Mesa Verde National Park Paleontological Resource Inventory (Non-Sensitive Version)

Total Page:16

File Type:pdf, Size:1020Kb

Mesa Verde National Park Paleontological Resource Inventory (Non-Sensitive Version) National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Mesa Verde National Park Paleontological Resource Inventory (Non-Sensitive Version) Natural Resource Report NPS/MEVE/NRR—2017/1550 ON THE COVER An undescribed chimaera (ratfish) egg capsule of the ichnogenus Chimaerotheca found in the Cliff House Sandstone of Mesa Verde National Park during the work that led to the production of this report. Photograph by: G. William M. Harrison/NPS Photo (Geoscientists-in-the-Parks Intern) Mesa Verde National Park Paleontological Resources Inventory (Non-Sensitive Version) Natural Resource Report NPS/MEVE/NRR—2017/1550 G. William M. Harrison,1 Justin S. Tweet,2 Vincent L. Santucci,3 and George L. San Miguel4 1National Park Service Geoscientists-in-the-Park Program 2788 Ault Park Avenue Cincinnati, Ohio 45208 2National Park Service 9149 79th St. S. Cottage Grove, Minnesota 55016 3National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 4National Park Service Mesa Verde National Park PO Box 8 Mesa Verde CO 81330 November 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from the Southern Colorado Plateau Inventory and Monitoring Network website and the Natural Resource Publications Management website. To receive this report in a format that is optimized to be accessible using screen readers for the visually or cognitively impaired, please email [email protected]. Please cite this publication as: Harrison, G. W. M., J. S. Tweet, V. L. Santucci, and G. L. San Miguel. 2017. Mesa Verde National Park: Paleontological resource inventory (non-sensitive version). Natural Resource Report NPS/MEVE/NRR—2017/1550. National Park Service, Fort Collins, Colorado. NPS 307/140595, November 2017 ii Contents Page Figures.................................................................................................................................................... v Tables ................................................................................................................................................... vii Appendices ........................................................................................................................................... vii Executive Summary .............................................................................................................................. ix Acknowledgments ................................................................................................................................. xi Dedication ...........................................................................................................................................xiii Introduction ............................................................................................................................................ 1 Purpose and Need ........................................................................................................................... 2 Project Objectives ........................................................................................................................... 2 History of Paleontological Work at MEVE ........................................................................................... 7 Geology ................................................................................................................................................ 17 Geologic History .......................................................................................................................... 17 Geologic Formations .................................................................................................................... 20 Mancos Shale (Upper Cretaceous) .......................................................................................... 20 Mesa Verde Group: Point Lookout Sandstone (Upper Cretaceous) ........................................ 23 Mesa Verde Group: Menefee Formation (Upper Cretaceous) ................................................ 24 Mesa Verde Group: Cliff House Sandstone (Upper Cretaceous) ............................................ 25 Minette (Upper Oligocene) ...................................................................................................... 26 High level terrace gravels (Pliocene to middle Pleistocene?) ................................................. 26 Quaternary rocks and sediments (Pleistocene–Holocene) ....................................................... 27 Taxonomy ............................................................................................................................................ 29 Fossil Plants .................................................................................................................................. 29 Fossil Invertebrates ....................................................................................................................... 31 Phylum Cnidaria: Class Anthozoa (corals) ............................................................................. 31 Phylum Brachiopoda (lamp shells) ......................................................................................... 31 Phylum Mollusca: Class Bivalvia (clams, oysters, etc.).......................................................... 32 Phylum Mollusca: Class Cephalopoda (octopuses, squids, nautiloids, etc.) ........................... 34 Phylum Mollusca: Class Gastropoda (snails) .......................................................................... 36 iii Contents (continued) Page Phylum Annelida (segmented worms) .................................................................................... 36 Phylum Arthropoda ................................................................................................................. 36 Phylum Echinodermata (sea stars, brittle stars, sea lilies, sea urchins, etc.) ........................... 37 Fossil Vertebrates ......................................................................................................................... 38 Class Chondrichthyes (sharks and rays) .................................................................................. 38 Class Osteichthyes ................................................................................................................... 39 Class Reptilia ........................................................................................................................... 40 Ichnofossils ................................................................................................................................... 40 Microfossils (exclusive of paleobotany) ...................................................................................... 43 Pseudofossils and Misidentified Fossils ....................................................................................... 43 Cultural Resource Connections ............................................................................................................ 45 Paleontological Resource Management and Protection ....................................................................... 47 Interpretation and Education ................................................................................................................ 49 Paleontological Research and Collections ........................................................................................... 51 Paleontological Research Permits ................................................................................................ 51 MEVE Paleontological Specimens in Museum Collections ........................................................ 51 Paleontological Resource Management Recommendations ................................................................ 53 Literature Cited ...................................................................................................................................
Recommended publications
  • Group Living Frequently Asked Questions
    Group Living Project – Common Questions General questions about the project: Page 1 Household Regulations: Page 3 Residential Care: Page 6 Advisory Committee: Page 9 Next Steps: Page 10 What is this project about and how long has it been going on? For the last two and a half years, Denver city planners have been working with residents, policy experts, advocates and service providers for vulnerable populations and other community members to update the Denver Zoning Code’s regulations on residential uses. These regulations govern everything from conventional households to group homes, shelters and assisted living facilities. Why do residential use rules need to be updated? Current rules create obstacles for residents who need flexible housing options and for providers who offer much-needed services to vulnerable populations. Current rules also perpetuate inequity by making it harder for certain communities to live in residential neighborhoods and near jobs, transit or other services they need. The project and the proposed changes aim to increase flexibility and housing options for residents, to streamline permitting processes for providers while fostering good relationships with neighbors, and to make it easier for those experiencing homelessness, trying to get sober or who have other special needs to live and access services with dignity. Why can’t we move more slowly with these changes? This project has been in progress for more than two years. The issues addressed have become even more urgent in the wake of the ongoing pandemic, job losses that are leading to a wave of evictions, the forthcoming loss of Denver’s existing community corrections resources, and our country’s long-overdue awakening to issues of equity.
    [Show full text]
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • High-Resolution Correlation of the Upper Cretaceous Stratigraphy Between the Book Cliffs and the Western Henry Mountains Syncline, Utah, U.S.A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 5-2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. Drew L. Seymour University of Nebraska, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Seymour, Drew L., "HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A." (2012). Dissertations & Theses in Earth and Atmospheric Sciences. 88. http://digitalcommons.unl.edu/geoscidiss/88 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH, U.S.A. By Drew L. Seymour A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Christopher R. Fielding Lincoln, NE May, 2012 HIGH-RESOLUTION CORRELATION OF THE UPPER CRETACEOUS STRATIGRAPHY BETWEEN THE BOOK CLIFFS AND THE WESTERN HENRY MOUNTAINS SYNCLINE, UTAH. U.S.A. Drew L. Seymour, M.S.
    [Show full text]
  • Discinisca Elslooensis Sp. N. Conglomerate
    bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 73: 185-194, 2003 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 73: 185-194, 2003 Bosquet's (1862) inarticulate brachiopods: Discinisca elslooensis sp. n. from the Elsloo Conglomerate by Urszula RADWANSKA & Andrzej RADWANSKI Radwanska, U. & Radwanski, A., 2003. Bosquet's (1862) inarticu¬ Introduction late brachiopods: Discinisca elslooensis sp. n. from the Elsloo Con¬ glomerate. Bulletin de l'Institut royal des Sciences naturelles de Bel¬ gique, Sciences de la Terre, 73: 185-194, 2 pis.; Bruxelles-Brussel, The present authors, during research on fossil repré¬ March 31, 2003. - ISSN 0374-6291 sentatives of the inarticulate brachiopods of the genus Discinisca Dall, 1871, from the Miocene of Poland (Radwanska & Radwanski, 1984), Oligocène of Austria (Radwanska & Radwanski, Abstract 1989), and topmost Cretac- eous of Poland (Radwanska & Radwanski, 1994), have been informed A revision of the Bosquet (1862) collection of inarticulate brachio¬ by Annie V. Dhondt, that well preserved pods, acquired about 140 years ago by the Royal Belgian Institute of material of these invertebrates from the original collec¬ Natural Sciences, shows that the whole collection, from the Elsloo tion of Bosquet (1862) has been acquired by the Royal Conglomerate, contains taxonomically conspecific material, despite its variable labelling and taxonomie interprétation by previous authors. Belgian Institute of Natural Sciences in 1878. Annie V. The morphological features of complete shells, primarily of their Dhondt has kindly invited the present authors to revise ventral valves, clearly indicate that these inarticulate brachiopods this material to estimate its value and significance within can be well accommodated within the genus Discinisca Dall, 1871.
    [Show full text]
  • Pterosaurs Flight in the Age of Dinosaurs Now Open 2 News at the Museum 3
    Member Magazine Spring 2014 Vol. 39 No. 2 Pterosaurs Flight in the Age of Dinosaurs now open 2 News at the Museum 3 From the After an unseasonably cold, snowy winter, will work to identify items from your collection, More than 540,000 Marine Fossils the Museum is pleased to offer a number of while also displaying intriguing specimens from President springtime opportunities to awaken the inner the Museum’s own world-renowned collections. Added to Paleontology Collection naturalist in us all. This is the time of year when Of course, fieldwork and collecting have Ellen V. Futter Museum scientists prepare for the summer been hallmarks of the Museum’s work since Collections at a Glance field season as they continue to pursue new the institution’s founding. What has changed, discoveries in their fields. It’s also when Museum however, is technology. With a nod to the many Over nearly 150 years of acquisitions and Members and visitors can learn about their ways that technology is amplifying how scientific fieldwork, the Museum has amassed preeminent own discoveries during the annual Identification investigations are done, this year, ID Day visitors collections that form an irreplaceable record Day in Theodore Roosevelt Memorial Hall. can learn how scientists use digital fabrication of life on Earth. Today, 21st-century tools— Held this year on May 10, Identification Day to aid their research and have a chance to sophisticated imaging techniques, genomic invites visitors to bring their own backyard finds have their own objects scanned and printed on analyses, programs to analyze ever-growing and curios for identification by Museum scientists.
    [Show full text]
  • Cuticle Ultrastructure in Brachyphyllum Garciarum Sp. Nov (Lower Cretaceous, Argentina) Reveals Its Araucarian Affinity
    Review of Palaeobotany and Palynology 269 (2019) 104–128 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Cuticle ultrastructure in Brachyphyllum garciarum sp. nov (Lower Cretaceous, Argentina) reveals its araucarian affinity Martin A. Carrizo a,⁎, Maiten A. Lafuente Diaz a, Georgina M. Del Fueyo a, Gaëtan Guignard b a División Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICET. Av. Ángel Gallardo 470, 1405 Buenos Aires, Argentina b Université Lyon 1, CNRS, UMR 5023 LEHNA, 7-9 rue Raphaël Dubois, Villeurbanne cedex F-69622, Lyon, France article info abstract Article history: A detailed and extensive study of a new species, Brachyphyllum garciarum sp. nov., was carried out through the Received 28 February 2019 analysis of the gross morphology and the cuticle fine details, structure and ultrastructure characters of its leaves Received in revised form 14 June 2019 using light microscope and scanning and transmission electron microscope. The fossils consist of compressions of Accepted 19 June 2019 incomplete twigs with well-preserved cuticle, collected from pelitic levels of the Springhill Formation (lower Hauterivian/lower Barremian) at the Río Correntoso locality in the Santa Cruz province, Argentina. The twigs Keywords: have adpressed scale-like leaves spirally disposed. Leaves have a rhomboidal to pyramidal shape, a width and Foliar cuticle length always in a 1:1 ratio, margin entire and apex mostly rounded. Leaves are amphistomatic with stomatal ap- Ultrastructure paratuses occurring in groups of narrow-wedge shape along the leaf axis. Stomatal apparatuses are close to each Taxonomy other with subsidiary cells in contact; the guard cells are sunken, with marked polar extensions and thickened Brachyphyllum mouth.
    [Show full text]
  • A New Species of Inarticulate Brachiopods, Discinisca Zapfei Sp.N., from the Upper Triassic Zlambach Formation
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 102A Autor(en)/Author(s): Radwanski Andrzej, Summesberger Herbert Artikel/Article: A new species of inarticulate brachiopods, Discinisca zapfei sp.n., from the Upper Triassic Zlambach Formation (Northern Calcareous Alps, Austria), and a discussion of other Triassic disciniscans 109-129 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 102 A 109–129 Wien, Februar 2001 A new species of inarticulate brachiopods, Discinisca zapfei sp.n., from the Upper Triassic Zlambach Formation (Northern Calcareous Alps, Austria), and a discussion of other Triassic disciniscans by Andrzej RADWANSKI1 & Herbert SUMMESBERGER2 (With 1 text-figure and 2 plates) Manuscript submitted on June 6th 2000, the revised manuscript on October 31st 2000. Abstract A new species of inarticulate brachiopods, Discinisca zapfei sp.n., is established for specimens collected by the late Professor Helmuth ZAPFE from the Zlambach Formation (Upper Triassic, Norian to Rhaetian) of the Northern Calcareous Alps (Austria). The collection, although small, offers a good insight into the morpho- logy of both the dorsal and the brachial valve of the shells, as well as into their mode of growth in clusters. The primary shell coloration is preserved, probably due to a rapid burial (? tempestite) of the clustered brachiopods in the living stage. A review and/or re-examination of other Triassic disciniscan brachiopods indicates that the newly established species, Discinisca zapfei sp.n., is closer to certain Paleogene-Neogene and/or present-day species than to any of the earlier described Triassic forms.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Towards a Phylogenetic Classification of the Cretaceous Ammonites V
    N.Jb. Geo\. Palaont. Abh. Stuttgart, Januar 1997 Towards a phylogenetic classification of the Cretaceous ammonites V. Euomphaloceratidae By M. R. Cooper, Durban With 5 figures in the text COOPER, M. R. (1997): Towards a phylogenetic classification of the Cretaceous ammo­ nites. V. Euomphaloceratidae. - N. Jb. Geo\. Palaont., Abh., 203: 1-21; Stuttgart. Abstract: Phylogenetic analysis of Euomphaloceratinae COOPER, 1978, a group within highly diversified and heterogeneous Acanthocerataceae, indicates a fundamental dichotomy which suggests promotion of this taxon to family rank with recognition of two subfamilies. Nominate Euomphaloceratinae comprise E. (Euomphaloceras), E. (Kanabiceras), Burroceras, Paraburroceras, P. (Pseudaspidoceras), P. (Ampakabites), and Morrowites, and Romaniceratinae subfam. nov. is made up of Schindewo/fites, Kameruno­ ceras, Codazziceras, Proromaniceras (Proromaniceras), P. (Obiraceras), Neomphaloceras, Yubariceras and Romaniceras (?with Shuparoceras as a subgenus). Zusammenfassung: Die phylogenetische Analyse der Euomphaloceratinae COOPER, 1978, einer Gruppe der hoch diversifizierten und heterogenen Acanthocerataceae, weist auf eine fundamentale Dichotomie innerhalb der Unterfamilie hin. Der Gruppe wird daher Familienrang verliehen und zwei Unterfamilien abgegrenzt. Die Nominat-Unter­ familie Euomphaloceratinae umfaBt E. (Euomphaloceras), E. (Kanabiceras), Burroceras, Paraburroceras, P. (Pseudaspidoceras), P. (Ampakabites) und Morrowites. Zur zweiten Unterfamilie Romaniceratinae subfam. nov. gehiiren Schindewo/fites,
    [Show full text]
  • Central San Juan Basin
    Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para­ saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment­ al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally­ -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J .
    [Show full text]
  • Memorial to W.A. “Bill” Cobban (1916–2015) NEAL L
    Memorial to W.A. “Bill” Cobban (1916–2015) NEAL L. LARSON Larson Paleontology Unlimited, LLC, Keystone, South Dakota 57745, USA; [email protected] NEIL H. LANDMAN American Museum of Natural History, Division of Paleontology (Invertebrates), New York, New York 10024, USA; [email protected] STEPHEN C. HOOK Atarque Geologic Consulting, LLC, Socorro, New Mexico 87810, USA; [email protected] Dr. W.A. “Bill” Cobban, one of the most highly re- spected, honored and published geologist-paleontologists of all time, passed away peacefully in his sleep in the morning of 21 April 2015 at the age of 98 in Lakewood, Colorado. Bill was an extraordinary field collector, geologist, stratigrapher, biostratigrapher, paleontologist, and mapmaker who spent nearly his entire life working for the U.S. Geo- logical Survey (USGS). In a career that spanned almost 75 years, he fundamentally changed our understanding of the Upper Cretaceous Western Interior through its fossils, making it known throughout the world. William Aubrey “Bill” Cobban was born in 1916 near Great Falls, Montana. As a teenager, he discovered a dinosaur in the Kootenai Formation catching the attention of Barnum Brown, premier dinosaur collector at the American Museum of Natural History, where the dinosaur now resides. A few years later, as Bill told, he read about the discovery of fossil bones in Shelby, Montana, during excavation of the Toole County Courthouse. The bones turned out to actually be baculites and other iridescent ammonites. These ammonites made such an impression on Bill they would change his life forever. He attended Montana State University in 1936, where he met a geology professor who encouraged an already developing love for geology and paleontology and received his B.S.
    [Show full text]
  • Phylogeny, Diversity, and Ecology of the Ammonoid Superfamily Acanthoceratoidea Through the Cenomanian and Turonian
    PHYLOGENY, DIVERSITY, AND ECOLOGY OF THE AMMONOID SUPERFAMILY ACANTHOCERATOIDEA THROUGH THE CENOMANIAN AND TURONIAN DAVID A.A. MERTZ A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Margaret Yacobucci, Advisor Andrew Gregory Keith Mann © 2017 David Mertz All Rights Reserved iii ABSTRACT Margaret Yacobucci Both increased extinction and decreased origination, caused by rising oceanic anoxia and decreased provincialism, respectively, have been proposed as the cause of the Cenomanian Turonian (C/T) extinction event for ammonoids. Conflicting evidence exists for whether diversity actually dropped across the C/T. This study used the ammonoid superfamily Acanthoceratoidea as a proxy for ammonoids as a whole, particularly focusing on genera found in the Western Interior Seaway (WIS) of North America, including Texas. Ultimately, this study set out to determine 1) whether standing diversity decreased across the C/T boundary in the WIS, 2) whether decreased speciation or increased extinction in ammonoids led to a drop in diversity in the C/T extinction event, 3) how ecology of acanthoceratoid genera changed in relation to the C/T extinction event, and 4) whether these ecological changes indicate rising anoxia as the cause of the extinction. In answering these questions, three phylogenetic analyses were run that recovered the families Acanthoceratidae, Collignoniceratidae, and Vascoceratidae. Pseudotissotiidae was not recovered at all, while Coilopoceratidae was recovered but reclassified as a subfamily of Vascoceratidae. Seven genera were reclassified into new families and one genus into a new subfamily. After calibrating the trees with stratigraphy, I was able to determine that standing diversity dropped modestly across the C/T boundary and the Early/Middle Turonian boundary.
    [Show full text]