Reaction Mechanism of Azoreductases Suggests Convergent Evolution with Quinone Oxidoreductases

Total Page:16

File Type:pdf, Size:1020Kb

Reaction Mechanism of Azoreductases Suggests Convergent Evolution with Quinone Oxidoreductases Protein Cell 2010, 1(8): 780–790 Protein & Cell DOI 10.1007/s13238-010-0090-2 RESEARCH ARTICLE Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases ✉ Ali Ryan*, Chan-Ju Wang*, Nicola Laurieri*, Isaac Westwood, Edith Sim Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK ✉ Correspondence: [email protected] Received June 2, 2010 Accepted June 28, 2010 ABSTRACT the dye used for dying fabrics does not bind to the fabric, and as a result, is lost in the effluent (Shore, 1995). As these dyes Azoreductases are involved in the bioremediation by can be carcinogenic (Alves de Lima et al., 2007) their removal bacteria of azo dyes found in waste water. In the gut flora, from the effluent is essential. This has driven investigations they activate azo pro-drugs, which are used for treatment into both electrochemical reduction of azo dyes (Wang et al., of inflammatory bowel disease, releasing the active 2010b), as well as the use of both aerobic and anaerobic component 5-aminosalycilic acid. The bacterium bacteria for bioremediation (dos Santos et al., 2007; You et P. aeruginosa has three azoreductase genes, paAzoR1, al., 2007). paAzoR2 and paAzoR3, which as recombinant enzymes Azo bonds are also found in some drugs including those have been shown to have different substrate specifici- used for the treatment of inflammatory bowel disease (IBD). ties. The mechanism of azoreduction relies upon tauto- Azo compounds have also been shown to be effective merisation of the substrate to the hydrazone form. We antibacterial (Farghaly and Abdalla, 2009) and antitumor (El- report here the characterization of the P. aeruginosa Shafei et al., 2009) agents. Azo drugs for the treatment of IBD azoreductase enzymes, including determining their ther- consist of a carrier compound linked via an azo bond to 5- mostability, cofactor preference and kinetic constants amino salycilic acid (5-ASA). 5-ASA if administered orally is against a range of their favoured substrates. The rapidly removed from the digestive system and so it is expression levels of these enzymes during growth of modified with an inert carrier to prolong its action (Lichtenstein P. aeruginosa are altered by the presence of azo and Kamm, 2008). The azo bond is cleaved by intestinal substrates. It is shown that enzymes that were originally bacteria (Peppercorn and Goldman, 1972) releasing 5-ASA. described as azoreductases, are likely to act as NADH Enzymes able to reduce an azo bond have been found in a quinone oxidoreductases. The low sequence identities number of species including Escherichia coli (Nakanishi et al., observed among NAD(P)H quinone oxidoreductase and 2001), Pseudomonas aeruginosa (Wang et al., 2007), azoreductase enzymes suggests convergent evolution. Enterococcus faecalis (Chen et al., 2004), Sinorhizobium meliloti (Ye et al., 2007), Saccharomyces cerevisiae (Sollner KEYWORDS azoreductase, enzyme mechanism, et al., 2007) and humans (Cui et al., 1995). These enzymes NAD(P)H quinone oxidoreductase, enzyme characterisation, are flavin dependent oxidoreductases. Despite some of them convergent evolution sharing only minimal sequence identity, they have a common three dimensional fold (Fig. 1B) (Li et al., 1995; Ito et al., 2006; INTRODUCTION Wang et al., 2007; Ye et al., 2007; Binter et al., 2009). The azoreductase reaction is proposed to be catalyzed via Dyes that contain an azo bond (−N=N−) contribute sig- a Bi-Bi ping-pong mechanism (Nakanishi et al., 2001; Liu nificantly to world dye production (Stolz, 2001). Almost half of et al., 2008; Wang et al., 2010a), and we have indicated that the reaction is likely to occur via reduction of the hydrazone *These authors contributed equally to the work. 780 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2010 Azoreductase mechanism Protein & Cell tautomer of the substrate, as identified from structural studies a preference for NADPH (Wang et al., 2007). Interestingly, (Fig. 1A) (Ryan et al., 2010). The first reduction reaction is this preference was reversed on mutation of Tyr131 to proposed to be followed by cleavage of the hydrazine phenylalanine in the enzyme’s active site (Wang et al., intermediate via an acid or base catalyzed reaction (Fig. 1C). 2010a). In contrast to paAzoR1, which shows a preference for This cleavage releases a quinoneimine that is believed to be NADPH as the hydride donor, both paAzoR2 and paAzoR3 the substrate for the second reduction reaction (Fig. 1D). show a preference for NADH (Fig. 3A). paAzoR1 shows the A number of bacterial enzymes, classified as azoreduc- same hydride donor preference when reducing the quinonei- tases, can also reduce quinones (Nakanishi et al., 2001; mine 2,6-dichloroindophenol (DCIP) as it does when reducing Chen et al., 2004; Liu et al., 2008; Binter et al., 2009). The the azo substrate methyl red (Fig. 3B); however, the mechanism for azo reduction that has been proposed (Ryan difference in quinone reductase activity with each of the two et al., 2010) explains the ability of azoreductases to reduce nicotinamide cofactors is smaller than what is observed when both azo and quinone substrates. It has been suggested that reducing azo substrates. In contrast paAzoR3 utilizes both the major biological role of azoreductases is in the detoxifica- NADH and NADPH with a preference for NADH of less than tion of quinones (Liu et al., 2008, 2009). These data suggest twofold when reducing methyl red, while the rate of reduction that azoreductases should be reclassified as NAD(P)H of DCIP with NADH is almost 20 times greater than with quinone oxidoreductases (NQOs). NQOs have also been NADPH (Fig. 3C). shown to be important for bacterial metabolism of some The reasons behind the nicotinamide cofactor preference substrates, e.g., p-nitrophenol (Zhang et al., 2009). Even remain unclear. Two crystal structures have been solved though mammalian NQOs have very low sequence identity showing nicotinamide cofactors bound to flavodoxin-like with the bacterial enzymes (less than 15% between paAzoR1 proteins. The first structure showed rat NQO binding and either human NQO1 or NQO2), they also reduce quinone NADP+ and has been withdrawn from the PDB (Li et al., and azo compounds (Cui et al., 1995). Recent evidence 1995). The second structure shows NADH binding to EmoB implicates the eukaryotic NQOs in the regulation of protea- from Mesorhizobium sp. BNC1 (PDB: 2VZJ) (Nissen et al., somal degradation of tumor suppressor proteins (Sollner et 2008). NADH binds EmoB in a solvent exposed cleft that al., 2009b; Alard et al., 2010). Therefore, further under- extends from the solvent channel occupied by methyl red in standing of the relationship between azoreductases and the structure bound to paAzoR1. When the structure of EmoB NAD(P)H quinone oxidoreductases has wide implications in is aligned with the paAzoR1, however, there are significant biology. clashes between residue side chains and NADH; as a result, Three azoreductases have been identified in the genome it is unlikely that NADH will bind in this cleft. The most possible of P. aeruginosa: these are termed paAzoR1 (PA0785), binding position would be similar to what was modeled by paAzoR2 (PA1962) and paAzoR3 (PA3223 (Wang et al., Sollner et al. (2009a), where NADH binds in the same pocket 2007)). The three enzymes have significantly different of the active site as balsalazide (Fig. 1A). substrate specificities (Ryan et al., 2010), and we describe here a detailed enzymic characterization of these proteins, Enzyme stability including the NADH quinone oxidoreductase activity of paAzoR3. Although P. aeruginosa lives in relatively mild conditions in soil and on human skin and in the intestinal flora, paAzoR1 RESULTS has previously been shown to be thermostable with a melting temperature (Tm) of approximately 55°C (Wang et al., 2007). Cofactor and hydride donor preference Both paAzoR2 and paAzoR3 show significantly lower melting temperatures when compared to wild type paAzoR1 (40°C Absorbance spectra for each purified enzyme (Fig. 2) show and 50°C, respectively, Fig. 4). Thermostability is not that all three proteins have a typical flavoprotein signature: uncommon among azoreductases, e.g., B. subtilis (Tm absorbance maxima shifted 7–10 nm bathochromically com- 86.5°C) and S. cerevisiae (Tm 60.2°C) determined via circular pared to that of flavin mononucleotide (FMN). The spectra dichroism (Deller et al., 2006). When Tyr131 was mutated to each have a distinct shoulder at λmax of 486 nm as an Phe within the active site of paAzoR1 (equivalent residues are indication of binding of the flavin cofactor to the protein (Fig. 2) prolines in paAzoR2 and paAzoR3), it caused a significant (Duurkens et al., 2007). The flavins are released as indicated shift in Tm to approximately 42°C (Wang et al., 2010a). by disappearance of the shoulder in the spectra upon Oligomerisation state has previously been suggested as a denaturation of the protein and were identified as FMN via possible reason for high thermostability (Deller et al., 2006), TLC (Supplemental Fig. 1). although later work on B. subtilis azoreductase disagreed paAzoR1 is unusual among azoreductases. Unlike many (Binter et al., 2009). Preliminary data from analytical of these enzymes (Nakanishi et al., 2001; Deller et al., 2006), ultracentrifugation experiments on paAzoR2 and paAzoR3 it can utilize both NADH and NADPH as electron donors with (Wang, 2008) indicate they form dimeric and trimeric © Higher Education Press and Springer-Verlag Berlin Heidelberg 2010 781 Protein & Cell Ali Ryan et al. Figure 1. Proposed mechanism for balsalazide reduction by paAzoR1. (A) Structure of paAzoR1 binding the prodrug balsalazide (PDB: 3LT5 (Ryan et al., 2010)). Balsalazide is shown in stick formation with a semi-transparent surface, the carbon atoms, which form its azobenzene core, are in white while all other carbon atoms are in orange. The FMN cofactor is in yellow. Important residues lining the active site are shown and labeled.
Recommended publications
  • Ferric Reductase Activity of the Arsh Protein from Acidithiobacillus Ferrooxidans
    J. Microbiol. Biotechnol. (2011), 21(5), 464–469 doi: 10.4014/jmb.1101.01020 First published online 13 April 2011 Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans Mo, Hongyu1,2, Qian Chen1,2, Juan Du1, Lin Tang1, Fang Qin1, Bo Miao2, Xueling Wu2, and Jia Zeng1,2* 1College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China 2Department of Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China Received: January 14, 2011 / Revised: March 10, 2011 / Accepted: March 11, 2011 The arsH gene is one of the arsenic resistance system in iron (free or chelated) into ferrous iron before its incorporation bacteria and eukaryotes. The ArsH protein was annotated into heme and nonheme iron-containing proteins. Ferric as a NADPH-dependent flavin mononucleotide (FMN) reductase catalyzes the reduction of complexed Fe3+ to reductase with unknown biological function. Here we complexed Fe2+ using NAD(P)H as the electron donor. The report for the first time that the ArsH protein showed resulting Fe2+ is subsequently released and incorporated high ferric reductase activity. Glu104 was an essential into iron-containing proteins [17]. residue for maintaining the stability of the FMN cofactor. Here we report for the first time that the ArsH protein The ArsH protein may perform an important role for showed high ferric reduction activity. The ArsH from A. cytosolic ferric iron assimilation in vivo. ferrooxidans may perform an important role as a NADPH- Keywords: Acidithiobacillus ferrooxidans, ArsH, flavoprotein, dependent ferric reductase for cytosolic ferric iron assimilation ferric reductase in vivo. MATERIALS AND METHODS Arsenic resistance genes are widespread in nature.
    [Show full text]
  • Article Download
    wjpls, 2019, Vol. 5, Issue 2, 73-79 Research Article ISSN 2454-2229 Ali et al. World Journal of Pharmaceutical World Journal and Life of Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 5.008 MODIFICATION OF WOOL AND SILK FIBERS BY PRETREATMENT WITH QUATERNARY AMMONIUM SALT AND DYEING WITH NEW METAL COMPLEX DYE N.F.Ali*, E.M.EL-Khatib and Saadia A. Abd El-Megied Textile Research Division, National Research Centre, Dokki, Cairo, Egypt. *Corresponding Author: Dr. N. F. Ali Textile Research Division, National Research Centre, Dokki, Cairo, Egypt. Mail ID: [email protected] Article Received on 11/12/2018 Article Revised on 02/01/2019 Article Accepted on 23/01/2019 ABSTRACT Our present study focuses mainly on the synthesis and dyeing of azo metal complex on silk and wool fibers. The present paper describes the synthesis of a new metal complex acid dye obtained from the reaction of acid red 151 2+ 1 with a metallic ion (Co ), and its structure was confirmed by HNMR and IR spectroscopy. The pretreatment of silk and wool fibers by quaternary ammonium salt was carried out by conventional and microwave methods. The absorbance of the original and residual dye in the dye bath calculated from dye exhaustion. The color data of untreated and pretreated silk and wool fibers at different conditions was calculated. The fastness properties of washing, rubbing, perspiration and light to dyed fibers have been measured. KEYWORDS: Synthesis dye, metal complex, wool fiber, silk fiber. INTRODUCTION research (Gaber et al., 2007; Patel et al., 2010; Kaim, 2002), the most common being those containing a hetero Azo dyes and their derivatives have attracted growing nitrogen atom in a position adjacent to the azo group interest over the years because of their versatile (Patel et al.,2011; Karcı, 2013).
    [Show full text]
  • 145 Aromatic Amines: Use in Azo Dye Chemistry Harold S. Freema
    [Frontiers in Bioscience, Landmark, 18, 145-164, January 1, 2013] Aromatic amines: use in azo dye chemistry Harold S. Freeman North Carolina State University, Raleigh, North Carolina 27695-8301, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Structural nature 2.2. Formation 3. Properties 3.1. Chemical 3.2. Azo dye formation 3.3. Genotoxicity 4. Influence on dye properties 4.1. Color 4.2. Coloration (dye-polymer affinity) 4.3. Technical properties 4.3.1. Wet fastness 4.3.2. Light fastness 4.3.3. Ozone fastness 5. Summary 6. Acknowledgement 7. References 1. ABSTRACT This chapter provides an overview of the Aromatic amines used in azo dye formation are chemical structures and properties of aromatic amines and 4n plus 2 pi-electron systems in which a primary (–NH2), their role in the development and utility of azo dyes. secondary (–NHR), or tertiary (–NR2) amino group is Approaches to the design of environmentally benign attached to a carbocyclic or heterocyclic ring. Their alternatives to genotoxic primary aromatic amines, as azo structures are manifold and include amino-substituted dye precursors, are included. benzenes, naphthalenes, and heterocycles such as those shown in Figure 2 and Figure 3. As the representative 2. INTRODUCTION structures suggest, aromatic amines can be hydrophobic or hydrophilic, simple or complex, and vary widely in 2.1. Structural nature electronic (donor/acceptor) properties. In the sections that Azo dyes comprise about two-thirds of all follow, it will be shown that their structural nature synthetic dyes, making them by far the most widely used determines the types of substrates that have affinity for the and structurally diverse class of organic dyes in commerce resultant azo dyes and the technical properties of the (1).
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • The Human Flavoproteome
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Archives of Biochemistry and Biophysics 535 (2013) 150–162 Contents lists available at SciVerse ScienceDirect Archives of Biochemistry and Biophysics journal homepage: www.elsevier.com/locate/yabbi Review The human flavoproteome ⇑ Wolf-Dieter Lienhart, Venugopal Gudipati, Peter Macheroux Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria article info abstract Article history: Vitamin B2 (riboflavin) is an essential dietary compound used for the enzymatic biosynthesis of FMN and Received 17 December 2012 FAD. The human genome contains 90 genes encoding for flavin-dependent proteins, six for riboflavin and in revised form 21 February 2013 uptake and transformation into the active coenzymes FMN and FAD as well as two for the reduction to Available online 15 March 2013 the dihydroflavin form. Flavoproteins utilize either FMN (16%) or FAD (84%) while five human flavoen- zymes have a requirement for both FMN and FAD. The majority of flavin-dependent enzymes catalyze Keywords: oxidation–reduction processes in primary metabolic pathways such as the citric acid cycle, b-oxidation Coenzyme A and degradation of amino acids. Ten flavoproteins occur as isozymes and assume special functions in Coenzyme Q the human organism. Two thirds of flavin-dependent proteins are associated with disorders caused by Folate Heme allelic variants affecting protein function. Flavin-dependent proteins also play an important role in the Pyridoxal 50-phosphate biosynthesis of other essential cofactors and hormones such as coenzyme A, coenzyme Q, heme, pyri- Steroids doxal 50-phosphate, steroids and thyroxine. Moreover, they are important for the regulation of folate Thyroxine metabolites by using tetrahydrofolate as cosubstrate in choline degradation, reduction of N-5.10-meth- Vitamins ylenetetrahydrofolate to N-5-methyltetrahydrofolate and maintenance of the catalytically competent form of methionine synthase.
    [Show full text]
  • Detoxification of Azo Dyes by Bacterial Oxidoreductase Enzymes
    UC Riverside UC Riverside Previously Published Works Title Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Permalink https://escholarship.org/uc/item/2756h6h9 Authors Ma, Jincai Ibekwe, A Mark Yang, Ching-Hong et al. Publication Date 2016-09-01 DOI 10.1016/j.scitotenv.2016.04.122 Peer reviewed eScholarship.org Powered by the California Digital Library University of California http://informahealthcare.com/bty ISSN: 0738-8551 (print), 1549-7801 (electronic) Crit Rev Biotechnol, Early Online: 1–13 ! 2015 Informa Healthcare USA, Inc. DOI: 10.3109/07388551.2015.1004518 REVIEW ARTICLE Detoxification of azo dyes by bacterial oxidoreductase enzymes Shahid Mahmood1, Azeem Khalid1, Muhammad Arshad2, Tariq Mahmood1, and David E. Crowley3 1Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan, 2Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan, and 3Department of Environmental Sciences, University of California, Riverside, CA, USA Abstract Keywords Azo dyes and their intermediate degradation products are common contaminants of soil and Aromatic compounds, Azo dyes, groundwater in developing countries where textile and leather dye products are produced. The bioremediation, toxicity, wastewater toxicity of azo dyes is primarily associated with their molecular structure, substitution groups and reactivity. To avoid contamination of natural resources and to minimize risk to human History
    [Show full text]
  • Q 297 Suppl USE
    The following supplement accompanies the article Atlantic salmon raised with diets low in long-chain polyunsaturated n-3 fatty acids in freshwater have a Mycoplasma dominated gut microbiota at sea Yang Jin, Inga Leena Angell, Simen Rød Sandve, Lars Gustav Snipen, Yngvar Olsen, Knut Rudi* *Corresponding author: [email protected] Aquaculture Environment Interactions 11: 31–39 (2019) Table S1. Composition of high- and low LC-PUFA diets. Stage Fresh water Sea water Feed type High LC-PUFA Low LC-PUFA Fish oil Initial fish weight (g) 0.2 0.4 1 5 15 30 50 0.2 0.4 1 5 15 30 50 80 200 Feed size (mm) 0.6 0.9 1.3 1.7 2.2 2.8 3.5 0.6 0.9 1.3 1.7 2.2 2.8 3.5 3.5 4.9 North Atlantic fishmeal (%) 41 40 40 40 40 30 30 41 40 40 40 40 30 30 35 25 Plant meals (%) 46 45 45 42 40 49 48 46 45 45 42 40 49 48 39 46 Additives (%) 3.3 3.2 3.2 3.5 3.3 3.4 3.9 3.3 3.2 3.2 3.5 3.3 3.4 3.9 2.6 3.3 North Atlantic fish oil (%) 9.9 12 12 15 16 17 18 0 0 0 0 0 1.2 1.2 23 26 Linseed oil (%) 0 0 0 0 0 0 0 6.8 8.1 8.1 9.7 11 10 11 0 0 Palm oil (%) 0 0 0 0 0 0 0 3.2 3.8 3.8 5.4 5.9 5.8 5.9 0 0 Protein (%) 56 55 55 51 49 47 47 56 55 55 51 49 47 47 44 41 Fat (%) 16 18 18 21 22 22 22 16 18 18 21 22 22 22 28 31 EPA+DHA (% diet) 2.2 2.4 2.4 2.9 3.1 3.1 3.1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 4 4.2 Table S2.
    [Show full text]
  • Aromatic Amines from Azo Dye Reduction: Status Review with Emphasis on Direct UV Spectrophotometric Detection in Textile Industry Wastewaters
    Dyes and Pigments 61 (2004) 121–139 www.elsevier.com/locate/dyepig Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters H.M. Pinheiroa, E. Touraudb,*, O. Thomasb aCentro de Engenharia Biolo´gica e Quı´mica, Instituto Superior Te´cnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal bLaboratoire de Ge´nie de l’Environnement Industriel, Ecole des Mines d’Ale`s, 6 Avenue de Clavie`res, 30319 Ale`s Cedex, France Received 28 July 2003; received in revised form 10 October 2003; accepted 17 October 2003 Abstract The present status of origins, known hazards, release restrictions and environmental fate of aromatic amines is reviewed. The specific case of aromatic amines arising from the reduction of the azo bond of azo colorants is addressed, with emphasis on the recalcitrance of azo dyes, their demonstrated vulnerability to azo bond reduction through dif- ferent mechanisms and the lack of data on the biodegradability of the resulting amines. The evolution and present array of analysis methods for aromatic amines in water samples is reviewed, highlighting the increased sophistication and sensitivity attained, and referring a few efforts towards fast analysis methodologies. The case for the application of direct ultraviolet spectral analysis with advanced deconvolution techniques for the monitoring of aromatic amines in textile effluent treatment is presented. # 2003 Elsevier Ltd. All rights reserved. Keywords: Aromatic amines; Azo dyes; Hazards; Textile wastewater; Analysis; UV spectra 1. Origin and types of aromatic amines in the some examples of environmentally or health-rela- environment ted important amines together with their major origins and potential impact.
    [Show full text]
  • Probing the Flavin Transfer Mechanism in Alkanesulfonate Monooxygenase System
    bioRxiv preprint doi: https://doi.org/10.1101/433839; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Probing the flavin transfer mechanism in alkanesulfonate monooxygenase system Dayal PV and Ellis HR Department of Chemistry and Biochemistry, Auburn University, Alabama, 36849 Email: [email protected] Abstract Bacteria acquire sulfur through the sulfur assimilation pathway, but under sulfur limiting conditions bacteria must acquire sulfur from alternative sources. The alkanesulfonate monooxygenase enzymes are expressed under sulfur-limiting conditions, and catalyze the desulfonation of wide-range of alkanesulfonate substrates. The SsuE enzyme is an NADPH-dependent FMN reductase that provides reduced flavin to the SsuD monooxygenase. The mechanism for the transfer of reduced flavin in flavin dependent two-component systems occurs either by free- diffusion or channeling. Previous studies have shown the presence of protein-protein interactions between SsuE and SsuD, but the identification of putative interaction sights have not been investigated. Current studies utilized HDX-MS to identify protective sites on SsuE and SsuD. A conserved α-helix on SsuD showed a decrease in percent deuteration when SsuE was included in the reaction. This suggests the role of α-helix in promoting protein-protein interactions. Specific SsuD variants were generated in order to investigate the role of these residues in protein-protein interactions and catalysis. Variant containing substitutions at the charged residues showed a six-fold decrease in the activity, while a deletion variant of SsuD lacking the α-helix showed no activity when compared to wild-type SsuD.
    [Show full text]
  • Structural Features That Promote Catalysis in Two-Component Systems Involved in Sulfur Metabolism
    Structural Features That Promote Catalysis in Two-Component Systems Involved in Sulfur Metabolism by Richard Allen Hagen A dissertation to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 8, 2020 Copyright 2020 by Richard Allen Hagen Approved by Holly R. Ellis, Chair, Professor of Chemistry and Biochemistry Douglas C. Goodwin, Professor of Chemistry and Biochemistry Evert C. Duin, Professor of Chemistry and Biochemistry Steven Mansoorabadi, Associate Professor of Chemistry and Biochemistry Abstract Sulfur is an essential element important in the synthesis of biomolecules. Bacteria are able to assimilate inorganic sulfur for the biosynthesis of L-cysteine. Inorganic sulfate is often unavailable, so bacteria have evolved multiple metabolic pathways to obtain sulfur from alternative sources. Interestingly, many of the enzymes involved in sulfur acquisition are flavin- dependent two-component systems. These two-component systems consist of a flavin reductase and monooxygenase that utilize flavin to cleave the carbon-sulfur bonds of organosulfur compounds. The two-component systems differ in their characterized sulfur substrate specificity. Enzymes SsuE/SsuD are involved in the desulfonation of linear alkanesulfonates (C2-C10), enzymes MsuE/MsuD utilize methanesulfonate (C1), and enzymes SfnF/SfnG utilize DMSO2 as a sulfur source. The flavin reductases involved in sulfur assimilation utilize FMN as a substrate but differ in their ability to utilize NADH or NADPH. The alkanesulfonate monooxygenase system was the first two-component flavin-dependent system expressed during sulfur limiting conditions that was characterized. The flavin reductase (SsuE) and monooxygenase (SsuD) have distinct structural and functional properties, but the two enzymes must synchronize their functions for catalysis to occur.
    [Show full text]
  • Bio-Removal of Azo Dyes: a Review Pradeep Kumar Singh and Ram Lakhan Singh*
    P.K. Singh and R.L. Singh (2017) Int. J. Appl. Sci. Biotechnol. Vol 5(2): 108-126 DOI: 10.3126/ijasbt.v5i2.16881 Review Article Bio-removal of Azo Dyes: A Review Pradeep Kumar Singh and Ram Lakhan Singh* Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India *Corresponding Author’s Email: [email protected] Abstract Synthetic dyes are widely used in textile, paper, food, cosmetics and pharmaceutical industries with the textile industry as the largest consumer. Among all the available synthetic dyes, azo dyes are the largest group of dyes used in textile industry. Textile dyeing and finishing processes generate a large amount of dye containing wastewater which is one of the main sources of water pollution problems worldwide. Several physico-chemical methods have been applied to the treatment of textile wastewater but these methods have many limitations due to high cost, low efficiency and secondary pollution problems. As an alternative to physico-chemical methods, biological methods comprise bacteria, fungi, yeast, algae and plants and their enzymes which received increasing interest due to their cost effectiveness and eco-friendly nature. Decolorization of azo dyes by biological processes may take place either by biosorption or biodegradation. A variety of reductive and oxidative enzymes may also be involved in the degradation of dyes. This review provides an overview of decolorization and degradation of azo dyes by biological processes and establishes the fact that these microbial and plant cells are significantly effective biological weapon against the toxic azo dyes. Keywords: azo dye; microorganism; decolorization; biosorption; enzyme; nanoparticle dyeing process goes unbound with the textile fibers and Introduction are discharged into the environment (Asad et al., 2007).
    [Show full text]
  • (Azo Resorcinol) Dyes
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 9, Issue 2 Ver. I (Feb. 2016), PP 14-19 www.iosrjournals.org Positive Dye Photoresist Compositions With 2, 4, 6-tris (phenylazo) resorcinol and phenyl-1, 3-bis (azo resorcinol) Dyes Dipak Kumar Mukhopadhyay Institute of Science & Technology, C.K.Town, West Bengal,721201, India Abstract: Novolac resin with the mixture of ortho,meta and para cresol has been synthesized. 1-oxo-2 diazo naphthalene-5 –sulfonyl chloride-has been synthesized and its corresponding sulfonate esters with 2,3,4- trihydroxy benzophenone,2 ,4,6-trihydroxy benzophenone,4,4’-dihydroxy diphenyl sulfone and the corresponding sulphonamides with 4,4’-diamino diphenyl methane,4,4’-diamino diphenyl sulfone have been synthesized.Two new azo dyes namely 2,4,6- tris (phenylazo) resorcinol and phenyl-1,3-bis (azoresorcinol)have been synthesized. The photoresist film have been casted on silicon wafer by mixing novolac resin, diazonaphthaquinone sulfonate esters or sulphonamides and the corresponding azo dye in the solvent mixture of acetone, xylene and ethyl acetate. After soft baking,the film are irradiated upon UV radiation exposure. After irradiation, the exposed regions are soluble in aqueous alkaline developer. Key Words: Novolac resin,1-oxo-2-diazo naphthalence-5-sulfonyl chloride,sulfonate esters ,sulphonamides, 2,4,6-tris (phenylazo) resorcinol dye,phenyl-1,3-bis(azo resorcinol) dye, UV irradiation. I. Introduction: Microcircuit fabrication requires that precisely controlled quantities of impurities be introduced into tiny regions of the silicon substrates, and subsequently these regions must be interconnected to create components and VLSI circuits.
    [Show full text]