, neutrons from cosmic rays etc. A SEU the background, origin and effect of soft error on may cause a bit flip in some latch or memory element, thereby altering the state of the system, leading to a ‘soft error’. Soft nanometer circuits. Section III is a literature review with an errors in memory have traditionally been a much greater analytical flavor, while section IV outlines the proposed concern than soft errors in logic circuits. However, as process work for the rest of the semester as well as shows some technology scales below 100 nanometers, voltage levels go initial simulation results. down and noise margins reduce, soft errors in logic circuits seem to be a potential threat too. In this work, we propose to analyze the effect of various circuit parameters on soft error susceptibility of logic circuits. Also, we plan to design a robust II. SOFT ERRORS: ORIGIN AND EFFECT ON latch that has simultaneous SET and SEU tolerance. INTEGRATED CIRCUITS Index Terms - Soft Errors, SET, SEU Hardened Latch A soft error occurs when a radiation event causes enough of a charge distribution to reverse or flip the data state of a memory cell, latch, flip-flop or even a node in a I.
    [Show full text]
  • Evaluation of Soft Errors Rate in a Commercial Memory Eeprom
    2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 EVALUATION OF SOFT ERRORS RATE IN A COMMERCIAL MEMORY EEPROM Luiz H. Claro1, A. A. Silva1, José A. Santos1, Suzy F. L. Nogueira2, Ary G. Barrios Jr2. 1 Divisão de Energia Nuclear Instituto de Estudos Avançados , IEAv Caixa Postal 6044 12231-970 São José dos Campos, SP [email protected] 2 Faculdade de Tecnologia São Francisco, FATESF Av. Siqueira Campos, 1174 12307-000 Jacareí, SP [email protected] ABSTRACT Soft errors are transient circuit errors caused by external radiation. When an ion intercepts a p-n region in an electronic component, the ionization produces excess charges along the track. These charges when collected can flip internal values, especially in memory cells. The problem affects not only space application but also terrestrial ones. Neutrons induced by cosmic rays and alpha particles, emitted from traces of radioactive contaminants contained in packaging and chip materials, are the predominant sources of radiation. The soft error susceptibility is different for different memory technology hence the experimental study are very important for Soft Error Rate (SER) evaluation. In this work, the methodology for accelerated tests is presented with the results for SER in a commercial electrically erasable and programmable read-only memory (EEPROM). 1. INTRODUCTION From all possible kinds of radiation damages to electronic components, the soft errors are included in the class of transitory errors induced by a single particle. In the other class, the hard errors, the ionizing radiation permanently changes the structural array in the electronic components.
    [Show full text]
  • High Performance Ripple Carry Adder Using Domino
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072 HIGH PERFORMANCE RIPPLE CARRY ADDER USING DOMINO LOGIC Dr.J.Karpagam1 , A.Arunadevi2 1 Professor, Department of ECE, KPRIET, Coimbatore, Tamilnadu, India 2 PG Scholar, Department of ECE, KPRIET, Coimbatore, Tamilnadu, India ---------------------------------------------------------------------***--------------------------------------------------------------------- ABSTRACT excessively with a mixer of dynamic and static circuit styles, use of dual supply voltages and dual threshold The demand and popularity of portable electronics is voltages. driving designers to strive for small silicon area, higher speeds, low power dissipation and reliability. Domino logic Domino logic is a clocked logic family which means that circuits are important as it provides better speed and has every single logic gate has a clock signal present. When the lesser transistor requirement when compared to static clock signal turns low, node N0 goes high, causing the CMOS logic circuits. This project presents the design and output of the gate to go low. This represents the only performance of 8-bit Ripple Carry Adder using CMOS mechanism for the gate output to go low once it has been Domino logic targeting at full-custom high speed driven high. The operating period of the cell when its input applications. The constant delay characteristic of this logic clock and output are low is called the recharge phase or style regardless of the logic expression makes it suitable for cycle. The next phase, when the clock is high, is called the implementing complicated logic expression such as addition. evaluate phase or cycle.
    [Show full text]
  • Advanced MOSFET Designs and Implications for SRAM Scaling
    Advanced MOSFET Designs and Implications for SRAM Scaling By Changhwan Shin A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Tsu-Jae King Liu, Chair Professor Borivoje Nikolić Professor Eugene E. Haller Spring 2011 Advanced MOSFET Designs and Implications for SRAM Scaling Copyright © 2011 by Changhwan Shin Abstract Advanced MOSFET Designs and Implications for SRAM Scaling by Changhwan Shin Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences University of California, Berkeley Professor Tsu-Jae King Liu, Chair Continued planar bulk MOSFET scaling is becoming increasingly difficult due to increased random variation in transistor performance with decreasing gate length, and thereby scaling of SRAM using minimum-size transistors is further challenging. This dissertation will discuss various advanced MOSFET designs and their benefits for extending density and voltage scaling of static memory (SRAM) arrays. Using three- dimensional (3-D) process and design simulations, transistor designs are optimized. Then, using an analytical compact model calibrated to the simulated transistor current-vs.-voltage characteristics, the performance and yield of six-transistor (6-T) SRAM cells are estimated. For a given cell area, fully depleted silicon-on-insulator (FD-SOI) MOSFET technology is projected to provide for significantly improved yield across a wide range of operating voltages, as compared with conventional planar bulk CMOS technology. Quasi-Planar (QP) bulk silicon MOSFETs are a lower-cost alternative and also can provide for improved SRAM yield. A more printable "notchless" QP bulk SRAM cell layout is proposed to reduce lithographic variations, and is projected to achieve six-sigma yield (required for terabit-scale SRAM arrays) with a minimum operating voltage below 1 Volt.
    [Show full text]
  • Soft Error Modeling and Analysis of the Neutron Intercepting Silicon Chip (NISC) C
    Soft Error Modeling and Analysis of the Neutron Intercepting Silicon Chip (NISC) C. Çelik,1,2 K. Ünlü,1,2 N. Vijaykrishnan,3 M. J. Irwin3 Service Provided: Neutron Beam Laboratory Sponsors: National Science Foundation, U. S. Department of Energy, INIE Mini Grant, the Penn State Radiation Science and Engineering Center, and the Penn State Department of Computer Science and Engineering detailed records for particles, including the mother Introduction particle of the particle that causes the soft error. Advances in microelectronic technologies result in semiconductor memories with sub-micrometer NISC Simulation Model transistor dimensions. While the decrease in the dimensions satisfy both the producers’ and consumers’ The semiconductor device node represents the basic requirements, it also leads to a higher susceptibility of data storage unit in a semiconductor memory, and for the NISC design it is chosen to be as simple as possible the integrated circuit designs to temperature, magnetic 10 7 interference, power supply and environmental noise, in order to focus on the B(n,α) Li reaction. A cross and radiation. sectional view of the memory node model is illustrated in Figure 1. The BPSG layer is designed to produce Soft errors are transient circuit errors caused due to energetic α and 7Li particles, hence it acts as a source excess charge carriers induced primarily by external for producing soft errors. In a semiconductor memory, radiations. The Neutron Intercepting Silicon Chip (NISC) depending on the architecture and vendors, there are promises an unconventional, portable, power efficient different layers to produce depletion regions, gates, neutron monitoring and detection system by enhancing and isolation layers.
    [Show full text]
  • ECE 571 – Advanced Microprocessor-Based Design Lecture 17
    ECE 571 { Advanced Microprocessor-Based Design Lecture 17 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 3 April 2018 Announcements • HW8 is readings 1 More DRAM 2 ECC Memory • There's debate about how many errors can happen, anywhere from 10−10 error/bit*h (roughly one bit error per hour per gigabyte of memory) to 10−17 error/bit*h (roughly one bit error per millennium per gigabyte of memory • Google did a study and they found more toward the high end • Would you notice if you had a bit flipped? • Scrubbing { only notice a flip once you read out a value 3 Registered Memory • Registered vs Unregistered • Registered has a buffer on board. More expensive but can have more DIMMs on a channel • Registered may be slower (if it buffers for a cycle) • RDIMM/UDIMM 4 Bandwidth/Latency Issues • Truly random access? No, burst speed fast, random speed not. • Is that a problem? Mostly filling cache lines? 5 Memory Controller • Can we have full random access to memory? Why not just pass on CPU mem requests unchanged? • What might have higher priority? • Why might re-ordering the accesses help performance (back and forth between two pages) 6 Reducing Refresh • DRAM Refresh Mechanisms, Penalties, and Trade-Offs by Bhati et al. • Refresh hurts performance: ◦ Memory controller stalls access to memory being refreshed ◦ Refresh takes energy (read/write) On 32Gb device, up to 20% of energy consumption and 30% of performance 7 Async vs Sync Refresh • Traditional refresh rates ◦ Async Standard (15.6us) ◦ Async Extended (125us) ◦ SDRAM -
    [Show full text]