United States Patent (19) (11) 4,310,524 Wiech Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Anticonvulsants
ALZET® Bibliography References on the Administration of Anticonvulsive Agents Using ALZET Osmotic Pumps 1. Carbamazepine Q5784: K. Deseure, et al. Differential drug effects on spontaneous and evoked pain behavior in a model of trigeminal neuropathic pain. J Pain Res 2017;10(279-286 ALZET Comments: Carbamazepine, baclofen, clomipramine; DMSO, PEG, Ethyl Alcohol, Acetone; SC; Rat; 2ML1; Controls received mp w/ vehicle; animal info (7 weeks old); dimethyl sulfoxide, propylene glycol, ethyl alcohol, and acetone at a ratio of 42:42:15:1; post op. care (morphine 5 mg/day); behavioral testing (Facial grooming); Therapeutic indication (Trigeminal neuralgia, neuropathic pain); Dose (30 mg/day carbamazepine (the first-line drug treatment for trigeminal neuralgia), 1.06 mg/day baclofen, 4.18 mg/day clomipramine, and 5 mg/day morphine);. Q0269: S. M. Cain, et al. High resolution micro-SPECT scanning in rats using 125I beta-CIT: Effects of chronic treatment with carbamazepine. Epilepsia 2009;50(8):1962-1970 ALZET Comments: Carbamazepine; DMSO; propylene glycol; ethyl alcohol; acetone; SC; Rat; 2ML2; 14 days; Controls received mp w/ vehicle; animal info (adult, male, Sprague-Dawley, 160-270 g); functionality of mp verified by serum drug levels; 42% DMSO used; identified 3 mg/kg/day as the highest dose that could be reliably administered via minipumps over a 14-day period at 37 degrees Celsius, pg. 1969. P5195: H. C. Doheny, et al. A comparison of the efficacy of carbamazepine and the novel anti-epileptic drug levetiracetam in the tetanus toxin model of focal complex partial epilepsy. British Journal of Pharmacology 2002;135(6):1425-1434 ALZET Comments: Carbamazepine; levetiracetam; DMSO; Propylene glycol; ethanol, saline; IP; Rat; 7 days; Controls received mp/ vehicle; functionality of mp verified by drug serum levels; dose-response (text p.1428); carbamazepine was dissolved in 42.5% DMSO/42% Propylene glycol/15% ethanol. -
Metabolism and Pharmacokinetics in the Development of New Therapeutics for Cocaine and Opioid Abuse
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2012 Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse Pradeep Kumar Vuppala University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Vuppala, Pradeep Kumar, "Metabolism And Pharmacokinetics In The Development Of New Therapeutics For Cocaine And Opioid Abuse" (2012). Electronic Theses and Dissertations. 731. https://egrove.olemiss.edu/etd/731 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. METABOLISM AND PHARMACOKINETICS IN THE DEVELOPMENT OF NEW THERAPEUTICS FOR COCAINE AND OPIOID ABUSE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences in the Department of Pharmaceutics The University of Mississippi by PRADEEP KUMAR VUPPALA April 2012 Copyright © 2012 by Pradeep Kumar Vuppala All rights reserved ABSTRACT Cocaine and opioid abuse are a major public health concern and the cause of significant morbidity and mortality worldwide. The development of effective medication for cocaine and opioid abuse is necessary to reduce the impact of this issue upon the individual and society. The pharmacologic treatment for drug abuse has been based on one of the following strategies: agonist substitution, antagonist treatment, or symptomatic treatment. This dissertation is focused on the role of metabolism and pharmacokinetics in the development of new pharmacotherapies, CM304 (sigma-1 receptor antagonist), mitragynine and 7-hydroxymitragynine (µ-opioid receptor agonists), for the treatment of drug abuse. -
Alpha^ and Beta^Blocking Agents: Pharmacology and Properties
CURRENT DRUG THERAPY DONALD G. VIDT, MD AND ALAN BAKST, PharmD, EDITORS Alpha^ and beta^blocking agents: pharmacology and properties PROFESSOR B.N.C. PRICHARD • Adrenergic receptors have been separated into alpha and beta groups, which have then been further subdivided. Agents have been developed that block each type of receptor with varying degrees of specificity between the sub-types, leading to differences in pharmacodynamic profile. A more recent innovation has been the development of multiple action beta-blocking drugs, ie, those not only blocking the beta receptors but also posessing a peripheral vasodilator effect that may be due to alpha blockade, beta-2 stimulation, or a vasodilator action independent of either alpha or beta receptors. • INDEX TERMS: ALPHA BLOCKERS; BETA BLOCKERS; HYPERTENSION • CLEVE CLIN ] MED 1991; 58:33 7-350 HE CONCEPT that binding of Rosenblueth suggested that a transmitter released at catecholamines to receptors leads to differ- sympathetic nerve endings produced either inhibitory ing responses was first described by Langley, or excitatory responses as a result of combination with who in 1905 noted that a cell may make sympathin I or sympathin E at the receptor.3 Tmotor or inhibitory substances or both, and that "the The current classification of alpha and beta respon- effect of a nerve impulse depends upon the proportion ses is based on the classic work of Ahlquist,4 who of the two kinds of receptive substance which is af- studied six sympathomimetic amines and found two fected by the impulse."1 In 1906, Dale reported that patterns of reactivity. One group of actions, mediated ergot blocked the excitatory but not the inhibitory ac- by what were termed "alpha receptors," were principally tions of adrenaline.2 In 1933, Cannon and excitatory. -
Selective Labeling of Serotonin Receptors Byd-[3H]Lysergic Acid
Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 5783-5787, December 1978 Biochemistry Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate (ergots/hallucinogens/tryptamines/norepinephrine/dopamine) PATRICIA M. WHITAKER AND PHILIP SEEMAN* Department of Pharmacology, University of Toronto, Toronto, Canada M5S 1A8 Communicated by Philip Siekevltz, August 18,1978 ABSTRACT Since it was known that d-lysergic acid di- The objective in this present study was to improve the se- ethylamide (LSD) affected catecholaminergic as well as sero- lectivity of [3H]LSD for serotonin receptors, concomitantly toninergic neurons, the objective in this study was to enhance using other drugs to block a-adrenergic and dopamine receptors the selectivity of [3HJISD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of (cf. refs. 36-38). We then compared the potencies of various a combination of 50 nM each of phentolamine (adde to pre- drugs on this selective [3H]LSD binding and compared these clude the binding of [3HJLSD to a-adrenoceptors), apmo ie, data to those for the high-affinity binding of [3H]serotonin and spiperone (added to preclude the binding of [3H[LSD to (39). dopamine receptors), it was found by Scatchard analysis that the total number of 3H sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catechol- METHODS amine-blocking drugs. The IC50 values (concentrations to inhibit Preparation of Membranes. Calf brains were obtained fresh binding by 50%) for various drugs were tested on the binding of [3HLSD in the presence of 50 nM each of apomorphine (A), from the Canada Packers Hunisett plant (Toronto). -
Pharmacology and Toxicology of Metiamide, a Histamine H
9 November 1974 S.-A. MEDIESE TYDSKRIF 2253 Pharmacology and Toxicology of Metiamide, a - Histamine H2 Receptor Antagonist R. W. BRIMBLECOMBE, W. A. M. DUNCAN, M. E. PARSONS SUMMARY x 10-'M on atrial muscle and 7,5 x lO-rM on uterine muscle. Even. at lO-'M, metiamide did not inhibit the A brief review of the pharmacology and toxicology of effects of isoprenaline on either of these tissues neither did it inhibit the effects of histamine on isolated Quinea- metiamide, a histamine H2-receptor antagonist, is given, ~ and evidence is presented to support the view that it pig ileum (mediated through H,-receptors). inhibits gastric acid secretion by virtue of its Hrreceptor Metiamide is also an inhibitor of gastric acid secretion. antagonist activity. Its effectiveness was estimated in two preparations: the Studies are also reported which show that metiamide lumen-perfused stomach of the anaesthetised rat' and given either intravenously or intraduodenally inhibits his the conscious Heidenhain pouch dog, prepared 1 - 3 years tamine- or pentagastrin-stimulated acid secretion in human before experimentation. Metiamide was given by rapid subjects. llltravenous injection during a maximal plateau of acid secretion stimulated by either histamine or pentagastrin, and the dose required to reduce this level of secretion by S. Afr. Med. J., 48, 2253 (1974). 50% (ED",) was estimated. The results are shown in Table I and indicate that the ED", values are very similar Conventional antihistaminic drugs, such as mepyramine. even in high concentrations, fail to inhibit histamine against those of both histamine and pentagastrin. Doses of stimulated gastric acid secretion. -
Antagonism of Histamine-Activated Adenylate Cyclase in Brain by D
Proc. Natl. Acad. Sci. USA Vol.74, No. 12, pp. 5697-5701, December 1977 Medical Sciences Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide (histaminergic antagonists/adenosine 3':5'-cyclic monophosphate/H2-receptors/ergots/D-2-bromolysergic acid diethylamide) JACK PETER GREEN, CARL LYNN JOHNSON, HAREL WEINSTEIN, AND SAUL MAAYANI Department of Pharmacology, Mount Sinai School of Medicine of the City University of New York, 100th Street and Fifth Avenue, New York, New- York 10029 Communicated by Vincent P. Dole, August 19, 1977 ABSTRACT D-Lysergic acid diethylamide and D-2-bro- (ED50; amount necessary to produce half-maximal response) molysergic acid diethylamide are competitive antagonists of and antagonist affinities (pA2) were not altered. the histamine activation of adenylate cyclase [ATP pyrophos- Adenylate Cyclase Assay. The assay system has been de- phate-lyase (cyclizing); E.C. 4.6.1.11 in broken cell preparations in All additions of the hippocampus and cortex of guinea pig brain. The ade- scribed (8). All assays were performed triplicate. nylate cyclase is linked to the histamine H2-receptor. Both D- were made to the assay tubes on ice. They were then transferred lysergic acid diethylamide and D-2-bromolysergic acid dieth- to a 30° shaking incubator and preincubated for 5 min to allow ylamide show topological congruency with potent H2-antago- the enzymatic activity to reach a steady state and to eliminate nists. D-2-Bromolysergic acid diethylamide is 10 times more the influence of any lag periods in hormone activation. After potent as an H2-antagonist than cimetidine, which has been the the preincubation period, 25 of [a-32PJATP (1-2 gCi) were most potent H2-antagonist reported, and D-lysergic acid di- pl ethylamide is about equipotent to cimetidine. -
An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support. -
Prohibited Substances List
Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). -
The Search for the "Manchurian Candidate" the Cia and Mind Control
THE SEARCH FOR THE "MANCHURIAN CANDIDATE" THE CIA AND MIND CONTROL John Marks Allen Lane Allen Lane Penguin Books Ltd 17 Grosvenor Gardens London SW1 OBD First published in the U.S.A. by Times Books, a division of Quadrangle/The New York Times Book Co., Inc., and simultaneously in Canada by Fitzhenry & Whiteside Ltd, 1979 First published in Great Britain by Allen Lane 1979 Copyright <£> John Marks, 1979 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner ISBN 07139 12790 jj Printed in Great Britain by f Thomson Litho Ltd, East Kilbride, Scotland J For Barbara and Daniel AUTHOR'S NOTE This book has grown out of the 16,000 pages of documents that the CIA released to me under the Freedom of Information Act. Without these documents, the best investigative reporting in the world could not have produced a book, and the secrets of CIA mind-control work would have remained buried forever, as the men who knew them had always intended. From the documentary base, I was able to expand my knowledge through interviews and readings in the behavioral sciences. Neverthe- less, the final result is not the whole story of the CIA's attack on the mind. Only a few insiders could have written that, and they choose to remain silent. I have done the best I can to make the book as accurate as possible, but I have been hampered by the refusal of most of the principal characters to be interviewed and by the CIA's destruction in 1973 of many of the key docu- ments. -
The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
Alpha- and Beta-Adrenergic Receptor Blockade in the Treatment of Hypertension
Br Heart J: first published as 10.1136/hrt.36.6.588 on 1 June 1974. Downloaded from British Heart Journal, 1974, 36, 588-596. Alpha- and beta-adrenergic receptor blockade in the treatment of hypertension P. A. Majid, M. K. Meeran, M. E. Benaim,' B. Sharma and S. H. Taylor From the Cardiovascular Unit, University Department ofMedicine, The General Infirmary, Leeds The effects of single and combined selective blockade of the sympathetic alpha- and beta-receptors were examined in patients with severe hypertension (diastolic pressure > I20 mmHg) uncomplicated by cardiac or renal failure. Given intravenously to 12 patients the alpha-receptor antagonist phentolamine and the beta-receptor antagonist oxprenolol together produced a reduction in systemic arterialpressure to normal levels and a reduction in left ventricular end-diastolic pressure without change in the cardiac output; these effects were maintained. Separately, neither drug resulted in such a satisfactory circulatory reponse. In 6 patients continued oral treatment for 6 months with progressively increased doses of oxprenolol alone up to 480 mg daily, in divided doses, produced a moderate reduction in blood pressure. The addition of oral phentolamine 20 mg t.d.s. resulted in an immediate reduction of blood pressure to normal levels, both at rest and during walking, without postural or other side effects, and without habituation to treatment over a period of 6 months. Arguments are presented that such treatment may have significant advantages over other current medicinal treatments of severe hypertensive vascular disease. http://heart.bmj.com/ In uncomplicated essential hypertension the raised et al., I965a; Majid et al., 197I). -
To Five-Year-Old Dental Patients Elliot V
PEDIATRIC DENTISTRY V 39 / NO 1 JAN / FEB 17 O RANDOMIZED CONTROL TRIAL Phase Four, Randomized, Double-Blinded, Controlled Trial of Phentolamine Mesylate in Two- to Five-year-old Dental Patients Elliot V. Hersh, DMD, MS, PhD1 • Rochelle Lindemeyer, DMD2 • Joel H. Berg, DDS, MS3 • Paul S. Casamassimo, DDS, MS4 • Judith Chin, DDS, MS5 • Adam Marberger, DDS6 • Brent P. Lin, DMD7 • Matthew C. Hutcheson, MS8 • Paul A. Moore, DMD, PhD, MPH9 • Pediatric Soft Tissue Anesthesia Recovery Group10 Abstract: Purpose: The purpose of this study was to evaluate, using a randomized, double-blind methodology: (1) the safety of phentolamine mesylate (Oraverse) in accelerating the recovery of soft tissue anesthesia following the injection of two percent lidocaine plus 1:100,000 epine- phrine in two- to five-year-olds; and (2) efficacy in four- to five-year-olds only. Methods: One hundred fifty pediatric dental patients underwent routine dental restorative procedures with two percent lidocaine plus 1:100,000 epinephrine with doses based on body weight. Phentolamine mesylate or a sham injection (two to one ratio) was then administered. Subjects were monitored for safety and, in four- to five-year-olds, for efficacy during the two-hour evaluation period. Results: There were no significant differences in adverse events between the phentolamine and sham injections. Compared to sham, phentolamine was not associated with nerve injury, increased analgesic use, or abnormalities of the oral cavity. Phentolamine was associated with transient decreased blood pressure in some children. In four- and five-year-olds, phentolamine induced more rapid recovery of lip anesthesia by 48 minutes (P<0.0001).