Central San Juan Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forgotten Crocodile from the Kirtland Formation, San Juan Basin, New
posed that the narial cavities of Para- Wima1l- saurolophuswere vocal resonating chambers' Goniopholiskirtlandicus Apparently included with this material shippedto Wiman was a partial skull that lromthe Wiman describedas a new speciesof croc- forgottencrocodile odile, Goniopholis kirtlandicus. Wiman publisheda descriptionof G. kirtlandicusin Basin, 1932in the Bulletin of the GeologicalInstitute KirtlandFormation, San Juan of IJppsala. Notice of this specieshas not appearedin any Americanpublication. Klilin NewMexico (1955)presented a descriptionand illustration of the speciesin French, but essentially repeatedWiman (1932). byDonald L. Wolberg, Vertebrate Paleontologist, NewMexico Bureau of lVlinesand Mineral Resources, Socorro, NIM Localityinformation for Crocodilian bone, armor, and teeth are Goni o p holi s kir t landicus common in Late Cretaceous and Early Ter- The skeletalmaterial referred to Gonio- tiary deposits of the San Juan Basin and pholis kirtlandicus includesmost of the right elsewhere.In the Fruitland and Kirtland For- side of a skull, a squamosalfragment, and a mations of the San Juan Basin, Late Creta- portion of dorsal plate. The referral of the ceous crocodiles were important carnivores of dorsalplate probably represents an interpreta- the reconstructed stream and stream-bank tion of the proximity of the material when community (Wolberg, 1980). In the Kirtland found. Figs. I and 2, taken from Wiman Formation, a mesosuchian crocodile, Gonio- (1932),illustrate this material. pholis kirtlandicus, discovered by Charles H. Wiman(1932, p. 181)recorded the follow- Sternbergin the early 1920'sand not described ing locality data, provided by Sternberg: until 1932 by Carl Wiman, has been all but of Crocodile.Kirtland shalesa 100feet ignored since its description and referral. "Skull below the Ojo Alamo Sandstonein the blue Specimensreferred to other crocodilian genera cley. -
Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................ -
Geologic History of the San Juan Basin Area, New Mexico and Colorado Edward C
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/1 Geologic history of the San Juan Basin area, New Mexico and Colorado Edward C. Beaumont and Charles B. Read, 1950, pp. 49-54 in: San Juan Basin (New Mexico and Colorado), Kelley, V. C.; Beaumont, E. C.; Silver, C.; [eds.], New Mexico Geological Society 1st Annual Fall Field Conference Guidebook, 152 p. This is one of many related papers that were included in the 1950 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Since 1950, the New Mexico Geological Society has held an annual Fall Field Conference that visits some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed papers. These books have set the national standard for geologic guidebooks and are an important reference for anyone working in or around New Mexico. Free Downloads The New Mexico Geological Society has decided to make our peer-reviewed Fall Field Conference guidebook papers available for free download. Non-members will have access to guidebook papers, but not from the last two years. Members will have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of the societies' operating budget. Therefore, only research papers will be made available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content will remain available only in the printed guidebooks. -
Geology and Coal Resources of the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado
Chapter Q National Coal Resource Geology and Coal Resources of the Assessment Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado Click here to return to Disc 1 By James E. Fassett1 Volume Table of Contents Chapter Q of Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick U.S. Geological Survey Professional Paper 1625–B* 1 U.S. Geological Survey, Denver, Colorado 80225 * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately U.S. Department of the Interior U.S. Geological Survey Contents Abstract........................................................................................................................................................Q1 Introduction ................................................................................................................................................... 2 Purpose and Scope ............................................................................................................................. 2 Location and Extent of Area............................................................................................................... 2 Earlier Investigations .......................................................................................................................... 2 Geography............................................................................................................................................ -
Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations
Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Introduction to greater Green River basin geology, physiography, and history of investigations / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) formations, greater Green River basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-A) Includes bibliographical references (p. ). Supt. of Docs, no.: I 19.16:1506A 1. Geology, Stratigraphic Eocene. 2. Geology Green River Watershed (Wyo.-Utah). I. Title. II. Series. III. Series: U.S. Geological Survey professional paper ; 1506-A. QE692.2.R625 1992 551.7'84'097925 dc20 91-23181 CIP For sale by Book and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Abstract ........................................................................................................................................ Al Purpose and scope of investigation ............................................................................................ 1 Location and accessibility of the greater Green River basin ................................................... 2 Geologic setting ........................................................................................................................... -
It Came from N.J.: a Prehistoric Croc Scientists' Rare Find Will Go on Display
Philadelphia Inquirer, The (PA) January 14, 2006 Section: LOCAL Edition: CITY-D Page: A01 It came from N.J.: A prehistoric croc Scientists' rare find will go on display. Tom Avril INQUIRER STAFF WRITER About 65 million years ago, when most of South Jersey was underwater and the rest was a fetid swamp, a crocodile died in present-day Gloucester County and sank to the bottom of the sea. Scientists from Drexel University and the New Jersey State Museum know this because they found what remains of the reptile lying submerged in the greenish, sandy clay known as marl. It is one of the most complete skeletons yet recovered of Thoracosaurus neocesariensis, a fish-eating crocodile whose remains usually consist of a stray tooth or two. The fossil, discovered in April, will be displayed in Drexel's Stratton Hall, starting Jan. 23, for about a year before heading to the state museum in Trenton. The creature helps give scientists a sort of back-to-the-future view of what the world might look like some day with a continued increase in global warming. Levels of carbon dioxide, a heat-trapping "greenhouse gas," have never been higher than when this croc walked the earth. Likewise, sea levels and temperatures stood at record levels. The climate was up to 15 degrees warmer, on average, than it is today. New Jersey was lush with mangroves. Although the Earth has changed dramatically, crocodiles have not. The Gloucester County creature, for example, resembles certain crocodiles in modern-day India and Africa - its remains a bony testament to the staying power of an animal that has evolved little since the time of the dinosaurs. -
Mesozoic Stratigraphy at Durango, Colorado
160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs. -
Jason P. Schein
Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute 2017-Present Member of the Board, Delaware Valley Paleontological Society 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A. -
View Preprint
A peer-reviewed version of this preprint was published in PeerJ on 11 June 2018. View the peer-reviewed version (peerj.com/articles/4973), which is the preferred citable publication unless you specifically need to cite this preprint. Brownstein CD. 2018. Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North America during the latest Cretaceous. PeerJ 6:e4973 https://doi.org/10.7717/peerj.4973 Theropod hindlimbs with feeding and other traces reveal ecosystem dynamics in the Maastrichtian of eastern North America Chase Brownstein Corresp. Corresponding Author: Chase Brownstein Email address: [email protected] Direct documentation of the ecology of past life is often rare when the fossil record is comparatively poor, as in the case of the terrestrial fauna of the Maastrichtian of eastern North America. Here, I describe a femur and partial tibia shaft assignable to theropods from the Maastrichtian Big Brook locality of New Jersey. The former, identifiable to a previously undetected morphotype of large ornithomimosaur, bears several scrapes identifiable as the feeding traces of sharks, adding to the collection of terrestrial vertebrate remains bearing such marks from the state. The latter is littered with tooth marks and punctures from possibly multiple crocodyliform individuals, the first documented occurrence of such traces on dinosaur bone from the Maastrichtian of the Atlantic Coastal Plain. Additionally, its surface is dotted with likely traces of invertebrates, revealing a microcosm of biological interaction from the Maastrichtian New Jersey shoreline. Previously, the massive Campanian crocodylian taxon Deinosuchus rugosus and the slightly smaller Cenomanian-age Texas crocodyliform Deltasuchus motherali have been shown as important drivers of terrestrial vertebrate taphonomy in eastern North America. -
Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected
Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2 Thomas H. Wilson1,2 e-mail: [email protected]; Art Wells1, George Koperna3: 1) National Energy Technology Center; 2) West Virginia University; 3) Advanced Resources International, Inc. 1) Abstract (see proceedings for full text) 2) Introduction Subsurface characterization activities undertaken in collaboration Seismic analysis undertaken in this study consists primarily of post stack attribute with the Southwest Regional Carbon Sequestration Partnership on analysis. Attribute analysis refers to an extensive collection of processes designed to their San Juan Basin pilot test include acquisition of geophysical enhance features of interest in subsurface interpretation. Attributes calculated and logs, time lapse VSP and analysis of 3D seismic data from the site. evaluated in this study included a variety of edge and discontinuity enhancement The project is funded by the U.S. Department of Energy and is algorithms. The motivation for this analysis is to identify potential fracture zones and managed by the National Energy Technology Laboratory. CO2 faults that may breach the injection zone and lead to migration of injected CO2 into injection began in late July of 2008 and continued through July of overlying strata. The project is funded by the U.S. Department of Energy and is 2009. Total CO2 injection volume was approximately 300MMcf. managed by the National Energy Technology Laboratory. Subsurface characterization activities are critical to the evaluation In the following discussion, an example of the 3D post-stack seismic processing of reservoir integrity and the potential that leakage of injected CO efforts is illustrated. -
Oil and Gas Plays Ute Moutnain Ute Reservation, Colorado and New Mexico
Ute Mountain Ute Indian Reservation Cortez R18W Karle Key Xu R17W T General Setting Mine Xu Xcu 36 Can y on N Xcu McElmo WIND RIVER 32 INDIAN MABEL The Ute Mountain Ute Reservation is located in the northwest RESERVATION MOUNTAIN FT HALL IND RES Little Moude Mine Xcu T N ern portion of New Mexico and the southwestern corner of Colorado UTE PEAK 35 N R16W (Fig. UM-1). The reservation consists of 553,008 acres in Montezu BLACK 666 T W Y O M I N G MOUNTAIN 35 R20W SLEEPING UTE MOUNTAIN N ma and La Plata Counties, Colorado, and San Juan County, New R19W Coche T Mexico. All of these lands belong to the tribe but are held in trust by NORTHWESTERN 34 SHOSHONI HERMANO the U.S. Government. Individually owned lands, or allotments, are IND RES Desert Canyon PEAK N MESA VERDE R14W NATIONAL GREAT SALT LAKE W Marble SENTINEL located at Allen Canyon and White Mesa, San Juan County, Utah, Wash Towaoc PARK PEAK T and cover 8,499 acres. Tribal lands held in trust within this area cov Towaoc River M E S A 33 1/2 N er 3,597 acres. An additional forty acres are defined as U.S. Govern THE MOUND R15W SKULL VALLEY ment lands in San Juan County, Utah, and are utilized for school pur TEXAS PACIFIC 6-INCH OIL PIPELINE IND RES UNITAH AND OURAY INDIAN RESERVATION Navajo poses. W Ramona GOSHUTE 789 The Allen Canyon allotments are located twelve miles west of IND RES T UTAH 33 Blanding, Utah, and adjacent to the Manti-La Sal National Forest. -
Sequence Stratigraphy of the Lower Pierre Shale in Southern
SEQUENCE STRATIGRAPHY OF THE LOWER PIERRE SHALE IN SOUTHERN POWDER RIVER BASIN, WYOMING, USA By Armagan Kaykun A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date _____________ Signed: ____________________________ Armagan Kaykun Signed: ____________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date _____________ Signed: ____________________________ Dr. Paul M. Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Powder River Basin is one of the biggest interior sedimentary basins in the Rocky Mountain region. The Upper Cretaceous section of the southern Powder River Basin includes the Niobrara Formation, which is one of the most significant source rocks of the Western Interior Cretaceous Seaway, and it is overlain by lower Pierre Shale which consists mostly of progradational shale sequences and two productive sandstone members encased in these shales. In the southern Powder River Basin, the lower Pierre Shale is made up of eight members. These members are progradational highstand deposits of the Gammon Ferruginous Member; lowstand prograding wedge deposits consisting of the Shannon Sandstone, the Unnamed Member, and the Sussex Sandstone; transgressional Ardmore Pedro Bentonite Beds and Sharon Springs members; and highstand deposits of the Mitten Black Shale and Red Bird Silty members. The Shannon and Sussex sandstone members are known targets for oil production. The Sharon Springs Member of the lower Pierre shale has relatively high organic carbon content. Therefore, determining its continuity throughout the study area and its source rock potential was one of the main focuses of this study in addition to building the sequence stratigraphic framework for the lower Pierre Shale interval.