Newsletter Number 58

Total Page:16

File Type:pdf, Size:1020Kb

Newsletter Number 58 The Palaeontology Newsletter Contents 58 Association Business 2 News 8 Association Meetings 10 Meeting Reports 14 Mysterious Fossils 25 From our correspondents Inferring Developmental Mode 26 Foiling vertebrate inversion 32 PalaeoBioSuperstar 40 Palaeo-math 101: Regression 4 44 Obituary: Ehrhard Voigt 54 Progressive Palaeontology 2005 57 Future meetings of other bodies 58 Book Reviews 72 Palaeontology vol 48 parts 1 & 2 92–93 Discounts for PalAss members 94 Reminder: The deadline for copy for Issue no 59 is 20th May 2005 On the Web: <http://www.palass.org/> Newsletter 58 2 Newsletter 58 3 Association Business the compilation of fossil collections, and their care and conservation, to published studies in recognised journals. Nominations should comprise a short statement (up to one page of A4) outlining the candidate’s principal achievements. Members putting forward candidates should Nominations for Council also be prepared, if requested, to write an illustrated profile in support of their nominee. The deadline for nominations is 1st September 2005. The award comprises a cash prize plus a At the AGM in December 2005, the following vacancies will occur on Council: framed scroll, and is usually presented at the Annual meeting. Vice-President Sylvester-Bradley Award Newsletter Editor three handling editors Awards are made to assist palaeontological research (travel, visits to museums, fieldwork etc.), one Ordinary member with each award having a maximum value of £1,000. Preference is given to applications for a single purpose (rather than top-ups of other grant applications) and no definite age limit is Nominations are now invited for these posts. Please note that each candidate must be proposed applied, although some preference may be given to younger applicants or those at the start by at least two members of the Association and that any individual may not propose more than of their careers. The award is open to both amateur and professional palaeontologists, but two candidates. Nominations must be accompanied by the candidates’ written agreement to preference will be given to members of the Association. The awards are announced at the AGM. stand for election and a single sentence describing their interests. Council will also consider awards in excess of £1,000, particularly for pilot projects which are All potential Council Members are asked to consider that: likely to facilitate a future application to a national research funding body. ‘Each Council Member needs to be aware that, since the Palaeontological Association Electronic submission of applications, through the website, is preferred and will comprise a is a Registered Charity, in the eyes of the law he/she becomes a Trustee of that CV, an account of research aims and objectives (5,000 characters maximum), and a breakdown Charity. Under the terms of the Charities Act 1992, legal responsibility for the proper of the proposed expenditure. Each application should be accompanied by the names of a management of the Palaeontological Association lies with each Member of Council.’ personal and a scientific referee. Successful candidates must produce a report for Palaeontology The closing date for nominations is Monday, 3rd October 2005. They should be sent to the Newsletter and are asked to consider the Association’s meetings and publications as media for Secretary: Dr Howard A. Armstrong, Department of Earth Sciences, University of Durham, conveying the research results. Deadline 1st November 2005. Durham DH1 3LE, email <[email protected]>. Mary Anning Award 2004: Phil Bennett Awards and Prizes Phil Bennett’s interest in palaeontology began over ten years ago with the collection of graptolites from the Llandovery of mid Wales. He now specialises in fossils from the Old Red Nominations are now being sought for the Hodson Fund and Mary Anning Award. Sandstone. Hodson Fund Phil has donated, or made available for display, valuable material of vertebrates, arthropods and vascular plants at several Welsh institutions, including the Ludlow Museum, the Brecon This award is conferred on a palaeontologist who is under the age of 35 and who has made Museum in Powys, and the National Museum in Cardiff. a notable early contribution to the science. Candidates must be nominated by at least two members of the Association, and the application must be supported by an appropriate academic Since 1999, he has collected an extremely well preserved assemblage from the Early Devonian case. Closing date for nominations is 1st September 2005. Nominations will be considered and near Brecon. Much of the vertebrate material is articulated, including the most complete a decision made at the October meeting of Council. The award will comprise a fund of £1,000, specimen of the heterostracan Protopteraspis ever found. He has made this material available to presented at the Annual Meeting. a variety of specialists. Mary Anning Award Since 2002 Phil has focused on a particular plant bed. A trigonotarbid arachnid, donated to the National Museum in Cardiff, is the oldest known arachnid from Wales (and the second oldest The award is open to all those who are not professionally employed within palaeontology but from anywhere) and is the subject of a paper just published in Palaeontology by Jason Dunlop who have made an outstanding contribution to the subject. Such contributions may range from and Paul Selden. Phil has also discovered other arthropods, including an undescribed myriapod, in the bed. Plant material from this locality is under investigation by Diane Edwards. Newsletter 58 4 Newsletter 58 5 Phil Bennett has shown enormous dedication in compiling a scientifically important collection a landmark – a superbly illustrated, meticulous study of all the trunk muscles, requiring highly of fossil vertebrates, invertebrates and plants from the Silurian and Devonian of Wales and skilled dissection, comparative anatomy, and phylogenetic analysis. A study of the kinematics of the Welsh Borders, which he has made available for expert investigation at every opportunity, feeding in the giant living millipede Archispirostreptus is in press. resulting in a number of important publications. Heather came to Yale in the Summer of 2002 to return to her primary focus, research on fossils. Earlier this year she published (in Journal of Paleontology with Lyall Anderson) the oldest definitive land dwelling myriapod, a new genus Pneumodesmus from the Silurian of Stonehaven, Mary Anning Award 2004: Bjørn Funke which preserves the earliest evidence of air breathing in any animal of any kind. She has published on myriapods from the Silurian to the Cretaceous, and has recently embarked on As a schoolboy Bjørn Funke was one of the initiators of a geology club, “Steinklubben,” for young a field and laboratory investigation of early terrestrial arthropods, using hydrofluoric acid to children living in the Oslo area. He regularly brought fossils to the University Palaeontology dissolve mid-Paleozoic siliciclastics in pursuit of cuticle fragments. Museum to be identified and encouraged the staff there to help lead field trips for the club sponsored by the Museum, parents and the Esso company. This club is still active more than 40 Heather Wilson’s contributions to myriapod biology and systematics exploit her remarkable years later and Bjørn Funke, although no longer leader, is still an active participant and regularly range of technical and intellectual skills: she is one of those rare individuals who is just as guides excursions. comfortable working with living animals as she is with ancient ones; with molecular sequences as she is with morphological data; with trace fossils as she is with body fossils, with function as In 1994 Bjørn set up what soon became known as PalVen (friends of the Palaeontological she is with phylogeny – and with teaching as she is with research. Museum, with himself as leader), an organization of amateur collectors who meet regularly at the Museum, organize lectures and excursions, exchange and identify fossils, and donate specimens for sale in the Museum shop. Income from these sales has exceeded well over €50,000, which the Museum has used to purchase top quality specimens, mainly for display Lapworth Medal: James W. Valentine purposes. James W. Valentine, Member of the National Academy of Sciences, Paleontological Society Many fine specimens found by Bjørn are also in the Oslo Museum’s type or reference collections. medallist, former President of the Paleontological Society, is professor emeritus of integrative biology at the University of California, Berkeley, where he is affiliated with the Museum of Bjørn Funke has done much to inspire young Norwegians and show them the rewards of Paleontology and the Center for Integrative Genomics. He has spent most of his career at the collecting fossils, and has devoted his entire spare time to the service of both amateur and University of California – taking his PhD at UCLA in 1958, and spending time at Davis (1964–77), professional palaeontologists. Santa Barbara (1977–90), and subsequently Berkeley. Jim has researched the gamut of the history of life – in terms of both organisms and the time Hodson Award: Heather Wilson scale. He is a gentle giant: a quiet modest man, generous to his colleagues, contemptuous of rivalries within the discipline, excited by discovery, and a great enthusiast for science and Heather Wilson’s interest in fossil arthropods started as an undergraduate at Mount Holyoke scientists. But don’t be taken in by the calm exterior. In the late 1990s
Recommended publications
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • 2017 Chicxulub Revealed
    THE UNIVERSITY TEXAS OF AUSTIN AT JACKSON• SCHOOL GEOSCIENCES OF 2017 NEWSLETTER• Newsletter2 017 Chicxulub Revealed A first look at rocks from the crater left by the asteroid that wiped out non-avian dinosaurs WELCOME Dear Alumni and Friends he devastation that Hurricane Harvey brought to Texas communities in August was a tragic reminder of how vital it is to understand our planet and T its processes. Shortly after the hurricane struck, our scientists, through our Rapid Response program, began to conduct research to understand how Harvey has impacted the coast and offshore Gulf of Mexico. This research will help determine the best ways to deal with many coastal issues in the aftermath of the storm, and how we might better prepare for such events in the future. You can read more about the mission on page 18. Rapid response efforts on the effects of abrupt, catastrophic geoscience events COVER: GRANITE FROM THE PEAK RING OF provide critical science that can benefit society. This is what we strive to do here at the THE CHICXULUB CRATER FORMED BY THE Jackson School of Geosciences. This year’s Newsletter holds some tremendous examples. ASTEROID STRIKE THAT WIPED OUT ALL NON- AVIAN DINOSAURS I’d like to draw your attention to the story on page 58 about the scientific coring mission led by Peter Flemings to bring back samples of methane hydrate from ABOVE: MEMBERS OF THE JACKSON beneath the Gulf of Mexico. This is a cutting-edge research project on a potential SCHOOL-LED TEAM CORING FOR SAMPLES OF METHANE HYDRATE IN THE GULF OF MEXICO future energy source that very few schools in the world would be able to mount.
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • Geology Final.Indb
    Paleontology of the Neoproterozoic Uinta Mountain Group Robin M. Nagy* and Susannah M. Porter* ABSTRACT Sedimentary rocks of the Uinta Mountain Group (northeastern Utah) preserve fossils deposited in a marine setting during middle Neoproterozoic time. Although well preserved, species diversity is much lower than many other midddle Neoproterozoic siliciclastic deposits. Microfossil assemblages are mostly limited to Leiosphaeridia sp., Bavlinella faveolata, and fi laments. Diverse ornamented acritarchs, vase- shaped microfossils, and the macroscopic compression fossil Chuaria circularis, also occur, but are much more rare. Although the Uinta Mountain Group does not preserve as wide a range of facies as other middle Neoproterozoic units – the unit is carbonate-free – it is unlikely that preservation alone can account for its relatively limited fossil diversity. Rather, the Uinta Mountain Group likely records deposition in an environment that was inimical to most eukaryotes. INTRODUCTION own (see table 2). We find that although the UMG is fossiliferous throughout its stratigraphic and The Uinta Mountain Group (UMG) is one geographic range, (appendix A) fossil assemblages of several western North American successions are, for the most part, taxonomically depauperate, that provide a glimpse of middle Neoproterozoic limited to just one or a few morphologically simple life (Link and others, 1993). Other successions species. This probably reflects, at least in part, the from this region have yielded important insight limited range of taphonomic windows preserved into this critical interval, including the earliest in the UMG, but also suggests that much of the evidence for eukaryotic biomineralization UMG was deposited in an environment inimical to (Horodyski and Mankiewicz, 1990; Porter and high species diversity.
    [Show full text]
  • COURSE OUTLINE and SYLLABUS for M.Sc., ZOOLOGY UNDER CBCS SCHEME SEMESTER-I
    COURSE OUTLINE AND SYLLABUS FOR M.Sc., ZOOLOGY UNDER CBCS SCHEME SEMESTER-I Sl. Paper Title of the Paper Instructi Credits Duration Marks No on Hrs of the IA Exam Total per Exam Marks Marks Marks Week (Hrs) 1 CPT-1.1 Animal Systematics 4 4 3 20 80 100 2 Biology of Non- CPT-1.2 4 4 3 20 80 100 Chordates 3 CPT-1.3 Molecular Cell Biology 4 4 3 20 80 100 4 Computer Applications & SPT-1.4A Methods in Biology 4 4 3 20 80 100 SPT-1.4B Aquatic Biology 5 CPP-1.5 Animal Systematics 4 2 4 10 40 50 6 Biology of Non- CPP-1.6 4 2 4 10 40 50 Chordates 7 CPP-1.7 Molecular Cell Biology 4 2 4 10 40 50 8 Computer Applications SPP-1.8A & Methods in Biology 4 2 4 10 40 50 SPP-1.8B Aquatic Biology Total 24 600 SEMESTER-II Sl. Paper Title of the Paper Instructi Credits Duration Marks No on Hrs of the IA Exam Total per Exam Marks Marks Marks Week (Hrs) 1 CPT-2.1 Biology of 4 4 3 20 80 100 Chordates 2 CPT-2.2 Developmental 4 4 3 20 80 100 Biology 3 SPT-2.3A Molecular Genetics SPT-2.3B Wildlife Biology & 4 4 3 20 80 100 Conservation 4 OET-2.4 Human Physiology 4 4 3 20 80 100 5 CPP-2.5 Biology of 4 2 4 10 40 50 Chordates 6 CPP-2.6 Developmental 4 2 4 10 40 50 Biology 7 SPP-2.7A Molecular Genetics 4 2 4 10 40 50 SPP-2.7B Wildlife Biology & Conservation 8 OEP-2.8 Human Physiology 4 2 4 10 40 50 Total 24 600 1 SEMESTER-III Sl.
    [Show full text]
  • ROCEK, Z. and WUTTKE, M. (2010) Amphibia of Enspel (Late
    Palaeobio Palaeoenv (2010) 90:321–340 DOI 10.1007/s12549-010-0042-0 ORIGINAL PAPER Amphibia of Enspel (Late Oligocene, Germany) ZbyněkRoček & Michael Wuttke Received: 23 April 2010 /Revised: 9 July 2010 /Accepted: 12 August 2010 /Published online: 29 September 2010 # Senckenberg Gesellschaft für Naturforschung and Springer 2010 Abstract Amphibia from the Late Oligocene (MP 28) One specimen is a large premetamorphic tadpole (no locality Enspel, Germany are represented by two caudates: rudimentary limbs) with a total body length of 147 mm. a hyperossified salamandrid Chelotriton paradoxus and an Anatomically, it can be equally assigned to Pelobates or to indeterminate salamandrid different from Chelotriton in Eopelobates; the second possibility was excluded only on proportions of vertebral column. Anurans are represented the basis of absence of adult Eopelobates in this locality. by two forms of the genus Palaeobatrachus, one of which is nearly as large as P. gigas (now synonymized with P. Keywords Enspel . Oligocene . Salamandridae . grandipes). Pelobates cf. decheni, represented in this Chelotriton . Anura . Palaeobatrachus . Pelobates . Rana locality by three nearly complete adult skeletons and a large number of tadpoles, is the earliest record for the Abbreviation genus. Compared with later representatives of the genus, it DP FNSP Department of Palaeontology Faculty of does not yet possess specializations for burrowing. Ranidae Natural Sciences, Prague are represented by two rather fragmentary and incomplete skeletons referred to as Rana sp. A comparatively large series of tadpoles was assigned to the Pelobatidae on the basis of tripartite frontoparietal complex. Most of them are Introduction premetamorphic larvae, and a few older ones are post- metamorphic, but they do not exceed Gossner stage 42.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • Tayside, Central and Fife Tayside, Central and Fife
    Detail of the Lower Devonian jawless, armoured fish Cephalaspis from Balruddery Den. © Perth Museum & Art Gallery, Perth & Kinross Council Review of Fossil Collections in Scotland Tayside, Central and Fife Tayside, Central and Fife Stirling Smith Art Gallery and Museum Perth Museum and Art Gallery (Culture Perth and Kinross) The McManus: Dundee’s Art Gallery and Museum (Leisure and Culture Dundee) Broughty Castle (Leisure and Culture Dundee) D’Arcy Thompson Zoology Museum and University Herbarium (University of Dundee Museum Collections) Montrose Museum (Angus Alive) Museums of the University of St Andrews Fife Collections Centre (Fife Cultural Trust) St Andrews Museum (Fife Cultural Trust) Kirkcaldy Galleries (Fife Cultural Trust) Falkirk Collections Centre (Falkirk Community Trust) 1 Stirling Smith Art Gallery and Museum Collection type: Independent Accreditation: 2016 Dumbarton Road, Stirling, FK8 2KR Contact: [email protected] Location of collections The Smith Art Gallery and Museum, formerly known as the Smith Institute, was established at the bequest of artist Thomas Stuart Smith (1815-1869) on land supplied by the Burgh of Stirling. The Institute opened in 1874. Fossils are housed onsite in one of several storerooms. Size of collections 700 fossils. Onsite records The CMS has recently been updated to Adlib (Axiel Collection); all fossils have a basic entry with additional details on MDA cards. Collection highlights 1. Fossils linked to Robert Kidston (1852-1924). 2. Silurian graptolite fossils linked to Professor Henry Alleyne Nicholson (1844-1899). 3. Dura Den fossils linked to Reverend John Anderson (1796-1864). Published information Traquair, R.H. (1900). XXXII.—Report on Fossil Fishes collected by the Geological Survey of Scotland in the Silurian Rocks of the South of Scotland.
    [Show full text]
  • 3.5 Life Gets
    compelling. Researchershave found fossils in 2.6-billion-yearo1d rocks,for example,that bear a striking resemblanceto cyanobac- teria,the lineageof bacteriathat carriesout photosynthesis.That's exactlywhen the first evidenceof atmosphericoxygen appearsin the fossil record; between 2.45 and 2.32 billion years ago,oxygen increaseddramatically. The rise in oxygen was likely the result of the emergenceof cyanobacteria,which releaseoxygen during photosynthesis.While oxygen levels increaseddramatically dur- ing this time, they were still very low compared to today. As a result,purple sulfur bacteriawere still abundant1.6 billion years ago,as reflectedby the presenceof okenane. Archaeaalso make an early but ambiguous-appearance in the fossil record. ln 2006, Yuichiro Ueno and his colleaguesat Tokyo Institute of Technologywere able to extract methane from 3.S-billionyear-old rocks from Australia.The methane had a low fraction of carbon-13,indicating that it had been producedbio- logically(Ueno et al. 2006).Only one group of organismsalive todayreleases methane: a lineageofarchaea called Euryarchaeota. Among the placesthey live today is the digestivetract of cows; they'rethe reasonsthat cow belchescontain methane. Eukaryaemerge in the fossil record only about 1.8 billion yearsago. Their first fossilsare single celled organisms measuring about 100micrometers across. While they would havebeen invis- ible to the nakedeye, they marked a giant leap in size,measur- ing about 100times biggerthan a typical bacterium.These early eukaryoteshad ridges,plates, and otherstructures that aresimilar to thoseof living singlecelled eukaryotes. Over the next billion years,the diversityof thesesingle-celled eukaryotes increased, as some lineagesevolved to carry out photosynthesiswhile others preyed on bacteriaor grazedon their photosyntheticrelatives (Knollet al.2OO6\.
    [Show full text]
  • Larval Development in Oligocene Palaeobatrachid Frogs
    Larval development in Oligocene palaeobatrachid frogs ZBYNĚK ROČEK Roček, Z. 2003. Larval development in Oligocene palaeobatrachid frogs. Acta Palaeontologica Polonica 48 (4): 595–607. A detailed account of the development of skeletal and some soft−tissue structures is based on 171 fossil tadpoles and meta− morphosing froglets of Palaeobatrachus sp. from the Late Oligocene of the Czech Republic (locality Bechlejovice). Their exceptionally good preservation resulted from fossilization in diatomites. The fossil developmental series was com− pared with normal development of the contemporary anuran Xenopus laevis (Pipidae) represented by cleared and stained (alizarin/toluidin−blue) whole−mount specimens. The comparison revealed that in spite of differences in the sequence of ossification and its timing (e.g., ossification of the otic capsules and ribs was retarded in Xenopus whereas dermal ossifi− cation was retarded in Palaeobatrachus), in the number of free ribs, and in composition of the sacral region (the synsacrum in Palaeobatrachus involves two posterior presacrals, whereas there is a single sacral in Xenopus), both gen− era were similar in great number of anatomical features that appear during development. The most important difference is the shape of vertebral centrum (procoelous in Palaeobatrachus, opisthocoelous in all Pipidae) which is formed in com− paratively early developmental stages. A view that could result from anatomical comparisons is that Palaeobatrachus could be derived from the Pipidae, but this is doubtful due to biostratigraphic and palaeogeographic discrepancies. The earliest palaeobatrachids were recorded from the Late Cretaceous of Europe but pipids could not invade northern conti− nents after the Early Cretaceous when the Tethys Sea prevented interchanges of anuran faunas.
    [Show full text]
  • Frontoparietal Bone in Extinct Palaeobatrachidae (Anura): Its Variation and Taxonomic Value
    THE ANATOMICAL RECORD 298:1848–1863 (2015) Frontoparietal Bone in Extinct Palaeobatrachidae (Anura): Its Variation and Taxonomic Value ZBYNEK ROCEK, 1* RENAUD BOISTEL,2 NICOLAS LENOIR,3 ARNAUD MAZURIER,4 STEPHANIE E. PIERCE,5 JEAN-CLAUDE RAGE,6 SERGEI V. SMIRNOV,7 ACHIM H. SCHWERMANN,8 XAVIER VALENTIN,2 9 10 11 MARTON VENCZEL, MICHAEL WUTTKE, AND TOMA S ZIKMUND 1Department of Palaeobiology, Geological Institute, Academy of Sciences of the Czech Republic, Prague, Czech Republic 2Institut International de Paleoprimatologie et de Paleontologie Humaine, UMR 7262 CNRS, Universite de Poitiers, Poitiers, France 3Multiscale Group, Laboratoire Navier, UMR8205-CNRS/ENPC/IFSTTAR/Universite Paris-Est, Champs-sur-Marne, France 4Institut de Chimie des Milieux et Materiaux de Poitiers, UMR 7285 Universitede Poitiers, UFR SFA, Poitiers, France 5Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 6Sorbonne Universites—CR2P—MNHN, CNRS, UPMC-Paris 6, Museum National d’Histoire Naturelle, Paris, France 7Laboratory of Evolutionary Morphology, a.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia 8Steinmann-Institut fur€ Geologie, Mineralogie und Palaontologie,€ Universitat€ Bonn, Bonn, Germany 9 T; arii Cris¸urilor Museum, Oradea, Romania 10Department of Archaeology, General Department of Cultural Heritage Rhineland Palatinate, Section Geological History of the Earth, Mainz, Germany 11X-Ray Micro CT and Nano CT Research Group, CEITEC—Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic ABSTRACT Palaeobatrachidae are extinct frogs from Europe closely related to the Gondwanan Pipidae, which includes Xenopus. Their frontoparietal is a distinctive skeletal element which has served as a basis for establishing the genus Albionbatrachus.
    [Show full text]
  • An Analysis of Fossil Identification Guides to Improve Data Reporting in Citizen Science Programs
    Palaeontologia Electronica palaeo-electronica.org An analysis of fossil identification guides to improve data reporting in citizen science programs Dava K. Butler, Donald A. Esker, Kristopher L. Juntunen, and Daniel R. Lawver ABSTRACT An increasing number of organizations use untrained volunteers to gather scien- tific data. This citizen science movement builds enthusiasm for science by engaging the public, as well as providing a way to gather large amounts of data at little or no expense. The challenge of citizen science is obtaining accurate information from par- ticipants. Many citizen science programs encourage participants to use visual identification guides to ensure they provide correct data. Identifying an image style that increases correct identifications helps not only the citizen science movement but also scientific instruction in general. This study tests three image-based identification guides for iden- tifying late Hemphillian (5–4.5 m.y.a.) fossils from Polk County, Florida. Each guide has identical layout and text, differing only in image style: color photos, grayscale photos, or illustrations. Untrained participants each use one guide to identify fossils. Geology and paleontology professionals also identify fossils for comparison. Comparing results reveals that color photographic images produce results most similar to data from pro- fessionals. In addition, participants provide data on their years of education, previous experi- ence finding fossils, and enthusiasm about finding fossils. Analysis of this information reveals that participants with higher education and/or previous experience finding fos- sils produce data most similar to that from professionals. Paradoxically, participants with higher enthusiasm produce data less similar to that from professionals, while mod- erate interest levels correlated with greater similarity.
    [Show full text]