Subject Index to Volume 73 JANUARY-DE(MEMBER 1976

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index to Volume 73 JANUARY-DE(MEMBER 1976 Subject Index to Volume 73 JANUARY-DE(MEMBER 1976 Introduction The terms in the Subject Index for Vol ume 73, January-December 1976, of the PROCEEDINGSOF THE NATIONALACA DEMY OF SCIENCESUSA were chosen mainly from titles and key terms of artic] es. The index terms are alphabetized by computer; numbers, conformational pref ixes, Greek letters, hyphens, and spaces between words are disregarded in alphabe tization. After each index term is printed the title of the article (or a suitable modi fication of the title) and the appropriate page number. Titles are listed in alphabe tical order under the index terms. Classifications (e.g., Physics, Mather latics) under which papers have been published are used as index terms only if it seemed this would be helpful. Papers that are concerned in some major way with methodology are indexed under "Methodology" as well as under more sj ,ecific terms. Papers relevant to human diseases are indexed under "Diseases of I iuman beings" (with some subclassifica- tions) as well as under more specific tern is. Corrections to papers in which errors occurred are indexed under the term "Coi rection" as well as under the index terms selected for the paper itself. Organisms are indexed by their scientific names when scientific names were provided in the pape rs; suitable cross-references are provided. Genes are listed together as, for example ,"Gene, lac." Because the PROCEEDINGSurges auth ors to follow the tentative rules and rec- ommendations of the nomenclature cor amissions (e.g., for biochemistry, those proposed by the International Union ol 'Pure and Applied Chemistry and the Commission on Biochemical Nomenclatu re), an effort has been made to construct an index that conforms with this policy. However, correction of errors in nomen- clature was not attempted and the index should not be looked upon as a reference for correct or recommended usage. In a ddition, some exceptions to the recom- mendations of the commissions were nece:isary. Index terms themselves are usually not abbreviated even if specific recomm endations have been made by the com- missions; and in some instances, words wit]iin an index term were rearranged. (Thus, tRNA is indexed as "Ribonucleic acid, t ransfer.") In general, analogues of com- pounds are indexed as the parent compou]id. (Thus, dibutyryl adenosine 3:5-cyclic monophosphate is indexed as "Adenosine 3':5'-cyclic monophosphate, dibutyryl-.") The "Recommended Name" from the 19' '2 recommendations of the International Union of Pure and Applied Chemistry anc Ithe International Union of Biochemistry [Enzyme Nomenclature (1973), America n Elsevier, New York] has been used for enzymes whenever Enzyme Commission (EC) numbers were published in the pa- pers, since the 1972 recommendations were followed by the editorial staff throughout 1976. EC numbers are listed a s part of the entry only if the EC number was printed in the paper. [Thus, some ei lzymes have two entries, e.g., "Adenosi- netriphosphatase" and "Adenosinetriph( )sphatase (EC 3.6.1.3)."] 4715 Downloaded by guest on September 25, 2021 4716 Subject Index Proc. Natl. Acad. Sci. USA 73 (1976) PAGINATION 0 F ISSUES Pages Issue Month Pages Issue Month Pages Issue Month 1-268 1 January 1377-1772 5 May 2945-3324 9 September 269-664 2 February 1773-2168 6 June 3325-3784 10 October 665-980 3 March 2169-2532 7 July 3785-4252 11 November 981-1376 4 April 2533-2944 8 August 4253-4792 12 December Abelian phase group Myosin-paramyosin cofilaments: Enzymatic interactions with F-actin, Relativized problems with abelian phase group in topological dynamics, 3015 1007 Actin filament Acetabularia mediterranea Polarity of actin filaments in Characean algae, 165 Temperature dependence of cycloheximide-sensitive phase.of circadian Actin-like filament cycle in Acetabularia mediterranea, 3216 Actin-like filaments and membrane rearrangement in oxyntic cells, 4032 Acetic anhydride Actinomycin D Activation of chromatin by acetylation of histone side chains, 3937 Biphasic stimulation of polyamine biosynthesis in primary mouse kidney Acetobacter xylinum cells by infection with polyoma virus: Uncoupling from DNA and Cellulose biosynthesis in Acetobacter xylinum: Visualization of site of rRNA synthesis, 4022 synthesis and direct measurement of in vivo process, 4565 Messenger RNA competition in shutoff of human interferon production, N-Acetoxy-2-acetylaminofluorene 1621 Synthesis of nuclear proteins during DNA repair synthesis in human Synthesis of murine leukemia virus proteins associated with virions diploid fibroblasts damaged with ultraviolet radiation or assembled in actinomycin D-treated cells: Persistence of viral N-acetoxy-2-acetylaminofluorene, 1466 messenger RNA, 1154 Acetylation Translational control in regulation of ferritin synthesis by iron, 857 Activation of chromatin by acetylation of histone side chains, 3937 Action potential Acetylcholine Membrane potential dependent binding of scorpion toxin to action see also Receptor, acetylcholine; Receptor, nicotinic acetylcholine potential Na+ ionophore, 2682 Acetylcholine receptors: Localization during synaptogenesis in retina, Spike-forming model of neural membrane: Computer simulation of 1806 additional perfused axon experiments, 100 Choline synthesized from ethanolamine in rat brain, 2181 Spike-forming model of neural membrane: Improvement in parameter Isolated acetylcholine receptor protein: Kinetics of binding of values, 2264 acetylcholine and Ca ions, 3994 Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells, 2520 Mechanism of action of (-bungarotoxin on synaptosomal preparations, Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells 2664 (correction), 4247 Photoaffinity labeling and quaternary structure of acetylcholine receptor Actomyosin from Torpedo californica, 2624 Myosin-mediated Ca++-regulation of Synapse and acetylcholine receptor synthesis by neurons dissociated actomyosin-adenosinetriphosphatase from porcine aorta, 2706 from retina, 2370 Acyl-acyl carrier protein synthetase Synapse formation between clonal neuroblastoma X glioma hybrid cells Activation of long chain fatty acids with acyl carrier protein: New and striated muscle cells, 123 enzyme, acyl-acyl carrier protein synthetase, in Escherichia coli, 4374 Synthesis of acetylcholine receptors by cultured chick myotubes and Acyl carrier protein denervated mouse extensor digitorum longus muscles, 161 Activation of long chain fatty acids with acyl carrier protein: New Transduction of chemical into electrical energy, 82 enzyme, acyl-acyl carrier protein synthetase, in Escherichia coli, 4374 Acetylcholinesterase (EC 3.1.1.7) Acyl-coenzyme A synthetase (EC 6.2.1.3) Effect, of p'prQis+ent "elective suppression of ganglionic Acyl coenzyme A synthetase activity is required for repression of yeast :.?': \i t.' I. li'lln.-t'-', on steady state and regenerating levels of acetyl coenzyme A carboxylase by exogenous fatty acids, 386 acetylcholinesterase: Function of butyrylcholinesterase and regulation Adaptation of protein synthesis, 2936 Rates, patterns, and effectiveness of evolution in multi-level situations, Acetyl-coenzyme A carboxylase (EC 6.4.1.2) 1360 Acyl coenzyme A synthetase activity is required for repression of yeast Sherpas living permanently at high altitude: Pattern of adaptation, 747 acetyl coenzyme A carboxylase by exogenous fatty acids, 386 Addendum Dietary and hormonal regulation of content of acetyl coenzyme A Porphyria variegata and porphyria cutanea tarda in siblings: Chemical carboxylase-synthesizing polysomes in rat liver, 2304 and genetic aspects (Addendum), 1323 N-Acetylglucosamine Purification of folate binding factor in normal umbilical cord serum Prediction of three-dimensional structures of enzyme-substrate and (Addendum) 2527 enzyme-inhibitor complexes of lysozyme, 4261 Adenine 1--N-Acetylglucosaminidase (EC 3.2.1.30) Ultraviolet photoelectron studies of biological purines: Valence electronic Heteropolymeric hexosaminidase A in human X mouse hybrid cells, 3637 structure of adenine, 2966 Interrelationship of hexosaminidases A and B: Confirmation of common Adenine analog and unique subunit theory, 2833 Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity Specific recognition sites mediating clearance of lysosomal enzymes in and cholesterol synthesis in nonhepatic tissues of rat, 2564 uiuvo, 4045 Adenine, methyl-substituted Acrasin Hormonal control of meiosis: Specificity of 1-methyladenine receptors in Acrasin of cellular slime mold Polysphondylium violaceum, 795 starfish oocytes, 1669 Acrasinase Ultraviolet photoelectron studies of biological purines: Valence electronic Acrasin of cellular slime mold Polysphondylium violaceum, 795 structure of adenine, 2966 Actin Adenine nucleotide Asynchronous synthesis of erythrocyte membrane proteins, 3206 see also specific adenosine nucleoside phosphates A'I'l bitnding to protease-resistant core of actin, 2742 Diadenosine 5',5`'-P1,P4-.tetraphosphate (Ap4A) in mammalian cells in Calcium control of actin-activated myosin adenosine triphosphatase from levels varying widely with proliferative activity of tissue: Possible Dictyostelium discoideum, 2321 positive "pleiotypic activator", 3984 Chick cytoplasmic actin and muscle actin have different structural genes, Incorporation of adenosine into ATP: Formation of compartmentalized 2346 ATP, 3122 Free energy levels and entropy production in muscle contraction and in Adenocarcinoma related solution systems, 336 Immunological crossreactivity of antibodies to synthetic undecapeptide Free
Recommended publications
  • Ferric Reductase Activity of the Arsh Protein from Acidithiobacillus Ferrooxidans
    J. Microbiol. Biotechnol. (2011), 21(5), 464–469 doi: 10.4014/jmb.1101.01020 First published online 13 April 2011 Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans Mo, Hongyu1,2, Qian Chen1,2, Juan Du1, Lin Tang1, Fang Qin1, Bo Miao2, Xueling Wu2, and Jia Zeng1,2* 1College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China 2Department of Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China Received: January 14, 2011 / Revised: March 10, 2011 / Accepted: March 11, 2011 The arsH gene is one of the arsenic resistance system in iron (free or chelated) into ferrous iron before its incorporation bacteria and eukaryotes. The ArsH protein was annotated into heme and nonheme iron-containing proteins. Ferric as a NADPH-dependent flavin mononucleotide (FMN) reductase catalyzes the reduction of complexed Fe3+ to reductase with unknown biological function. Here we complexed Fe2+ using NAD(P)H as the electron donor. The report for the first time that the ArsH protein showed resulting Fe2+ is subsequently released and incorporated high ferric reductase activity. Glu104 was an essential into iron-containing proteins [17]. residue for maintaining the stability of the FMN cofactor. Here we report for the first time that the ArsH protein The ArsH protein may perform an important role for showed high ferric reduction activity. The ArsH from A. cytosolic ferric iron assimilation in vivo. ferrooxidans may perform an important role as a NADPH- Keywords: Acidithiobacillus ferrooxidans, ArsH, flavoprotein, dependent ferric reductase for cytosolic ferric iron assimilation ferric reductase in vivo. MATERIALS AND METHODS Arsenic resistance genes are widespread in nature.
    [Show full text]
  • Anticonvulsants
    ALZET® Bibliography References on the Administration of Anticonvulsive Agents Using ALZET Osmotic Pumps 1. Carbamazepine Q5784: K. Deseure, et al. Differential drug effects on spontaneous and evoked pain behavior in a model of trigeminal neuropathic pain. J Pain Res 2017;10(279-286 ALZET Comments: Carbamazepine, baclofen, clomipramine; DMSO, PEG, Ethyl Alcohol, Acetone; SC; Rat; 2ML1; Controls received mp w/ vehicle; animal info (7 weeks old); dimethyl sulfoxide, propylene glycol, ethyl alcohol, and acetone at a ratio of 42:42:15:1; post op. care (morphine 5 mg/day); behavioral testing (Facial grooming); Therapeutic indication (Trigeminal neuralgia, neuropathic pain); Dose (30 mg/day carbamazepine (the first-line drug treatment for trigeminal neuralgia), 1.06 mg/day baclofen, 4.18 mg/day clomipramine, and 5 mg/day morphine);. Q0269: S. M. Cain, et al. High resolution micro-SPECT scanning in rats using 125I beta-CIT: Effects of chronic treatment with carbamazepine. Epilepsia 2009;50(8):1962-1970 ALZET Comments: Carbamazepine; DMSO; propylene glycol; ethyl alcohol; acetone; SC; Rat; 2ML2; 14 days; Controls received mp w/ vehicle; animal info (adult, male, Sprague-Dawley, 160-270 g); functionality of mp verified by serum drug levels; 42% DMSO used; identified 3 mg/kg/day as the highest dose that could be reliably administered via minipumps over a 14-day period at 37 degrees Celsius, pg. 1969. P5195: H. C. Doheny, et al. A comparison of the efficacy of carbamazepine and the novel anti-epileptic drug levetiracetam in the tetanus toxin model of focal complex partial epilepsy. British Journal of Pharmacology 2002;135(6):1425-1434 ALZET Comments: Carbamazepine; levetiracetam; DMSO; Propylene glycol; ethanol, saline; IP; Rat; 7 days; Controls received mp/ vehicle; functionality of mp verified by drug serum levels; dose-response (text p.1428); carbamazepine was dissolved in 42.5% DMSO/42% Propylene glycol/15% ethanol.
    [Show full text]
  • Proteínas De Superfície De Paracoccidioides Brasiliensis
    UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR Proteínas de superfície de Paracoccidioides brasiliensis CANDIDATA: NADYA DA SILVA CASTRO ORIENTADORA: DRA. CÉLIA MARIA DE ALMEIDA SOARES TESE APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR, DA FACULDADE DE MEDICINA, DA UNIVERSIDADE DE BRASÍLIA COMO REQUISITO PARCIAL À OBTENÇÃO DO TÍTULO DE DOUTOR EM PATOLOGIA MOLECULAR. BRASÍLIA – DF MAIO 2008 TRABALHO REALIZADO NO LABORATÓRIO DE BIOLOGIA MOLECULAR, DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR, INSTITUTO DE CIÊNCIAS BIOLÓGICAS, DA UNIVERSIDADE FEDERAL DE GOIÁS. APOIO FINANCEIRO: CAPES/ CNPQ/ FINEP/ FAPEG/ SECTEC-GO. II BANCA EXAMINADORA TITULARES Profa. Dra. Célia Maria de Almeida Soares, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Prof. Dr. Augusto Schrank Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul Prof. Dr. Ivan Torres Nicolau de Campos Instituto de Ciências Biológicas, Universidade Federal de Goiás. Prof. Dr. Bergmann Morais Ribeiro Instituto de Ciências Biológicas, Universidade de Brasília. Prof. Dra. Anamélia Lorenzetti Bocca Instituto de Ciências Biológicas, Universidade de Brasília. SUPLENTE Prof. Dr. Fernando Araripe Gonçalves Torres Instituto de Ciências Biológicas, Universidade de Brasília. III ´- Os homens do seu planeta ² disse o pequeno Príncipe ² cultivam cinco mil rosas num jardim... e não encontram o que procuram... - É verdade ² respondi. - E, no entanto, o que eles procuram poderia ser encontrado numa só rosa, ou num pouco de água... - É verdade. E o principezinho acrescentou: Mas os olhos são cegos. eSUHFLVRYHUFRPRFRUDomRµ ³O pequeno príncipe´ de Antonie de Saint-Exupéry IV Dedico esta tese aos meus queridos pais, Nadson e Genialda, que foram e são exemplos de dedicação e de perseverança e cujos incentivos, apoio e amor contribuíram em muito para a realização deste trabalho.
    [Show full text]
  • Updating the Sequence-Based Classification of Glycosyl Hydrolases
    Article Updating the sequence-based classification of glycosyl hydrolases HENRISSAT, Bernard, BAIROCH, Amos Marc Reference HENRISSAT, Bernard, BAIROCH, Amos Marc. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 1996, vol. 316 ( Pt 2), p. 695-6 PMID : 8687420 DOI : 10.1042/bj3160695 Available at: http://archive-ouverte.unige.ch/unige:36909 Disclaimer: layout of this document may differ from the published version. 1 / 1 Biochem. J. (1996) 316, 695–696 (Printed in Great Britain) 695 BIOCHEMICAL JOURNAL Updating the sequence-based classification of available. When the number of glycosyl hydrolase sequences reached C 480, ten additional families (designated 36–45) could glycosyl hydrolases be defined and were added to the classification [2]. There are at present over 950 sequences of glycosyl hydrolases in the data- A classification of glycosyl hydrolases based on amino-acid- banks (EMBL}GenBank and SWISS-PROT). Their analysis sequence similarities was proposed in this Journal a few years shows that the vast majority of the C 470 additional sequences ago [1]. This classification originated from the analysis of C 300 that have become available since the last update could be classified sequences and their grouping into 35 families designated 1–35. in the existing families. However, several sequences not fitting Because such a classification is necessarily sensitive to the sample, the existing families allow the definition of new families (desig- it was anticipated that it was incomplete and that new families nated 46–57) (Table 1). When the several present genome would be determined when additional sequences would become sequencing projects have reached completion, the number of Table 1 New families in the classification of glycosyl hydrolases Family Enzyme Organism SWISS-PROT EMBL/GenBank 46 Chitosanase Bacillus circulans MH-K1 P33673 D10624 46 Chitosanase Streptomyces sp.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • United States Patent (19) (11) 4,310,524 Wiech Et Al
    United States Patent (19) (11) 4,310,524 Wiech et al. 45 Jan. 12, 1982 (54) TCA COMPOSITION AND METHOD FOR McMillen et al., Fed. Proc., 38,592 (1979). RAPD ONSET ANTDEPRESSANT Sellinger et al., Fed. Proc., 38,592 (1979). THERAPY Pandey et al., Fed. Proc., 38,592 (1979). 75) Inventors: Norbert L. Wiech; Richard C. Ursillo, Primary Examiner-Stanley J. Friedman both of Cincinnati, Ohio Attorney, Agent, or Firm-Millen & White 73) Assignee: Richardson-Merrell, Inc., Wilton, Conn. (57 ABSTRACT A method is provided for treating depression in a pa (21) Appl. No.: 139,498 tient therefrom and requiring rapid symptomatic relief, (22 Filed: Apr. 11, 1980 which comprises administering to said patient concur 51) Int. Cl. .................... A61K 31/33; A61K 31/135 rently (a) an effective antidepressant amount of a tricy clic antidepressant or a pharmaceutically effective acid (52) ...... 424/244; 424/330 addition salt thereof, and (b) an amount of an a-adrener 58) Field of Search ................................ 424/244, 330 gic receptor blocking agent effective to achieve rapid (56) References Cited onset of the antidepressant action of (a), whereby the PUBLICATIONS onset of said antidepressant action is achieved within Chemical Abst., vol. 66-72828m, (1967), Kellett. from 1 to 7 days. Chemical Abst, vol. 68-94371a, (1968), Martelli et al. A pharmaceutical composition is also provided which is Chemical Abst., vol. 74-86.048j, (1971), Dixit et al. especially adapted for use with the foregoing method. Holmberg et al., Psychopharm., 2,93 (1961). Svensson, Symp. Med. Hoechst., 13, 245 (1978). 17 Claims, No Drawings 4,310,524 1.
    [Show full text]
  • Supplementary Table 16 Components of the Secretory Pathway
    Supplementary Table 16 Components of the secretory pathway Aspergillus niger Description of putative Aspergillus niger gene Best homolog to putative A.niger gene A.niger orf A.niger A.nidulans A.fumigatus A.oryzae N.crassa S.cerevisiae Mammal gene Entry into ER Signal recognition YKL122c An01g02800 strong similarity to signal recognition particle 68K protein SRP68 - AN4043.2 Afu1g03940 AO090003000956 NCU10927.2 YPL243w Canis lupus An04g06890 similarity to 72-kD protein of the signal recognition particle SRP72 -AN2014.2 Afu4g10180 AO090003001205 NCU01455.2 YPL210c Canis lupus An01g10070 strong similarity to signal recognition particle chain Sec65 - AN0643.2 Afu1g16820 NCU03485.2 YML105c Saccharomyces cerevisiae AN0642.2 An15g06470 similarity to signal sequence receptor alpha chain - Canis lupus AN2140.2 Afu2g16120 AO090012000186 NCU01146.2 familiaris An07g05800 similarity to signal recognition particle protein srp14 - Canis lupus AN4580.2 Afu2g01990 AO090011000469 YDL092w An09g06320 similarity to signal recognition particle 54K protein SRP54 - AN8246.2 Afu5g03880 AO090102000593 NCU09696.2 YPR088c Saccharomyces cerevisiae Signal peptidase An01g00560 strong similarity to signal peptidase subunit Sec11 - AN3126.2 Afu3g12840 AO090012000838 NCU04519.2 YIR022w Saccharomyces cerevisiae An17g02095 similarity to signal peptidase subunit Spc1 - Saccharomyces Afu5g05800 YJR010c-a cerevisiae An16g07390 strong similarity to signal peptidase subunit Spc2 - AN1525.2 Afu8g05340 AO090005000615 NCU00965.2 YML055w Saccharomyces cerevisiae An09g05420 similarity
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • The Human Flavoproteome
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Archives of Biochemistry and Biophysics 535 (2013) 150–162 Contents lists available at SciVerse ScienceDirect Archives of Biochemistry and Biophysics journal homepage: www.elsevier.com/locate/yabbi Review The human flavoproteome ⇑ Wolf-Dieter Lienhart, Venugopal Gudipati, Peter Macheroux Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria article info abstract Article history: Vitamin B2 (riboflavin) is an essential dietary compound used for the enzymatic biosynthesis of FMN and Received 17 December 2012 FAD. The human genome contains 90 genes encoding for flavin-dependent proteins, six for riboflavin and in revised form 21 February 2013 uptake and transformation into the active coenzymes FMN and FAD as well as two for the reduction to Available online 15 March 2013 the dihydroflavin form. Flavoproteins utilize either FMN (16%) or FAD (84%) while five human flavoen- zymes have a requirement for both FMN and FAD. The majority of flavin-dependent enzymes catalyze Keywords: oxidation–reduction processes in primary metabolic pathways such as the citric acid cycle, b-oxidation Coenzyme A and degradation of amino acids. Ten flavoproteins occur as isozymes and assume special functions in Coenzyme Q the human organism. Two thirds of flavin-dependent proteins are associated with disorders caused by Folate Heme allelic variants affecting protein function. Flavin-dependent proteins also play an important role in the Pyridoxal 50-phosphate biosynthesis of other essential cofactors and hormones such as coenzyme A, coenzyme Q, heme, pyri- Steroids doxal 50-phosphate, steroids and thyroxine. Moreover, they are important for the regulation of folate Thyroxine metabolites by using tetrahydrofolate as cosubstrate in choline degradation, reduction of N-5.10-meth- Vitamins ylenetetrahydrofolate to N-5-methyltetrahydrofolate and maintenance of the catalytically competent form of methionine synthase.
    [Show full text]
  • THE ALPHA-GALACTOSIDASE SUPERFAMILY: SEQUENCE BASED CLASSIFICATION of ALPHA-GALACTOSIDASES and RELATED GLYCOSIDASES Naumoff D.G
    COMPUTATIONAL STRUCTURAL AND FUNCTIONAL PROTEOMICS THE ALPHA-GALACTOSIDASE SUPERFAMILY: SEQUENCE BASED CLASSIFICATION OF ALPHA-GALACTOSIDASES AND RELATED GLYCOSIDASES Naumoff D.G. State Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, e-mail: [email protected] Keywords: α-galactosidase, melibiase, glycoside hydrolase, GH-D clan, GH31 family, GHX family, COG1649, enzyme classification, protein family, protein phylogeny Summary Motivation: About 1 % of genes in genomes code enzymes with glycosidase activities. On the basis of sequence similarity all known glycosidases have been classified into 90 families. In many cases proteins of different families have common evolution origin. It makes necessary to combine the corresponding families into a superfamily. Results: Using of the PSI-BLAST program we found significant sequence similarity of several glycosidase families, two of which includes enzymes with the α galactosidase activity. Sequence homology, common catalytic mechanism, folding similarities, and composition of the active center allowed us to group three of these families – GH27, GH31, and GH36 – into the α-galactosidase superfamily. Phylogenetic analysis of this superfamily revealed polyphyletic origin of GH36 family, which could be divided into four families. Glycosidases of the α-galactosidase superfamily have a distant relationship with proteins belonging to families GH13, GH70, and GH77 of glycosidases, as well as with two families of predicted glycosidases. Introduction Glycoside hydrolases or glycosidases (EC 3.2.1.-) are a widespread group of enzymes, hydrolyzing the glycosidic bonds between two carbohydrates or between a carbohydrate and an aglycone moiety. A large multiplicity of these enzymes is a consequence of the extensive variety of their natural substrates: di-, oligo-, and polysaccharides.
    [Show full text]
  • Molecular Cloning, Expression, and Functional Analysis of the Chitin
    www.nature.com/scientificreports OPEN Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two Received: 22 March 2018 Accepted: 7 December 2018 alternative splicing variants in Published: xx xx xxxx the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae) Zhao Wang1,2, Hong Yang1,3, Cao Zhou1, Wen-Jia Yang4, Dao-Chao Jin1 & Gui-Yun Long1 Chitin synthase is responsible for chitin synthesis in the cuticles and cuticular linings of other tissues in insects. We cloned two alternative splicing variants of the chitin synthase 1 gene (SfCHS1) from the white-backed planthopper, Sogatella furcifera. The full-length cDNA of the two variants (SfCHS1a and SfCHS1b) consists of 6408 bp, contains a 4719-bp open reading frame encoding 1572 amino acids, and has 5′ and 3′ non-coding regions of 283 and 1406 bp, respectively. The two splicing variants occur at the same position in the cDNA sequence between base pairs 4115 and 4291, and consist of 177 nucleotides that encode 59 amino acids but show 74.6% identity at the amino acid level. Analysis in diferent developmental stages showed that expression of SfCHS1 and SfCHS1a were highest just after molting, whereas SfCHS1b reached its highest expression level 2 days after molting. Further, SfCHS1 and SfCHS1a were mainly expressed in the integument, whereas SfCHS1b was predominately expressed in the gut and fat body. RNAi-based gene silencing inhibited transcript levels of the corresponding mRNAs in S. furcifera nymphs injected with double-stranded RNA of SfCHS1, SfCHS1a, and SfCHS1b, resulted in malformed phenotypes, and killed most of the treated nymphs.
    [Show full text]
  • Reaction Mechanism of Azoreductases Suggests Convergent Evolution with Quinone Oxidoreductases
    Protein Cell 2010, 1(8): 780–790 Protein & Cell DOI 10.1007/s13238-010-0090-2 RESEARCH ARTICLE Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases ✉ Ali Ryan*, Chan-Ju Wang*, Nicola Laurieri*, Isaac Westwood, Edith Sim Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK ✉ Correspondence: [email protected] Received June 2, 2010 Accepted June 28, 2010 ABSTRACT the dye used for dying fabrics does not bind to the fabric, and as a result, is lost in the effluent (Shore, 1995). As these dyes Azoreductases are involved in the bioremediation by can be carcinogenic (Alves de Lima et al., 2007) their removal bacteria of azo dyes found in waste water. In the gut flora, from the effluent is essential. This has driven investigations they activate azo pro-drugs, which are used for treatment into both electrochemical reduction of azo dyes (Wang et al., of inflammatory bowel disease, releasing the active 2010b), as well as the use of both aerobic and anaerobic component 5-aminosalycilic acid. The bacterium bacteria for bioremediation (dos Santos et al., 2007; You et P. aeruginosa has three azoreductase genes, paAzoR1, al., 2007). paAzoR2 and paAzoR3, which as recombinant enzymes Azo bonds are also found in some drugs including those have been shown to have different substrate specifici- used for the treatment of inflammatory bowel disease (IBD). ties. The mechanism of azoreduction relies upon tauto- Azo compounds have also been shown to be effective merisation of the substrate to the hydrazone form. We antibacterial (Farghaly and Abdalla, 2009) and antitumor (El- report here the characterization of the P.
    [Show full text]