Threat-Protection Mechanics of an Armored Fish

Total Page:16

File Type:pdf, Size:1020Kb

Threat-Protection Mechanics of an Armored Fish JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Research paper Threat-protection mechanics of an armored fish Juha Songa, Christine Ortiza,∗, Mary C. Boyceb,∗ a Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, RM 13­4022, Cambridge, MA 02139, USA b Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ARTICLEINFO ABSTRACT Article history: It has been hypothesized that predatory threats are a critical factor in the protective functional design of biological exoskeletons or “natural armor”, having arisen through evolutionary processes. Here, the mechanical interaction between the ganoid armor of the predatory fish Polypterus senegalus and one of its current most aggressive threats, a Keywords: toothed biting attack by a member of its own species (conspecific), is simulated and studied. Exoskeleton Finite element analysis models of the quad­layered mineralized scale and representative Polypterus senegalus teeth are constructed and virtual penetrating biting events simulated. Parametric studies Natural armor reveal the effects of tooth geometry, microstructure and mechanical properties on its ability Armored fish to effectively penetrate into the scale or to be defeated by the scale, in particular the Mechanical properties deformation of the tooth versus that of the scale during a biting attack. Simultaneously, the role of the microstructure of the scale in defeating threats as well as providing avenues of energy dissipation to withstand biting attacks is identified. Microstructural length scale and material property length scale matching between the threat and armor is observed. Based on these results, a summary of advantageous and disadvantageous design strategies for the offensive threat and defensive protection is formulated. Studies of predator­prey threat­protection interactions may lead to insights into adaptive phenotypic plasticity of the tooth and scale microstructure and geometry, “adaptive stalemates” and the so­called evolutionary “arms race”. ⃝c 2010 Elsevier Ltd. All rights reserved. 1. Introduction (Reimchen, 1988; Mapes et al., 1989; Mcclanahan and Muthiga, 1989; Kodera, 1994; Zuschin et al., 2003). One common mode It has been hypothesized that environmental and predatory of predator attack is a localized penetration or indentation threats are critical factors in the protective functional into an exoskeleton with a relatively sharper object (e.g., design of biological exoskeletons or “natural armor”, which tooth, claw, beak, shell protrusions, etc.) (Vermeij, 1987; arise through processes such as co­evolution and escalation Zuschin et al., 2003) that induces complex local multiaxial between predators and prey (Vermeij, 1987; Dietl and Kelley, stress and strain concentrations, which dissipate the energy 2002). Evidence for predator­related exoskeletal damage of the attack and can potentially lead to failure or and repair has been reported extensively in the literature fracture of the armor and/or threat (Bruet et al., 2008; ∗ Corresponding author. Tel.: +1 617 253 2342; fax: +1 617 258 6936. E­mail addresses: cortiz@mit.edu (C. Ortiz), mcboyce@mit.edu (M.C. Boyce). 1751­6161/$ ­ see front matter ⃝c 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.jmbbm.2010.11.011 2 JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± Wang et al., 2009). Biological armor systems utilize many Here, the interaction between the ganoid armor of protective structural design principles to resist penetrating P. senegalus and one of its current most aggressive threats, a attacks (Ortiz and Boyce, 2008) including, for example, local biting attack by its own species, was simulated and studied. energy­dissipating inorganic–organic composite nano­ and The teeth of P. senegalus are monocuspid and conical, and microstructures (Currey and Taylor, 1974; Wang et al., 2001), consist of two layers—a cone of dentin capped by an outer multilayering and grading (Bruet et al., 2008), crystallographic layer of enameloid (Fig. 2(a) and (b)) (Clemen et al., 1998; and shape­based anisotropy (Wang et al., 2009), fibrous Wacker et al., 2001), both of which are comparable in material reinforcement at joints (Gemballa and Bartsch, 2002), and properties and length scale to the dentin and ganoine layers active offensive components (Reimchen, 1983; Song et al., of the armor. In our previous works (Bruet et al., 2008; 2010). Mechanical strategies for resisting penetration include; Wang et al., 2009), a predatory toothed bite on a P. senegalus (1) armor which defeats the threat via deforming and/or ganoid scale was approximated computationally using finite fracturing the threat, (2) armor which dissipates the energy element analysis (FEA) where the tooth was idealized by an of the threat via plastic deformation and/or a multitude of infinitely rigid indenter and penetrated into an individual cracking events within the armor, and (3) a combination quad­layered scale. In the current study, the indenter is of both of these mechanisms. In all cases, the armor modeled as deformable, thereby more closely representing design also needs to minimize the back­displacements and the true biological threat, i.e. the tooth. The geometry of stress levels transmitted to the underlying soft tissues the indenter was approximated from optical and scanning and vital organs of the animal. In this study, the role of electron microscopy images of typical P. senegalus teeth. geometry, microstructure, and deformability of the threat The role of the threat (tooth) geometry (e.g. end­radius, relative to that of the armor on threat­protection mechanical cone angle), multi­layered structure, and deformability on interactions (e.g. penetration resistance, energy dissipation, penetration resistance, local stress and strain distributions, local stress/strain distributions, etc.) are investigated. Such and energy dissipation of both the threat and armor during a virtual predatory biting attack was parametrically studied. a mechanistic approach to predator–prey offensive and Based on these results, a summary of advantageous and defensive interactions is relevant to elucidating universal disadvantageous design strategies for the offensive threat principles that direct ecological interactions and resulting and defensive protection was formulated. Studies of such a evolutionary outcomes (Herre, 1999; Dietl and Kelley, 2002) system where the offensive threat and defensive protection and also can provide insights in the design of synthetic are comparable may lead to insights into adaptive phenotypic protective systems. plasticity of tooth and scale microstructure, predator–prey The model system chosen for this research is the “living “adaptive stalemates” and the so­called evolutionary “arms fossil” fish Polypterus senegalus, which possesses a particu­ race” (Agrawal, 2001; Dietl and Kelley, 2002). larly robust and efficient ganoid armor (Sire, 1990; Bruet et al., 2008; Wang et al., 2009) and belongs to the ancient family Polypteridae, which appeared 96 Myr ago in the Cretaceous 2. Methods period (Daget et al., 2001) and still lives today at the bot­ tom of freshwater, muddy shallows and estuaries in Africa 2.1. Geometry of P. senegalus teeth (Kodera, 1994). A “living fossil” generally refers to a living species that is anatomically similar to a fossil species which The skull of a P. senegalus specimen was extracted from first appeared early in the history of the lineage (when the its dead body (total length: ∼15 cm). Teeth from the upper ancestral form first appeared before evolutionary processes), jaw were imaged using an optical microscope (Eclipse L150, thereby having experienced a long period of evolutionary Nikon, Japan) and scanning electron microscope (SEM, JEOL stasis (Eldredge and Stanley, 1984). The existence of living JSM 6060, Peabody, MA). SEM samples were imaged at a fossils has been attributed to stabilizing selection caused 10 kV acceleration voltage after fixation on a steel support by particular ecological circumstances, e.g. reduced compe­ using conductive tape and sputter­coating with ∼5 nm of tition, isolated habitats, etc. (Darwin, 1859). The scales of gold–palladium in a Denton Vacuum Desk II (Moorestown, P. senegalus retain many characteristics of the dermal armor NJ). The geometry of 25 teeth from the premaxillary and of ancient palaeoniscoids and possess four mineralized lay­ maxillary regions was quantified using optical and SEM ers (from outer to inner); ganoine, dentin, isopedine, and images including; half cone angles, height, end radii, and bone (Sire, 1994; Sire et al., 2009). The ganoid armor of an­ shape. The teeth were found to be monocuspid and conical cient palaeoniscoids would have been exposed to the many (Fig. 2(a), (b)). The tooth­end radii (measured by SEM) varied large extinct invertebrate predators that existed at that time between 5 and 30 µm (mean ± standard deviation D 11:7 ± (Romer, 1933; Ørvig, 1968; Brett and Walker, 2002). Today, the 5:6 µm (Fig. 2(c))), a half cone angle (θ=2) of ∼22◦, and a total primary predators of P. senegalus are known to be members height of ∼500 µm (Fig. 2(d)). P. senegalus teeth consist of of its own species and its carnivorous vertebrate relatives two material layers—a cone of dentin capped by an outer (Romer, 1933). Powerful bites occur during territorial fighting layer of enameloid,
Recommended publications
  • Luis V. Rey & Gondwana Studios
    EXHIBITION BY LUIS V. REY & GONDWANA STUDIOS HORNS, SPIKES, QUILLS AND FEATHERS. THE SECRET IS IN THE SKIN! Not long ago, our knowledge of dinosaurs was based almost completely on the assumptions we made from their internal body structure. Bones and possible muscle and tendon attachments were what scientists used mostly for reconstructing their anatomy. The rest, including the colours, were left to the imagination… and needless to say the skins were lizard-like and the colours grey, green and brown prevailed. We are breaking the mould with this Dinosaur runners, massive horned faces and Revolution! tank-like monsters had to live with and defend themselves against the teeth and claws of the Thanks to a vast web of new research, that this Feathery Menace... a menace that sometimes time emphasises also skin and ornaments, we reached gigantic proportions in the shape of are now able to get a glimpse of the true, bizarre Tyrannosaurus… or in the shape of outlandish, and complex nature of the evolution of the massive ornithomimids with gigantic claws Dinosauria. like the newly re-discovered Deinocheirus, reconstructed here for the first time in full. We have always known that the Dinosauria was subdivided in two main groups, according All of them are well represented and mostly to their pelvic structure: Saurischia spectacularly mounted in this exhibition. The and Ornithischia. But they had many things exhibits are backed with close-to-life-sized in common, including structures made of a murals of all the protagonist species, fully special family of fibrous proteins called keratin fleshed and feathered and restored in living and that covered their skin in the form of spikes, breathing colours.
    [Show full text]
  • An Ankylosaurid Dinosaur from Mongolia with in Situ Armour and Keratinous Scale Impressions
    An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions VICTORIA M. ARBOUR, NICOLAI L. LECH−HERNES, TOM E. GULDBERG, JØRN H. HURUM, and PHILIP J. CURRIE Arbour, V.M., Lech−Hernes, N.L., Guldberg, T.E., Hurum, J.H., and Currie P.J. 2013. An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions. Acta Palaeontologica Polonica 58 (1): 55–64. A Mongolian ankylosaurid specimen identified as Tarchia gigantea is an articulated skeleton including dorsal ribs, the sacrum, a nearly complete caudal series, and in situ osteoderms. The tail is the longest complete tail of any known ankylosaurid. Remarkably, the specimen is also the first Mongolian ankylosaurid that preserves impressions of the keratinous scales overlying the bony osteoderms. This specimen provides new information on the shape, texture, and ar− rangement of osteoderms. Large flat, keeled osteoderms are found over the pelvis, and osteoderms along the tail include large keeled osteoderms, elongate osteoderms lacking distinct apices, and medium−sized, oval osteoderms. The specimen differs in some respects from other Tarchia gigantea specimens, including the morphology of the neural spines of the tail club handle and several of the largest osteoderms. Key words: Dinosauria, Ankylosauria, Ankylosauridae, Tarchia, Saichania, Late Cretaceous, Mongolia. Victoria M. Arbour [arbour@ualberta.ca] and Philip J. Currie [philip.currie@ualberta.ca], Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9; Nicolai L. Lech−Hernes [nicolai.lech−hernes@bayerngas.com], Bayerngas Norge, Postboks 73, N−0216 Oslo, Norway; Tom E. Guldberg [tguldberg@miswaco.com], Fossekleiva 9, N−3075 Berger, Norway; Jørn H.
    [Show full text]
  • Lecture 6 – Integument ‐ Scale • a Scale Is a Small Rigid Plate That Grows out of an Animal’ S Skin to Provide Protection
    Lecture 6 – Integument ‐ Scale • A scale is a small rigid plate that grows out of an animal’s skin to provide protection. • Scales are quite common and have evolved multiple times with varying structure and function. • Scales are generally classified as part of an organism's integumentary system. • There are various types of scales according to shape and to class of animal. • Although the meat and organs of some species of fish are edible by humans, the scales are usually not eaten. Scale structure • Fish scales Fish scales are dermally derived, specifically in the mesoderm. This fact distinguishes them from reptile scales paleontologically. Genetically, the same genes involved in tooth and hair development in mammals are also involved in scale development. Earliest scales – heavily armoured thought to be like Chondrichthyans • Fossil fishes • ion reservoir • osmotic control • protection • Weighting Scale function • Primary function is protection (armor plating) • Hydrodynamics Scales are composed of four basic compounds: ((gmoving from inside to outside in that order) • Lamellar bone • Vascular or spongy bone • Dentine (dermis) and is always associated with enamel. • Acellular enamel (epidermis) • The scales of fish lie in pockets in the dermis and are embeded in connective tissue. • Scales do not stick out of a fish but are covered by the Epithelial layer. • The scales overlap and so form a protective flexible armor capable of withstanding blows and bumping. • In some catfishes and seahorses, scales are replaced by bony plates. • In some other species there are no scales at all. Evolution of scales Placoid scale – (Chondricthyes – cartilagenous fishes) develop in dermis but protrude through epidermis.
    [Show full text]
  • External Anatomy
    SALMONIDS IN THE CLASSROOM: SALMON DISSECTION EXTERNAL ANATOMY Shape l Salmon are streamlined to move easily through water. Water has much more resistance to movement than air does, so it takes more energy to move through water. A streamlined shape saves the fish energy. Fins l Salmon have eight fins including the tail. They are made up of a fan of bone- like spines with a thin skin stretched between them. The fins are embedded in the salmon’s muscle, not linked to other bones, as limbs are in people. This gives them a great deal of flexibility and manoeuverability. l Each fin has a different function. The caudal or tail, is the largest and most powerful. It pushes from side to side and moves the fish forward in a wavy path. l The dorsal fin acts like a keel on a ship. It keeps the fish upright, and it also controls the direction the fish moves in. l The anal fin also helps keep the fish stable and upright. l The pectoral and pelvic fins are fused for steering and for balance. They can also move the fish up and down in the water. l The adipose fin has no known function. It is sometimes clipped off in hatchery fish to help identify the fish when they return or are caught. Slime l Many fish, including salmon, have a layer of slime covering their body. The slime layer helps fish to: ¡ slip away from predators, such as bears. ¡ slip over rocks to avoid injuries ¡ slide easily through water when swimming ¡ protect them from fungi, parasites, disease and pollutants in the water Scales Remove a scale by scraping backwards with a knife.
    [Show full text]
  • 1 Lab External Morphology and Taxonomy
    External Morphology Gross Anatomy: Fins Dorsal & Taxonomy Caudal Lab 1 Anal Pectoral Pelvic 1. Median fins (dorsal, anal, adipose, caudal) 2. Paired fins (pectoral and pelvic) – abdominal vs. thoracic placement 3. Fish use different fins for locomotion (wrasses use pectorals, triggerfish use median fins, tunas use caudal fins) 4. Fins are constructed of either radial cartilage (sharks) or bony rays (most fishes) Caudal Fin Shape Body Shape body shape can predict ecology: • fusiform tend to be fast swimming and inhabit the upper portions of the water column • compressed tend to be good maneuvers • elongate tend to be good accelerators Caudal fin shape can predict fish ecology (ambush • anguilliform and globiform tend to be poor swimmers and benthic predator, continuous swimmer, burst swimmer, benthic dweller, etc.) • depressed tend to be benthic Mouth Morphology Eyes Mouth morphology can be used to infer what types of prey are eaten (piscivores, planktivores, invertebrate eaters, herbivores, etc.) and where in the water column the prey are consumed Inferior Subterminal 1. placement and size may indicate something about the ecology of the fish 2. some fish (e.g., mudskippers) are adapted to see both in and outside of water 3. stalked eyes in deepwater fish are one adaptation to gather light Terminal Superior 1 Countershading Lateral Line • countershading is a feature common to most fish, especially those that inhabit the surface and midwater • fish are dark on the dorsal region and light on the ventral region • functions as camouflage in open water 1. lateral line extends along the midsection of the fish 2. can be continuous or broken 3.
    [Show full text]
  • A Comparative Study of Piscine Defense the Scales of Arapaima
    Journal of the mechanical behavior of biomedical materials xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Journal of the Mechanical Behavior of Biomedical Materials journal homepage: www.elsevier.com/locate/jmbbm A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula ⁎ Vincent R. Shermana, Haocheng Quana, Wen Yangb, Robert O. Ritchiec, Marc A. Meyersa,d, a Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA b Department of Materials, ETH Zurich, 8093 Zurich, Switzerland c Department of Materials Science and Engineering, University of California Berkeley, CA 94720, USA d Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA ARTICLE INFO ABSTRACT Keywords: We compare the characteristics of the armored scales of three large fish, namely the Arapaima gigas Scales (arapaima), Latimeria chalumnae (coelacanth), and Atractosteus spatula (alligator gar), with specific focus on Bioinspiration their unique structure-mechanical property relationships and their specialized ability to provide protection from Bouligand predatory pressures, with the ultimate goal of providing bio-inspiration for manmade materials. The arapaima Alligator gar has flexible and overlapping cycloid scales which consist of a tough Bouligand-type arrangement of collagen Coelacanth layers in the base and a hard external mineralized surface, protecting it from piranha, a predator with extremely Arapaima sharp teeth. The coelacanth has overlapping elasmoid scales that consist of adjacent Bouligand-type pairs, forming a double-twisted Bouligand-type structure. The collagenous layers are connected by collagen fibril struts which significantly contribute to the energy dissipation, so that the scales have the capability to defend from predators such as sharks.
    [Show full text]
  • Stegosaurus Chirality R
    Stegosaurus chirality R. P. Cameron1,*, J. A. Cameron1, and S. M. Barnett1 1School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom. *robert.cameron@glasgow.ac.uk Introduction Most living things appear rather symmetrical: the external human form, for example, has a plane of mirror symmetry to good approximation. Snails, flounders, narwhals, crossbills, fiddler crabs and twining vines are members of the short but fascinating list of living things known instead to defy mirror symmetry by exhibiting exterior chirality1. The study of this symmetry breaking lies at the cutting edge of developmental and evolutionary biology2,3. We have recently extended the aforementioned list4 by adding one of the most recognisable genera of dinosaurs: Stegosaurus5. Here we summarise our research to date into Stegosaurus chirality. Figure 1. The arrangement of Stegosaurus's plates differs from its mirror image and is therefore chiral1, as highlighted here for the largest plate in particular of the Stegosaurus stenops holotype USNM 4939: this specimen was of the (R) rather than the (L) form. Adapted from 8. The currently favoured arrangement of Stegosaurus's plates was put forward by Lucas6-8 and sees them mounted in two staggered rows along the animal’s back. There are, in fact, two conceivable forms consistent with this basic description: if the largest plate in particular tilts to the right we have an (R) Stegosaurus, if it tilts to the left we have an (L) Stegosaurus instead4. That Stegosaurus exhibited exterior chirality is beyond reasonable doubt: many of the plates are manifestly chiral by themselves and no two plates of the same size and shape have been found for an individual8-10.
    [Show full text]
  • Armours for Soft Bodies: How Far Can Bioinspiration Take
    Bioinspiration & Biomimetics TOPICAL REVIEW Related content - The biomechanics of solids and fluids: the Armours for soft bodies: how far can bioinspiration physics of life David E Alexander take us? - Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined To cite this article: Zachary W White and Franck J Vernerey 2018 Bioinspir. Biomim. 13 041004 experimental and theoretical study Helge-Otto Fabritius, Andreas Ziegler, Martin Friák et al. - Stretch-and-release fabrication, testing and optimization of a flexible ceramic View the article online for updates and enhancements. armor inspired from fish scales Roberto Martini and Francois Barthelat This content was downloaded from IP address 128.138.222.211 on 14/06/2018 at 15:56 IOP Bioinspir. Biomim. 13 (2018) 041004 https://doi.org/10.1088/1748-3190/aababa Bioinspiration & Biomimetics Bioinspir. Biomim. 13 TOPICAL REVIEW 2018 Armours for soft bodies: how far can bioinspiration take us? 2018 IOP Publishing Ltd RECEIVED © 22 November 2017 Zachary W White and Franck J Vernerey REVISED 1 March 2018 BBIICI Mechanical Engineering, University of Colorado Boulder, 427 UCB, Boulder, United States of America ACCEPTED FOR PUBLICATION E-mail: franck.vernerey@colorado.edu 29 March 2018 Keywords: bioinspired armour, ballistic protection, natural protection, scales, composite armour 041004 PUBLISHED 15 May 2018 Z W White and F J Vernerey Abstract The development of armour is as old as the dawn of civilization. Early man looked to natural structures to harvest or replicate for protection, leaning on millennia of evolutionary developments in natural protection. Since the advent of more modern weaponry, Armor development has seemingly been driven more by materials research than bio-inspiration.
    [Show full text]
  • A Preliminary Study on the Ornamentation Patterns of Ganoid Scales in Some Mesozoic Actinopterygian Fishes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/291973377 A preliminary study on the ornamentation patterns of ganoid scales in some Mesozoic actinopterygian fishes Article in Bollettino della Societa Paleontologica Italiana · December 2015 DOI: 10.4435/BSPI.2015.14 CITATIONS READS 0 206 2 authors: Claudio Garbelli Andrea Tintori Nanging Institute of Geology and paleontolo… University of Milan 14 PUBLICATIONS 36 CITATIONS 118 PUBLICATIONS 1,487 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Middle Triassic fishes across the Tethys View project All content following this page was uploaded by Andrea Tintori on 06 February 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 54 (3), 2015, 219-228. Modena C N O A S S. P. I. A preliminary study on the ornamentation patterns of ganoid scales in some Mesozoic actinopterygian fishes Claudio GARBELLI & Andrea TINTORI C. Garbelli, Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli, 2, 20122 Milano, Italy; claudio. garbelli@unimi.it A. Tintori, Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli, 2, 20122 Milano, Italy; andrea.tintori@ unimi.it KEY WORDS - Ganoid scales, basal actinopterygians, ornamentation, squamation pattern.
    [Show full text]
  • GUIDE LEAFLET SERIES No. 70
    BY • - THIRD EDITION GUIDE LEAFLET SERIES No. 70 • HORNED DINOSAUR TRICERATOPS As reconstructed by Charles R. Knight. In the distance a pair of the contemporary Trachodonts. THE HALL OF DINOSAURS By FREDERIC A. LUCAS DINOSAUR is a reptile, a member of a group long extinct, having no near living relatives, the crocodiles, though clo er than any A other exi ting forms, being but distantly connected; neither are the great lizards froms Komodo Islands, which have attncted so much attention recently under the title of dragons, nearly related. The name Dinosaur, terrible reptile, was bestowed on these animal because some of those first discovered were big, powerful, flesh-eating forms, but while we are apt to think of Dinosaurs as huge creatures yet there were many kinds of dinosaurs and they ranged in ize from big Brontosaurus, with the bulk of half-a-dozen elephants, to little Comp­ sognathus, no larger than a Plymouth Rock chicken. The Dinosaurs lived mostly during the periods that geologi ts call Jurassic and Cretaceous, periods of many million years, six at least, more probably nearer thirty. The race started a little before the Jura sic, some 35,000,000 years ago, and came to an end with the Cretaceous about six million years ago. In their day they were found over the greater part of the world, Europe, Asia, Africa, America, and Australia. It wa a strange world in which they lived, a world peopled by reptiles, the Age of Reptiles, as the time is called; besides the Dino aurs there were crocodiles and turtles; flying reptiles, with a spread of wing greater than that of any living bird, and little pterodactyles about the size of a robin; in the sea during one period there were reptiles like porpoises and, later, they were succeeded by those something like great iguanas, but with paddles instead of feet, while with them were giant turtles far larger than any sea turtles of to-day; there were a few birds, some that flew and some that swam, but they differed from exi ting birds in having teeth.
    [Show full text]
  • Horns and Hooves a Dissertat
    UNIVERSITY OF CALIFORNIA SAN DIEGO Impact resistant and energy absorbent natural keratin materials: horns and hooves A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering by Wei Huang Committee in charge: Professor Joanna McKittrick, Chair Professor Shengqiang Cai Professor Yu Qiao Professor Jan Talbot Professor Michael Tolley 2018 Copyright Wei Huang, 2018 All rights reserved The Dissertation of Wei Huang is approved, and is acceptable in quality and form for publication on microfilm and electronically: ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ Chair University of California San Diego 2018 iii TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................... iv LIST OF FIGURES ....................................................................................................................... ix LIST OF TABLES ....................................................................................................................... xxi ACKNOWLEDGEMENTS ........................................................................................................ xxii VITA .........................................................................................................................................
    [Show full text]
  • FISH BIOLOGY (2 UNITS) This Course Is Taught by Three (3) Lecturers
    LECTURE NOTE ON FIS 301 FIS 301: FISH BIOLOGY (2 UNITS) This Course is taught by three (3) lecturers – Dr. I.T Omoniyi, Dr. F.I. Adeosun and Dr. A.A. Akinyemi. The Course Synopsis is further outlined on lecture basis as follows: Lectures 1 – 3: Gross external anatomy of typical bony and cartilaginous fishes. Lectures 4 – 5: Gross internal anatomy of typical bony and cartilaginous fishes. Lectures 6 – 7: Anatomy of systems and basic functions Lectures 8 – 9: Reproductive biology treated under fecundity Lectures 10 – 12: Embryology/life history of fish. GROSS EXTERNAL ANATOMY By way of introduction, basic diagnostic features of fish need to be identified. 1. Fishes are cold blooded/poikilothermic animals i.e their body temperature varying passively in accordance with the ambient temperature (surrounding water temperature). Although, fishes as a group can tolerate wide range of temperature from just below O0C to 450C, individual species generally have a preferred or optimum as well as a more restricted temperature range. For example, salmonids inhabit water with temperature range from 0-200C. Any change within the optimum range can significant influence the biology as related to the anatomy. 2. The adoption of aquatic habit has other implications for the structure and physiology of fish. For instance, it makes the streamlining and shaping of the body an important pre-requisite 1 for success in aquatic life. The shapes range from ovoid to torpedo-like or fusiform shape. This is due to the higher density of water than air. 3. Respiration assumes a greater important through the gills when compared to terrestrial th animals because water contains 1/20 of 02 available in air.
    [Show full text]