Volume 26C-Nogrid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
13914444D46c0aa91d02e31218
2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus -
Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions Gilles Didier, Michel Laurin
Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions. 2021. hal-03258099v2 HAL Id: hal-03258099 https://hal.archives-ouvertes.fr/hal-03258099v2 Preprint submitted on 20 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1 IMAG, Univ Montpellier, CNRS, Montpellier, France 2 CR2P (\Centre de Pal´eontologie { Paris"; UMR 7207), CNRS/MNHN/SU, Mus´eumNational d'Histoire Naturelle, Paris, France September 16, 2021 Abstract Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently. -
Chapter 30. Latest Oligocene Through Early Miocene Isotopic Stratigraphy
Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154 30. LATEST OLIGOCENE THROUGH EARLY MIOCENE ISOTOPIC STRATIGRAPHY AND DEEP-WATER PALEOCEANOGRAPHY OF THE WESTERN EQUATORIAL ATLANTIC: SITES 926 AND 9291 B.P. Flower,2 J.C. Zachos,2 and E. Martin3 ABSTRACT Stable isotopic (d18O and d13C) and strontium isotopic (87Sr/86Sr) data generated from Ocean Drilling Program (ODP) Sites 926 and 929 on Ceara Rise provide a detailed chemostratigraphy for the latest Oligocene through early Miocene of the western Equatorial Atlantic. Oxygen isotopic data based on the benthic foraminifer Cibicidoides mundulus exhibit four distinct d18O excursions of more than 0.5ä, including event Mi1 near the Oligocene/Miocene boundary from 23.9 to 22.9 Ma and increases at about 21.5, 18 and 16.5 Ma, probably reßecting episodes of early Miocene Antarctic glaciation events (Mi1a, Mi1b, and Mi2). Carbon isotopic data exhibit well-known d13C increases near the Oligocene/Miocene boundary (~23.8 to 22.6 Ma) and near the early/middle Miocene boundary (~17.5 to 16 Ma). Strontium isotopic data reveal an unconformity in the Hole 926A sequence at about 304 meters below sea ßoor (mbsf); no such unconformity is observed at Site 929. The age of the unconfor- mity is estimated as 17.9 to 16.3 Ma based on a magnetostratigraphic calibration of the 87Sr/86Sr seawater curve, and as 17.4 to 15.8 Ma based on a biostratigraphic calibration. Shipboard biostratigraphic data are more consistent with the biostratigraphic calibration. -
A Large Hadrosaurid Dinosaur from Presa San Antonio, Cerro Del Pueblo Formation, Coahuila, Mexico
A large hadrosaurid dinosaur from Presa San Antonio, Cerro del Pueblo Formation, Coahuila, Mexico ROGELIO ANTONIO REYNA-HERNÁNDEZ, HÉCTOR E. RIVERA-SYLVA, LUIS E. SILVA-MARTÍNEZ, and JOSÉ RUBÉN GUZMAN-GUTIÉRREZ Reyna-Hernández, R.A., Rivera-Sylva, H.E., Silva-Martínez, L.E., and Guzman-Gutiérrez, J.R. 2021. A large hadro- saurid dinosaur from Presa San Antonio, Cerro del Pueblo Formation, Coahuila, Mexico. Acta Palae onto logica Polonica 66 (Supplement to x): xxx–xxx. New hadrosaurid postcranial material is reported, collected near Presa San Antonio, Parras de la Fuente municipality, Coahuila, Mexico, in a sedimentary sequence belonging to the upper Campanian of the Cerro del Pueblo Formation, in the Parras Basin. The skeletal remains include partial elements from the pelvic girdle (left ilium, right pubis, ischium, and incomplete sacrum), a distal end of a left femur, almost complete right and left tibiae, right metatarsals II and IV, cervical and caudal vertebrae. Also, partially complete forelimb elements are present, which are still under preparation. The pubis shows characters of the Lambeosaurinae morphotypes, but the lack of cranial elements does not allow us to directly differentiate this specimen from the already described hadrosaurid taxa from the studied area, such as Velafrons coahuilensis, Latirhinus uitstlani, and Kritosaurus navajovius. This specimen, referred as Lambeosaurinae indet., adds to the fossil record of the hadrosaurids in southern Laramidia during the Campanian. Key words: Dinosauria, Hadrosauridae, Lambeosaurinae, Cretaceous, Campanian, Mexico. Rogelio Antonio Reyna-Hernández [[email protected]], Luis E. Silva-Martínez [[email protected]], Laboratorio de Paleobiología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. -
Luis V. Rey & Gondwana Studios
EXHIBITION BY LUIS V. REY & GONDWANA STUDIOS HORNS, SPIKES, QUILLS AND FEATHERS. THE SECRET IS IN THE SKIN! Not long ago, our knowledge of dinosaurs was based almost completely on the assumptions we made from their internal body structure. Bones and possible muscle and tendon attachments were what scientists used mostly for reconstructing their anatomy. The rest, including the colours, were left to the imagination… and needless to say the skins were lizard-like and the colours grey, green and brown prevailed. We are breaking the mould with this Dinosaur runners, massive horned faces and Revolution! tank-like monsters had to live with and defend themselves against the teeth and claws of the Thanks to a vast web of new research, that this Feathery Menace... a menace that sometimes time emphasises also skin and ornaments, we reached gigantic proportions in the shape of are now able to get a glimpse of the true, bizarre Tyrannosaurus… or in the shape of outlandish, and complex nature of the evolution of the massive ornithomimids with gigantic claws Dinosauria. like the newly re-discovered Deinocheirus, reconstructed here for the first time in full. We have always known that the Dinosauria was subdivided in two main groups, according All of them are well represented and mostly to their pelvic structure: Saurischia spectacularly mounted in this exhibition. The and Ornithischia. But they had many things exhibits are backed with close-to-life-sized in common, including structures made of a murals of all the protagonist species, fully special family of fibrous proteins called keratin fleshed and feathered and restored in living and that covered their skin in the form of spikes, breathing colours. -
Pluridisciplinary Evidence for Burial for the La Ferrassie 8 Neandertal Child
Pluridisciplinary evidence for burial for the La Ferrassie 8 Neandertal child Balzeau, Antoine; Turq, Alain; Talamo, Sahra; Daujeard, Camille; Guérin, Guillaume; Welker, Frido; Crevecoeur, Isabelle; Fewlass, Helen; Hublin, Jean-Jacques; Lahaye, Christelle; Maureille, Bruno; Meyer, Matthias; Schwab, Catherine; Gómez-Olivencia, Asier Published in: Scientific Reports DOI: 10.1038/s41598-020-77611-z Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Balzeau, A., Turq, A., Talamo, S., Daujeard, C., Guérin, G., Welker, F., Crevecoeur, I., Fewlass, H., Hublin, J-J., Lahaye, C., Maureille, B., Meyer, M., Schwab, C., & Gómez-Olivencia, A. (2020). Pluridisciplinary evidence for burial for the La Ferrassie 8 Neandertal child. Scientific Reports, 10(1), [21230]. https://doi.org/10.1038/s41598- 020-77611-z Download date: 24. sep.. 2021 www.nature.com/scientificreports OPEN Pluridisciplinary evidence for burial for the La Ferrassie 8 Neandertal child Antoine Balzeau1,2*, Alain Turq3, Sahra Talamo4,5, Camille Daujeard1, Guillaume Guérin6,7, Frido Welker8,9, Isabelle Crevecoeur10, Helen Fewlass 4, Jean‑Jacques Hublin 4, Christelle Lahaye6, Bruno Maureille10, Matthias Meyer11, Catherine Schwab12 & Asier Gómez‑Olivencia13,14,15* The origin of funerary practices has important implications for the emergence of so‑called modern cognitive capacities and behaviour. We provide new multidisciplinary information on the archaeological context of the La Ferrassie 8 Neandertal skeleton (grand abri of La Ferrassie, Dordogne, France), including geochronological data ‑14C and OSL‑, ZooMS and ancient DNA data, geological and stratigraphic information from the surrounding context, complete taphonomic study of the skeleton and associated remains, spatial information from the 1968–1973 excavations, and new (2014) feldwork data. -
An Ankylosaurid Dinosaur from Mongolia with in Situ Armour and Keratinous Scale Impressions
An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions VICTORIA M. ARBOUR, NICOLAI L. LECH−HERNES, TOM E. GULDBERG, JØRN H. HURUM, and PHILIP J. CURRIE Arbour, V.M., Lech−Hernes, N.L., Guldberg, T.E., Hurum, J.H., and Currie P.J. 2013. An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions. Acta Palaeontologica Polonica 58 (1): 55–64. A Mongolian ankylosaurid specimen identified as Tarchia gigantea is an articulated skeleton including dorsal ribs, the sacrum, a nearly complete caudal series, and in situ osteoderms. The tail is the longest complete tail of any known ankylosaurid. Remarkably, the specimen is also the first Mongolian ankylosaurid that preserves impressions of the keratinous scales overlying the bony osteoderms. This specimen provides new information on the shape, texture, and ar− rangement of osteoderms. Large flat, keeled osteoderms are found over the pelvis, and osteoderms along the tail include large keeled osteoderms, elongate osteoderms lacking distinct apices, and medium−sized, oval osteoderms. The specimen differs in some respects from other Tarchia gigantea specimens, including the morphology of the neural spines of the tail club handle and several of the largest osteoderms. Key words: Dinosauria, Ankylosauria, Ankylosauridae, Tarchia, Saichania, Late Cretaceous, Mongolia. Victoria M. Arbour [[email protected]] and Philip J. Currie [[email protected]], Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9; Nicolai L. Lech−Hernes [nicolai.lech−[email protected]], Bayerngas Norge, Postboks 73, N−0216 Oslo, Norway; Tom E. Guldberg [[email protected]], Fossekleiva 9, N−3075 Berger, Norway; Jørn H. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
The Cenozoic Era - Nýlífsöld 65 MY-Present Jarðsaga 2 Ólafur Ingólfsson Origin of the Term: the Tertiary Tertiary System
The Cenozoic Era - Nýlífsöld 65 MY-Present Jarðsaga 2 Ólafur Ingólfsson Origin of the Term: The Tertiary Tertiary System. [1760] Named by Giovanni Arduino Period as the uppermost part of his 65-1.8 MY three-fold subdivision of mountains in northern Italy. The Tertiary became a formal period and system when Lyell published his work describing further subdivisions of the Tertiary. The Tertiary Period is divided into five epochs (tímar): Paleocene (65-56 MY), Eocene (56-34 MY), Oligocene (34-24 MY), Miocene (24-5,3 MY), and Pliocene (5,3-1,8 MY). Confusing set of stratigraphic terms... More than 95% of the Cenozoic era belongs to the Tertiary period. During the 18th century the names Primary, Secondary, and Tertiary were given by Giovanni Arduino to successive rock strata, the Primary being the oldest, the Tertiary the more recent. In 1829 a fourth division, the Quaternary, was added by P. G. Desnoyers. These terms were later abandoned, the Primary becoming the Paleozoic Era, and the Secondary the Mesozoic. But Tertiary and Quaternary were retained for the two main stages of the Cenozoic. Attempts to replace the "Tertiary" with a more reasonable division of “Palaeogene” (early Tertiary) and “Neogene” (later Tertiary and Quaternary) have not been very successful. Stanley uses this division. The World at the K/T Boundary Paleocene plate tectonics During the Paleocene, the inland seas of the Cretaceous Period dry up, exposing large land areas in North America and Eurasia. Australia begins to separate from Antarctica, and Greenland splits from North America. A remnant Tethys Sea persists in the equatorial region. -
Decapod Crustaceans from the Middle Jurassic Opalinus Clay of Northern Switzerland, with Comments on Crustacean Taphonomy
0012-9402/04/030381-12 Eclogae geol. Helv. 97 (2004) 381–392 DOI 10.1007/s00015-004-1137-2 Birkhäuser Verlag, Basel, 2004 Decapod crustaceans from the Middle Jurassic Opalinus Clay of northern Switzerland, with comments on crustacean taphonomy WALTER ETTER Key words: Decapoda, Peracarida, Jurassic, Switzerland, ecology, crustacean taphonomy ABSTRACT ZUSAMMENFASSUNG Four species of decapod crustaceans from the Middle Jurassic Opalinus Clay Aus dem Opalinuston (Mittlerer Jura, Aalenian) der Nordschweiz werden vier (Aalenian) of Northern Switzerland are described. Of these, Mecochirus cf. Arten von decapoden Krebsen beschrieben. Von Aeger sp., Eryma cf. bedelta eckerti is the most common one, while Eryma cf. bedelta, Glyphea sp. and und Glyphaea sp. wurden nur ganz wenige Exemplaren gefunden, während Aeger sp. were present as individuals, or only a few specimens. The preserva- Mecochirus cf. eckerti etwas häufiger ist. Die Erhaltungsbedingungen waren tion of these crustaceans ranges from moderate to excellent, reflecting the während der Ablagerung des Opalinustones günstig, was sich in einer geringen favourable taphonomic conditions of the depositional environment. An inter- Disartikulations- und Fragmentationsrate der Krebse widerspiegelt. Ein in- esting aspect of the taphocoenosis in the Opalinus Clay is that the decapod teressanter Aspekt der Taphocoenose ist die deutliche Dominanz der Klein- crustaceans are by far outnumbered by small peracarid crustaceans (isopods krebse (Peracarida: Isopoden und Tanaidaceen). Dies dürfte die Zahlenver- and tanaids). This is interpreted as reflecting the original differences in abun- hältnisse der ehemaligen Lebensgemeinschaft widerspiegeln. In den meisten dance. Yet this distribution is not frequently encountered in sedimentary se- Ablagerungen dominieren jedoch die decapoden Krebse, wogegen Peracarida quences where decapods (although rare) are far more common than isopods äusserst selten sind. -
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus -
Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina
Palaeontologia Electronica palaeo-electronica.org An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina Juan D. Carrillo and Robert J. Asher ABSTRACT We describe one of the oldest notoungulate skeletons with associated cranioden- tal and postcranial elements: Thomashuxleya externa (Isotemnidae) from Cañadón Vaca in Patagonia, Argentina (Vacan subage of the Casamayoran SALMA, middle Eocene). We provide body mass estimates given by different elements of the skeleton, describe the bone histology, and study its phylogenetic position. We note differences in the scapulae, humerii, ulnae, and radii of the new specimen in comparison with other specimens previously referred to this taxon. We estimate a body mass of 84 ± 24.2 kg, showing that notoungulates had acquired a large body mass by the middle Eocene. Bone histology shows that the new specimen was skeletally mature. The new material supports the placement of Thomashuxleya as an early, divergent member of Toxodon- tia. Among placentals, our phylogenetic analysis of a combined DNA, collagen, and morphology matrix favor only a limited number of possible phylogenetic relationships, but cannot yet arbitrate between potential affinities with Afrotheria or Laurasiatheria. With no constraint, maximum parsimony supports Thomashuxleya and Carodnia with Afrotheria. With Notoungulata and Litopterna constrained as monophyletic (including Macrauchenia and Toxodon known for collagens), these clades are reconstructed on the stem