1/05661 1 Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont. -
Proteínas De Superfície De Paracoccidioides Brasiliensis
UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR Proteínas de superfície de Paracoccidioides brasiliensis CANDIDATA: NADYA DA SILVA CASTRO ORIENTADORA: DRA. CÉLIA MARIA DE ALMEIDA SOARES TESE APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR, DA FACULDADE DE MEDICINA, DA UNIVERSIDADE DE BRASÍLIA COMO REQUISITO PARCIAL À OBTENÇÃO DO TÍTULO DE DOUTOR EM PATOLOGIA MOLECULAR. BRASÍLIA – DF MAIO 2008 TRABALHO REALIZADO NO LABORATÓRIO DE BIOLOGIA MOLECULAR, DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR, INSTITUTO DE CIÊNCIAS BIOLÓGICAS, DA UNIVERSIDADE FEDERAL DE GOIÁS. APOIO FINANCEIRO: CAPES/ CNPQ/ FINEP/ FAPEG/ SECTEC-GO. II BANCA EXAMINADORA TITULARES Profa. Dra. Célia Maria de Almeida Soares, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Prof. Dr. Augusto Schrank Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul Prof. Dr. Ivan Torres Nicolau de Campos Instituto de Ciências Biológicas, Universidade Federal de Goiás. Prof. Dr. Bergmann Morais Ribeiro Instituto de Ciências Biológicas, Universidade de Brasília. Prof. Dra. Anamélia Lorenzetti Bocca Instituto de Ciências Biológicas, Universidade de Brasília. SUPLENTE Prof. Dr. Fernando Araripe Gonçalves Torres Instituto de Ciências Biológicas, Universidade de Brasília. III ´- Os homens do seu planeta ² disse o pequeno Príncipe ² cultivam cinco mil rosas num jardim... e não encontram o que procuram... - É verdade ² respondi. - E, no entanto, o que eles procuram poderia ser encontrado numa só rosa, ou num pouco de água... - É verdade. E o principezinho acrescentou: Mas os olhos são cegos. eSUHFLVRYHUFRPRFRUDomRµ ³O pequeno príncipe´ de Antonie de Saint-Exupéry IV Dedico esta tese aos meus queridos pais, Nadson e Genialda, que foram e são exemplos de dedicação e de perseverança e cujos incentivos, apoio e amor contribuíram em muito para a realização deste trabalho. -
The Genome of Nanoarchaeum Equitans: Insights Into Early Archaeal Evolution and Derived Parasitism
The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism Elizabeth Waters†‡, Michael J. Hohn§, Ivan Ahel¶, David E. Graham††, Mark D. Adams‡‡, Mary Barnstead‡‡, Karen Y. Beeson‡‡, Lisa Bibbs†, Randall Bolanos‡‡, Martin Keller†, Keith Kretz†, Xiaoying Lin‡‡, Eric Mathur†, Jingwei Ni‡‡, Mircea Podar†, Toby Richardson†, Granger G. Sutton‡‡, Melvin Simon†, Dieter So¨ ll¶§§¶¶, Karl O. Stetter†§¶¶, Jay M. Short†, and Michiel Noordewier†¶¶ †Diversa Corporation, 4955 Directors Place, San Diego, CA 92121; ‡Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182; §Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universita¨tsstrasse 31, D-93053 Regensburg, Germany; ‡‡Celera Genomics Rockville, 45 West Gude Drive, Rockville, MD 20850; Departments of ¶Molecular Biophysics and Biochemistry and §§Chemistry, Yale University, New Haven, CT 06520-8114; and ʈDepartment of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, August 21, 2003 (received for review July 22, 2003) The hyperthermophile Nanoarchaeum equitans is an obligate sym- (6–8). Genomic DNA was either digested with restriction en- biont growing in coculture with the crenarchaeon Ignicoccus. zymes or sheared to provide clonable fragments. Two plasmid Ribosomal protein and rRNA-based phylogenies place its branching libraries were made by subcloning randomly sheared fragments point early in the archaeal lineage, representing the new archaeal of this DNA into a high-copy number vector (Ϸ2.8 kbp library) kingdom Nanoarchaeota. The N. equitans genome (490,885 base or low-copy number vector (Ϸ6.3 kbp library). DNA sequence pairs) encodes the machinery for information processing and was obtained from both ends of plasmid inserts to create repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide ‘‘mate-pairs,’’ pairs of reads from single clones that should be biosyntheses. -
Differentiation of Recombinant Myoblasts In
DIFFERENTIATION OF RECOMBINANT MYOBLASTS IN ALGINATE MICROCAPSULES By KELLY MACMILLAN BOWIE, B.Sc. A Thesis Submitted to the school of Graduate Studies in Partial Fulfillment ofthe Requirements for the Degree Master ofScience McMaster University 1997 © Copyright by Kelly MacMillan Bowie, June, 1997 MASTER OF SCIENCE MCMASTER UNIVERSITY 1997 Hamilton, Ontario TITLE: Differentiation of Recombinant Myoblasts in Alginate Microcapsules AUTHOR: Kelly MacMillan Bowie, B.Sc. (University of Western Ontario) SUPERVISOR: Dr. P.L. Chang EXAMINING COMMITTEE: Dr. M.A. Rudnicki Dr. C. Nurse NUMBER OF PAGES: xii,l75 11 ABSTRACT A cost effective approach to the delivery of therapeutic gene products in vivo is to immunoprotect genetically-engineered, universal, non-autologous cells in biocompatible microcapsules before implantation. Myoblasts may be an ideal cell type for encapsulation due to their inherent ability to differentiate into myotubes, thereby eliminating the problem of cell overgrowth within the capsular space. To evaluate the interaction between the differentiation program and the secretory activity of the myoblasts within the microcapsule environment, we transfected C2C 12 myoblasts to express human growth hormone and followed their expression of muscle differentiation markers, such as creatine phosphate kinase (CPK) protein and up-regulation of muscle-specific genes (ie. myosin light chains 2 & 1/3, Troponin I slow, Troponin T, myogenin and MyoD1). As the transfected myoblasts were induced to differentiate for up to two weeks, their myogenic index (i.e. the percentage of multinucleate myoblasts) increased from 0 to -50%. Concomitantly, up-regulation of differentiation marker RNA levels, and as much as a 23-fold increase in CPK activity, were observed. -
Genome Analysis and Classification of Novel Species Flavobacterium Gabrieli
NOTICE: The copyright law of the United States (Title 17, United States Code) governs the making of reproductions of copyrighted material. One specified condition is that the reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses a reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. RESTRICTIONS: This student work may be read, quoted from, cited, for purposes of research. It may not be published in full except by permission of the author. 1 Kirsten Fischer Introduction Microbial Systematics and Taxonomy The diversity of bacteria is truly immense and the discovery of new species and higher taxonomic groups happens quite frequently, as evidenced by the ever expanding tree of life (Hug et al., 2016). The classification of prokaryotes, bacteria especially, is formally regulated by the International Committee on the Systematics of Prokaryotes and has experienced rapid change over the last fifty years. However, some feel that these rules could be even stricter for proper organization of taxonomy (Tindall et al., 2010). Problems occur with the integration of newer methodologies, which creates some challenges for the researcher attempting to publish a novel species. For example, some DNA sequences that are deposited in databases are not accurate (Clarridge, 2004). Taxonomy is an artificial system that works based on the intuition of scientists rather than strict, specific standards (Konstantinidis & Tiedje, 2005). Tindall advocates that a strain shown to be a novel taxon should be characterized “as comprehensively as possible” and abide by the framework established in the Bacteriological Code (2010). -
Supplementary Materials
Supplementary Materials Figure S1. Differentially abundant spots between the mid-log phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 3. Figure S2. Differentially abundant spots between the stationary phase cells grown on xylan or xylose. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. The identities of the circled spots are summarized in Table 4. S2 Table S1. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cytosol by 2DE/MALDI-TOF. Protein Locus Location Score pI kDa Pep. Cov. Amino Acid Biosynthesis Acetylornithine aminotransferase, ArgD Bpr_I1809 C 1.7 × 10−4 5.1 43.9 11 34% Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C 3.0 × 10−14 4.7 43.8 15 46% Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C 7.6 × 10−18 5.5 40.1 17 50% Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C 2.4 × 10−12 5.2 39.2 13 32% Cysteine synthase, CysK Bpr_I1089 C 1.9 × 10−13 5.0 32.3 18 72% Diaminopimelate dehydrogenase Bpr_I0298 C 9.6 × 10−16 5.6 35.8 16 49% Dihydrodipicolinate reductase, DapB Bpr_I2453 C 2.7 × 10−6 4.9 27.0 9 46% Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C 1.2 × 10−30 5.4 48.6 31 64% Imidazole glycerol phosphate synthase Bpr_I1240 C 8.0 × 10−3 4.7 22.5 8 44% glutamine amidotransferase subunit Ketol-acid reductoisomerase, IlvC Bpr_I1657 C 3.8 × 10−16 -
Yeast Genome Gazetteer P35-65
gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal -
Deoxyribonucleic Acid Synthesis I. Effect of in Vivo Cyclophosphamide
ICANCER RESEARCH 26 Part 1, 1466-1472,July 1966] Deoxyribonucleic Acid Synthesis I. Effect of in Vivo Cyclophosphamide Treatment on the in Vitro Activity of the Deoxyribonucleic Acid Synthetase System of Sensitive and Resistant Plasmacytomas1 ARTHUR J. TOMISEK, MARTHA BRUCE IRICK, AND PAULA WEDELES ALLAN Kettering'-Meyer Laboratory,2 Southern Research Institute, Birmingham, Alabama Summary term DNA-synthetase. In addition to this measurement of over-all DNA synthetase activity, we used the same experiments We have shown that the in vivo treatment of Fortner plasma- to determine the time course of radioactivity distribution among cytomas with Cyclophosphamide can lead to strong inhibitions of both deoxyribonucleic acid nucleotidyl transferase and thymi- the soluble components of the synthetase reaction mixtures. Our data show that the observed decreases in enzyme activity dylatc kinase activities in the soluble cell fractions. However, in are among the possible consequences of growth inhibition in the allowing only 2 hr for the inhibitor to act, the effect observed on tumor. the transferase was an unexplained stimulation rather than an inhibition. We have also provided some evidence that the inhibition of Materials and Methods growth precedes the inhibition of deoxyribonucleic acid nucleo ENZYME PREPARATION.Fortner hamster plasmacytoma tidyl transferase activity. ("sensitive") (3) and ite cyclophosphamide-resistant subline (12) were used for bilateral s.c. implantation into groups of 6-12 Introduction Golden Syrian hamsters, the animals in each experiment being uniform with respect to commercial subline, sex, and approxi Previous studies in this laboratory have shown that several mate age. On the 12th-14th postimplant day the animals were alkylating agents inhibited the in vivo synthesis of DNA by divided into 2 subgroups, to receive daily i.p. -
Supplementary Table 16 Components of the Secretory Pathway
Supplementary Table 16 Components of the secretory pathway Aspergillus niger Description of putative Aspergillus niger gene Best homolog to putative A.niger gene A.niger orf A.niger A.nidulans A.fumigatus A.oryzae N.crassa S.cerevisiae Mammal gene Entry into ER Signal recognition YKL122c An01g02800 strong similarity to signal recognition particle 68K protein SRP68 - AN4043.2 Afu1g03940 AO090003000956 NCU10927.2 YPL243w Canis lupus An04g06890 similarity to 72-kD protein of the signal recognition particle SRP72 -AN2014.2 Afu4g10180 AO090003001205 NCU01455.2 YPL210c Canis lupus An01g10070 strong similarity to signal recognition particle chain Sec65 - AN0643.2 Afu1g16820 NCU03485.2 YML105c Saccharomyces cerevisiae AN0642.2 An15g06470 similarity to signal sequence receptor alpha chain - Canis lupus AN2140.2 Afu2g16120 AO090012000186 NCU01146.2 familiaris An07g05800 similarity to signal recognition particle protein srp14 - Canis lupus AN4580.2 Afu2g01990 AO090011000469 YDL092w An09g06320 similarity to signal recognition particle 54K protein SRP54 - AN8246.2 Afu5g03880 AO090102000593 NCU09696.2 YPR088c Saccharomyces cerevisiae Signal peptidase An01g00560 strong similarity to signal peptidase subunit Sec11 - AN3126.2 Afu3g12840 AO090012000838 NCU04519.2 YIR022w Saccharomyces cerevisiae An17g02095 similarity to signal peptidase subunit Spc1 - Saccharomyces Afu5g05800 YJR010c-a cerevisiae An16g07390 strong similarity to signal peptidase subunit Spc2 - AN1525.2 Afu8g05340 AO090005000615 NCU00965.2 YML055w Saccharomyces cerevisiae An09g05420 similarity -
On-Demand Synthesis of Phosphoramidites
ARTICLE https://doi.org/10.1038/s41467-021-22945-z OPEN On-demand synthesis of phosphoramidites Alexander F. Sandahl1, Thuy J. D. Nguyen1, Rikke A. Hansen1, Martin B. Johansen 1, Troels Skrydstrup 1,2 & ✉ Kurt V. Gothelf 1,2 Automated chemical synthesis of oligonucleotides is of fundamental importance for the production of primers for the polymerase chain reaction (PCR), for oligonucleotide-based drugs, and for numerous other medical and biotechnological applications. The highly opti- mised automised chemical oligonucleotide synthesis relies upon phosphoramidites as the 1234567890():,; phosphate precursors and one of the drawbacks of this technology is the poor bench stability of phosphoramidites. Here, we report on the development of an on-demand flow synthesis of phosphoramidites from their corresponding alcohols, which is accomplished with short reaction times, near-quantitative yields and without the need of purification before being submitted directly to automated oligonucleotide synthesis. Sterically hindered as well as redox unstable phosphoramidites are synthesised using this methodology and the sub- sequent couplings are near-quantitative for all substrates. The vision for this technology is direct integration into DNA synthesisers thereby omitting manual synthesis and storage of phosphoramidites. 1 Interdisciplinary Nanoscience Center, iNANO, Aarhus University, Aarhus C, Denmark. 2 Department of Chemistry, Aarhus University, Aarhus C, Denmark. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:2760 | https://doi.org/10.1038/s41467-021-22945-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22945-z ynthetic oligonucleotides are essential for a range of dif- includetheuseofmechanochemistry11 or the use of P(V) chemistry Sferent areas and millions of oligonucleotides are synthesized to form the internucleosidic P–Obond12,13. -
Genetic Expression Profile Analysis of the Temporal Inhibition of Quercetin and Naringenin on Lactobacillus Rhamnosus GG
robioti f P cs o & l a H n e r a u l t o h J Liu, et al., J Prob Health 2016, 4:2 Journal of Probiotics & Health DOI: 10.4172/2329-8901.1000139 ISSN: 2329-8901 Research Article Open Access Genetic Expression Profile Analysis of the Temporal Inhibition of Quercetin and Naringenin on Lactobacillus Rhamnosus GG Linshu Liu1*, Jenni Firrman1, Gustavo Arango Argoty2, Peggy Tomasula1, Masuko Kobori3, Liqing Zhang2 and Weidong Xiao4* 1Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA 2Virginia Tech College of Engineering, Department of Computer Science, 1425 S Main St. Blacksburg, VA 24061, USA 3National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan 4*Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, USA *Corresponding author: Weidong Xiao, Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, USA, Tel: 215-707-6392; E-mail: [email protected], LinShu Liu, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA. E-mail: [email protected] Received date: Jan 29, 2015; Accepted date: Feb 15, 2016; Published date: Feb 22, 2016 Copyright: © 2016 Liu LS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Structure and Function Of
8/5/2019 DNA and RNA The Code of Life The Human Genome Project Gene Expression Genetic code The alphabet of the genetic code contains Genes are DNA sequences that encode proteins (the gene product) only four letters (A,T,G,C). Gene expression refers to the process A number of experiments confirmed that the whereby the information contained in genes genetic code is written in 3-letter words, each begins to have effects in the cell. of which codes for particular amino acid. DNA encodes and transmits the genetic A nucleic acid word (3 nucleotide letters) is information passed down from parents to offspring. referred to as a codon. 1 8/5/2019 Nucleic acids Nucleotides Principle information molecule in the Nucleotides are the unit structure of cell. nucleic acids. Nucleotides composed of 3 All the genetic codes are carried out on components: the nucleic acids. Nitrogenous base (A, C, G, T or U) Pentose sugar Nucleic acid is a linear polymer of Phosphate nucleotides Nucleotides Nitrogenous bases There are four nitrogen bases making up four different nucleotides. There are 2 types: Purines(pyoo r-een): Adenine A Two ring structure Purines Adenine (A) and Guanine (G) Guanine G Pyrimidines(pahy-rim-i-deen,): N base Single ring structure Cytosine (C) and Thymine (T) or Uracil (U). Thymine T Pyrimidines Cytosine C 2 8/5/2019 A NUCLEOTIDE Nucleotide bases 1. Phosphate Group 2.3. 5Nitrogen-Carbon BaseSugar 1. Phosphate Group 2. 5-Carbon Sugar (Dexoyribose or Ribose) 3. (Dexoyribose or Ribose) 1. 3. Nitrogen Base 2. 3. Nucleotides, too O 1.