3.5 Life Gets

Total Page:16

File Type:pdf, Size:1020Kb

3.5 Life Gets compelling. Researchershave found fossils in 2.6-billion-yearo1d rocks,for example,that bear a striking resemblanceto cyanobac- teria,the lineageof bacteriathat carriesout photosynthesis.That's exactlywhen the first evidenceof atmosphericoxygen appearsin the fossil record; between 2.45 and 2.32 billion years ago,oxygen increaseddramatically. The rise in oxygen was likely the result of the emergenceof cyanobacteria,which releaseoxygen during photosynthesis.While oxygen levels increaseddramatically dur- ing this time, they were still very low compared to today. As a result,purple sulfur bacteriawere still abundant1.6 billion years ago,as reflectedby the presenceof okenane. Archaeaalso make an early but ambiguous-appearance in the fossil record. ln 2006, Yuichiro Ueno and his colleaguesat Tokyo Institute of Technologywere able to extract methane from 3.S-billionyear-old rocks from Australia.The methane had a low fraction of carbon-13,indicating that it had been producedbio- logically(Ueno et al. 2006).Only one group of organismsalive todayreleases methane: a lineageofarchaea called Euryarchaeota. Among the placesthey live today is the digestivetract of cows; they'rethe reasonsthat cow belchescontain methane. Eukaryaemerge in the fossil record only about 1.8 billion yearsago. Their first fossilsare single celled organisms measuring about 100micrometers across. While they would havebeen invis- ible to the nakedeye, they marked a giant leap in size,measur- ing about 100times biggerthan a typical bacterium.These early eukaryoteshad ridges,plates, and otherstructures that aresimilar to thoseof living singlecelled eukaryotes. Over the next billion years,the diversityof thesesingle-celled eukaryotes increased, as some lineagesevolved to carry out photosynthesiswhile others preyed on bacteriaor grazedon their photosyntheticrelatives (Knollet al.2OO6\. If you could travel back in time to 1.5billion yearsago, the world would look like a desolateplace. On land there were no trees,no flowers,not evenmoss. In somespots, a thin varnishof single-celledorganisms grew. In the ocean,there were no fish or lobstersor coral reefs.Yet the oceanteemed with microbiallife, from the organisms that lived around hydrothermal vents on the seafloorto free-float- Figure3.13 A: Bacteriacan grow and ing bacteria and photosynthetic eukaryotes at the ocean's surface. Along the coasts, divideindividually, but they can also microbial mats stretched for miles in the shallow waters. form multicellularstructures, sucn as Today our attention may be distracted by animals and plants, but the world gelatinoussheets called biofilms. remains dominated by microbes. By weight, microbes make up the bulk of Earth's B'.Dictyosteliumdiscoides,asoil biomass. They live in a tremendous range of habitats that would kill the typical ani- eukaryote,istypicallyunicellular. nral or plant-from Antarctic deserts to the bottom of acid-drenched mine shafts. The BuID. discoides individuals can come genetic variation among single-celledlife also far exceedsthat of animals or plants. togethertoformaslug-likemassthat Most genes on the planet belong to microbes or their viruses. It's a microbial world, cancrawl away and form a stalkof in other words, and we just happen to live in it. spores.Along with bacterialbiofilms, theyoffer clues to howmulticellularity first evolved. 3.5 LifeGets Big O* The human body is radically different from a single-celledbacterium. It's made of a trillion cells glued together with adhesivemolecules and differentiated into organs and tissues that work together. Only a minuscule fraction of cells in the human body-the sperm or eggs-have the potential to pass on their genetic material to future generations. 3.5 LrFEGErS BrG 67 Figure3.14 In 2010,scientists publisheddetails of enigmaticfossils measuringup to 12centimeters across. Datingback 2.1 billion years, they are the oldestfossils of multicellularlife. (Albaniet a1.2010.) The tree of life shows that multicellularity did not evolve just once. Instead, multicellularity evolved on dozens of different occasions. Animals, for example, are closely related to fungi, which can develop mushrooms and other multicellular structures.But animals have lots of even closerrelatives that are single celled,and it is likely that multi- cellularity evolvedin animals and fungi independently. Studieson living organismsoffer some clues to what the precursors of multicellular lineages may have looked like. Although bacteriaare consideredsingle celled,for example, they often live together in films that line surfaces ranging from our intestinesto rocks on the seafloor.In thesebiofilms, they sendsignals to one anotherthat regulatetheir growth and activity. Among eukaryotesa model organism used to study multicellularlty is Dictyosteliumdiscoides, which lives most of its life as a single-celledpredator on bacteria.When its prey runs out, it joins with thousandsof other D, discoidesto form a slug-like "body" that crawls through the soil. Eventually it stops,and some of the cells produce celluloseto build a stalk, on top of which a ball of sporesforms (we discussDictyoste- lium socialbehavior in Chapter 16). In 2010,an internationalteam of scientistsdescribed the oldestknown fossilsof a multicellular organism (Albani et al. 2010).The fossils,dating back 2.1 billion yearsrwere found in Gabonin WestAfrica. They arescalloped disks, measuring up to 12 centimeters across.It's not clear whether the fossils were formed by early eukaryotes,some type of bacteria,or archaea (Figure3.1a). The oldest recognizable multicellular eukary- otes-filaments of some type of algae-are 1.6 billion years old. The oldestknown fossilsof red algaedate back 1.2billion years (Figure3.15), while green algaefirst appear750 million 25 pm r years ago. KeyConcept Thetransition to multicellularlife began at least 2.1 billion years ago, but multicellularitylikely evolved ina numberof lineages. Figure3.15 A fossilof redalgae, known as Bangiomorpha, dating back 1.2billion years. 58 CHAPTERTHREE WHAT THE ROCKSSAY: HOW GEOLOGYAND PALEONTOLOGYREVEAL THE HISTORYOF LIFE i', ..:ri.irisrrn|Ndl*l Figure3.15 ln 2010,scientists described650-million-year-old fossils from Australia,which they interpreted assponges. A: A iossj)ishighighted in red.B: By slicingthrougha rock, scientistsare able to getclues to the three-dimensionalstructure of another \ssir\.\\.{ss\e\*.a\\\ 3.6 TheDawn of theAnimal Kingdom Different lineagesof multicellularorganisms evolved different ways of capturing energ'yto grow. Greenplants, green algae,brown algae,and red algaeall use photo' synthesis.Fungi releaseenzymes to break down food,which they can then absorb. Only one lineageof multicellularorganisms evolved a body that allowedthem to swallowother organisms:animals. Figure3.17 Thesemicroscopic fossils Today,animals include familiar groups such as mammals and birds, but less of clustersof cellsdate back about 580 familiar onesas well, like sponges.Sponges may not seemmuch like otheranimals- millionyears. Based on studiesof living they lack a brain,eyes, or evena mouth,getting their food by trapping particlesthat cells,paleontologists initially conclud- drift through the poresof their bodies.Yet they sharethousands of geneticmarkers edthey are probably animal embryos. with other animalsthat are not found in nonanimal species.And it's spongesthat ln 20.1.1,other researchers argued that appearto mark the earliestappearance of animalsin the fossilrecord. In 2010,Adam theyare instead single-celled relatives Maloof of PrincetonUniversity and his colleaguesreported 65O-million-year-old fos- of animalsthat reproduceby forming silsthat appearstrikingly like living sponges-down to sponge-likepores. a cyst.The cell divides into daughter Meanwhile,Gordon Love, a geochemistat the Universityof Californiaat River- cells,which then escape the cyst. side,and his colleagueshave been finding biomarkersof animalsof aboutthat same age.In 2009they reportedthe discoveryof a cholesterol- like molecule,in 635-million-year-oldrock in Oman,that is made today by only one group of sponges(Love et al. 2009).In 2011,they reportedfinding the samemolecules in rocksof a similarage in Siberia(Kelly et al.,in press). Thesebiomarkers and the Australianfossils of possible sponges suggest that animals had already evolved at least100 million yearsbefore the start of the Cambrian period. The search for early fossils of animals inspires strong debatesbecause it can be difficult to distinguish the ancient remains of a primitive animal from a colony of single-celledeukaryotes. A ChineseLagerstiitte called the DoushantuoFormation has yielded what were ini- tially proposedto be 58O-million-yearold animal embryos (Figure3.17;Raffet aI.2008; Chen et aI.2009). But in 2011, StephenBengtson of the SwedishMuseum of Natural History and his colleaguesmade a compelling casethat thev were actuallv fossils of close relatives of animals. Eachof the unicellularorganisms reproduced by dividing 3.6 THE DAWNoF THEANTMAL KtNGDoM 69 Figure3"18 Between about 575 and 535million years ago, a bizarrecommu nityof multicellularorganisms l<nown asthe Ediacaran fauna dominated the world'soceans. Some of themgave riseto livinglineages of animals,while manyothers had become entirely extinctby 535 million years ago. .e. "s, rll) , ,'.;i: *d;i i{-!#: # :rw, :;lr Figure3.19 TheEdiacaran fauna was a groupof organismswith diverse and uniquemorphologies and body plans. Thesefossils show the range of varia- tion in form andsymmetry. 70 cHAprERTHREE wHAT THERocKs say: How GEoLoGyaND paLEoNToLoGyREVEAL
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Evidence for Selection on a Chordate Histocompatibility Locus
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01787.x EVIDENCE FOR SELECTION ON A CHORDATE HISTOCOMPATIBILITY LOCUS Marie L. Nydam,1,2,3 Alyssa A. Taylor,3 and Anthony W. De Tomaso3 1Division of Science and Mathematics, Centre College, Danville, Kentucky 40422 2E-mail: [email protected] 3Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106 Received June 7, 2011 Accepted July 31, 2012 Allorecognition is the ability of an organism to differentiate self or close relatives from unrelated individuals. The best known applications of allorecognition are the prevention of inbreeding in hermaphroditic species (e.g., the self-incompatibility [SI] systems in plants), the vertebrate immune response to foreign antigens mediated by MHC loci, and somatic fusion, where two genetically independent individuals physically join to become a chimera. In the few model systems where the loci governing allorecognition outcomes have been identified, the corresponding proteins have exhibited exceptional polymorphism. But information about the evolution of this polymorphism outside MHC is limited. We address this subject in the ascidian Botryllus schlosseri,where allorecognition outcomes are determined by a single locus, called FuHC (Fusion/HistoCompatibility). Molecular variation in FuHC is distributed almost entirely within populations, with very little evidence for differentiation among different populations. Mutation plays a larger role than recombination in the creation of FuHC polymorphism. A selection statistic, neutrality tests, and distribution of variation within and among different populations all provide evidence for selection acting on FuHC, but are not in agreement as to whether the selection is balancing or directional.
    [Show full text]
  • Download Download
    Dorjnamjaa et al. Mongolian Geoscientist 49 (2019) 41-49 https://doi.org/10.5564/mgs.v0i49.1226 Mongolian Geoscientist Review paper New scientific direction of the bacterial paleontology in Mongolia: an essence of investigation * Dorj Dorjnamjaa , Gundsambuu Altanshagai, Batkhuyag Enkhbaatar Department of Paleontology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia *Corresponding author. Email: [email protected] ARTICLE INFO ABSTRACT Article history: We review the initial development of Bacterial Paleontology in Mongolia and Received 10 September 2019 present some electron microscopic images of fossil bacteria in different stages of Accepted 9 October 2019 preservation in sedimentary rocks. Indeed bacterial paleontology is one the youngest branches of paleontology. It has began in the end of 20th century and has developed rapidly in recent years. The main tasks of bacterial paleontology are detailed investigation of fossil microorganisms, in particular their morphology and sizes, conditions of burial and products of habitation that are reflected in lithological and geochemical features of rocks. Bacterial paleontology deals with fossil materials and is useful in analysis of the genesis of sedimentary rocks, and sedimentary mineral resources including oil and gas. The traditional paleontology is especially significant for evolution theory, biostratigraphy, biogeography and paleoecology; however bacterial paleontology is an essential first of all for sedimentology and for theories sedimentary ore genesis or biometallogeny Keywords: microfossils, phosphorite, sedimentary rocks, lagerstatten, biometallogeny INTRODUCTION all the microorganisms had lived and propagated Bacteria or microbes preserved well as fossils in without breakdowns. Bacterial paleontological various rocks, especially in sedimentary rocks data accompanied by the data on the first origin alike natural substances.
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities.
    [Show full text]
  • Development of the Annelid Axochord: Insights Into Notochord Evolution Antonella Lauri Et Al
    RESEARCH | REPORTS ORIGIN OF NOTOCHORD by double WMISH (Fig. 2, F to L). Although none of the genes were exclusively expressed in the annelid mesodermal midline, their combined Development of the annelid coexpression was unique to these cells (implying that mesodermal midline in annelids and chor- damesoderm in vertebrates are more similar to axochord: Insights into each other than to any other tissue). It is unlikely that the molecular similarity between annelid notochord evolution and vertebrate mesodermal midline is due to in- dependent co-option of a conserved gene cas- Antonella Lauri,1*† Thibaut Brunet,1* Mette Handberg-Thorsager,1,2‡ sette, because this would require either that this Antje H.L. Fischer,1§ Oleg Simakov,1 Patrick R. H. Steinmetz,1‖ Raju Tomer,1,2¶ cassette was active elsewhere in the body (which Philipp J. Keller,2 Detlev Arendt1,3# is not the case) or that multiple identical inde- pendent events of co-option occurred (which is The origin of chordates has been debated for more than a century, with one key issue being unparsimonious). As in vertebrates, the meso- the emergence of the notochord. In vertebrates, the notochord develops by convergence dermal midline resembles the neuroectodermal and extension of the chordamesoderm, a population of midline cells of unique molecular midline, which expresses foxD, foxA, netrin, slit, identity. We identify a population of mesodermal cells in a developing invertebrate, the marine and noggin (figs. S6 and S7) but not brachyury or annelid Platynereis dumerilii, that converges and extends toward the midline and expresses a twist. However, unlike in chicken (10), the an- notochord-specific combination of genes.
    [Show full text]
  • Dornbos.Web.CV
    Stephen Quinn Dornbos Associate Professor and Department Chair Department of Geosciences University of Wisconsin-Milwaukee Milwaukee, WI 53201-0413 Phone: (414) 229-6630 Fax: (414) 229-5452 E-mail: [email protected] http://uwm.edu/geosciences/people/dornbos-stephen/ EDUCATION 2003 Ph.D., Geological Sciences, University of Southern California, Los Angeles, CA. 1999 M.S., Geological Sciences, University of Southern California, Los Angeles, CA. 1997 B.A., Geology, The College of Wooster, Wooster, OH. ADDITIONAL EDUCATION 2002 University of Washington, Summer Marine Invertebrate Zoology Course, Friday Harbor Laboratories. 1997 Louisiana State University, Summer Field Geology Course. PROFESSIONAL EXPERIENCE 2017-Present Department Chair, Department of Geosciences, University of Wisconsin-Milwaukee. 2010-Present Associate Professor, Department of Geosciences, University of Wisconsin-Milwaukee. 2004-2010 Assistant Professor, Department of Geosciences, University of Wisconsin-Milwaukee. 2012-Present Adjunct Curator, Geology Department, Milwaukee Public Museum. 2004-Present Curator, Greene Geological Museum, University of Wisconsin- Milwaukee. 2003-2004 Postdoctoral Research Fellow, Department of Earth Sciences, University of Southern California. 2002 Research Assistant, Invertebrate Paleontology Department, Natural History Museum of Los Angeles County. EDITORIAL POSITIONS 2017-Present Editorial Board, Heliyon. 2015-Present Board of Directors, Coquina Press. 2014-Present Commentaries Editor, Palaeontologia Electronica. 2006-Present Associate Editor, Palaeontologia Electronica. Curriculum Vitae – Stephen Q. Dornbos 2 RESEARCH INTERESTS 1) Evolution and preservation of early life on Earth. 2) Evolutionary paleoecology of early animals during the Cambrian radiation. 3) Geobiology of microbial structures in Precambrian–Cambrian sedimentary rocks. 4) Cambrian reef evolution, paleoecology, and extinction. 5) Exceptional fossil preservation. HONORS AND AWARDS 2013 UWM Authors Recognition Ceremony. 2011 Full Member, Sigma Xi.
    [Show full text]
  • Origin of Chordates Part-I
    ORIGIN OF CHORDATES Evolution of chordate was one of the most important event in the history of chordate as it was the beginning of evolution of more advanced chordates like bird and mammals. It is the story of origin from a primitive invertebrate like creatures to early chordates. Though first fossil of the first vertebrate the ostrachoderm was discovered from the Ordovician period but it might have originated in late Cambrian period. As early chordates were soft bodied, their fossil records are not preserved. Hence, to trace their ancestry, we have to find out the similarity among different deuterostomes to trace the origin of chordates. Some structural features shared by them such as bilateral symmetry, antero-posterior body axis, triploblastic coelomate condition, etc., may he because of their common ancestry. TIME OF ORIGIN: Late Cambrian period PLACE OF ORIGIN: Fresh water THEORIES OF INVERTEBRATE ANCESTRY OF CHORDATES Several theories have been put forwarded to explain the origin of chordates either directly from some invertebrate group or through the intervention of some protochordate. Almost every invertebrate phylum—Coelenterata, Nemertean, Phoronida, Annelids, Arthropods and Echinodermatashas been suggested. But these theories are far from being satisfactory and convincing and have only a historical value. Only the echinoderm theory has received some acceptance. DIVISION OF BILATERIA The Bilateria is divided into two major divisions (1) Protostomia and (2) Deuterostornia. This division is based on the differences in embryonic and larval developments. Protostomia includes from Annelida to Arthropoda while deuterostomia includes Echinodermata, Pogonophora and Chordate. DEUTEROSTOME LINE OF CHORDATE EVOLUTION Following common features of all Deuterostomes suggests strong evidence of a closer evolutionary relationship between the three principal deuterostome phyla – Echinodermata, Hemichordata and Chordata.
    [Show full text]
  • 2017 Chicxulub Revealed
    THE UNIVERSITY TEXAS OF AUSTIN AT JACKSON• SCHOOL GEOSCIENCES OF 2017 NEWSLETTER• Newsletter2 017 Chicxulub Revealed A first look at rocks from the crater left by the asteroid that wiped out non-avian dinosaurs WELCOME Dear Alumni and Friends he devastation that Hurricane Harvey brought to Texas communities in August was a tragic reminder of how vital it is to understand our planet and T its processes. Shortly after the hurricane struck, our scientists, through our Rapid Response program, began to conduct research to understand how Harvey has impacted the coast and offshore Gulf of Mexico. This research will help determine the best ways to deal with many coastal issues in the aftermath of the storm, and how we might better prepare for such events in the future. You can read more about the mission on page 18. Rapid response efforts on the effects of abrupt, catastrophic geoscience events COVER: GRANITE FROM THE PEAK RING OF provide critical science that can benefit society. This is what we strive to do here at the THE CHICXULUB CRATER FORMED BY THE Jackson School of Geosciences. This year’s Newsletter holds some tremendous examples. ASTEROID STRIKE THAT WIPED OUT ALL NON- AVIAN DINOSAURS I’d like to draw your attention to the story on page 58 about the scientific coring mission led by Peter Flemings to bring back samples of methane hydrate from ABOVE: MEMBERS OF THE JACKSON beneath the Gulf of Mexico. This is a cutting-edge research project on a potential SCHOOL-LED TEAM CORING FOR SAMPLES OF METHANE HYDRATE IN THE GULF OF MEXICO future energy source that very few schools in the world would be able to mount.
    [Show full text]
  • Biology of Chordates Video Guide
    Branches on the Tree of Life DVD – CHORDATES Written and photographed by David Denning and Bruce Russell ©2005, BioMEDIA ASSOCIATES (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE DVD PROGRAM) .. .. To many students, the phylum Chordata doesn’t seem to make much sense. It contains such apparently disparate animals as tunicates (sea squirts), lancelets, fish and humans. This program explores the evolution, structure and classification of chordates with the main goal to clarify the unity of Phylum Chordata. All chordates possess four characteristics that define the phylum, although in most species, these characteristics can only be seen during a relatively small portion of the life cycle (and this is often an embryonic or larval stage, when the animal is difficult to observe). These defining characteristics are: the notochord (dorsal stiffening rod), a hollow dorsal nerve cord; pharyngeal gills; and a post anal tail that includes the notochord and nerve cord. Subphylum Urochordata The most primitive chordates are the tunicates or sea squirts, and closely related groups such as the larvaceans (Appendicularians). In tunicates, the chordate characteristics can be observed only by examining the entire life cycle. The adult feeds using a ‘pharyngeal basket’, a type of pharyngeal gill formed into a mesh-like basket. Cilia on the gill draw water into the mouth, through the basket mesh and out the excurrent siphon. Tunicates have an unusual heart which pumps by ‘wringing out’. It also reverses direction periodically. Tunicates are usually hermaphroditic, often casting eggs and sperm directly into the sea. After fertilization, the zygote develops into a ‘tadpole larva’. This swimming larva shows the remaining three chordate characters - notochord, dorsal nerve cord and post-anal tail.
    [Show full text]
  • Exceptionally Preserved Fossil Assemblages Through Geologic Time and Space
    Gondwana Research 48 (2017) 164–188 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR Focus Review Exceptionally preserved fossil assemblages through geologic time and space A.D. Muscente a,⁎, James D. Schiffbauer b, Jesse Broce b, Marc Laflamme c, Kenneth O'Donnell d,ThomasH.Boage, Michael Meyer f, Andrew D. Hawkins g,JohnWarrenHuntleyb, Maria McNamara h, Lindsay A. MacKenzie i, George D. Stanley Jr. j, Nancy W. Hinman j, Michael H. Hofmann j, Shuhai Xiao g a Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA b Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA c Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada d AECOM, Germantown, MD 20876, USA e Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA f Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA g Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA h School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland i Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454, USA j Department of Geosciences, University of Montana, Missoula, MT 59812, USA article info abstract Article history: Geologic deposits containing fossils with remains of non-biomineralized tissues (i.e. Konservat-Lagerstätten) Received 23 February 2017 provide key insights into ancient organisms and ecosystems. Such deposits are not evenly distributed through Received in revised form 13 April 2017 geologic time or space, suggesting that global phenomena play a key role in exceptional fossil preservation.
    [Show full text]
  • Introduction to Phylum Chordata
    Unifying Themes 1. Chordate evolution is a history of innovations that is built upon major invertebrate traits •bilateral symmetry •cephalization •segmentation •coelom or "gut" tube 2. Chordate evolution is marked by physical and behavioral specializations • For example the forelimb of mammals has a wide range of structural variation, specialized by natural selection 3. Evolutionary innovations and specializations led to adaptive radiations - the development of a variety of forms from a single ancestral group Characteristics of the Chordates 1. Notochord 2. dorsal hollow nerve cord 3. pharyngeal gill slits 4. postanal tail 5. endostyle Characteristics of the Chordates Notochord •stiff, flexible rod, provides internal support • Remains throughout the life of most invertebrate chordates • only in the embryos of vertebrate chordates Characteristics of the Chordates cont. Dorsal Hollow Nerve Cord (Spinal Cord) •fluid-filled tube of nerve tissue, runs the length of the animal, just dorsal to the notochord • Present in chordates throughout embryonic and adult life Characteristics of the Chordates cont. Pharyngeal gill slits • Pairs of opening through the pharynx • Invertebrate chordates use them to filter food •In fishes the gill sits develop into true gills • In reptiles, birds, and mammals the gill slits are vestiges (occurring only in the embryo) Characteristics of the Chordates cont. Endostyle • mucous secreting structure found in the pharynx floor (traps small food particles) Characteristics of the Chordates cont. Postanal Tail • works with muscles (myomeres) & notochord to provide motility & stability • Aids in propulsion in nonvertebrates & fish but vestigial in later lineages SubPhylum Urochordata Ex: tunicates or sea squirts • Sessile as adults, but motile during the larval stages • Possess all 5 chordate characteristics as larvae • Settle head first on hard substrates and undergo a dramatic metamorphosis • tail, notochord, muscle segments, and nerve cord disappear SubPhylum Urochordata cont.
    [Show full text]