<<

Contributions to , 73 (3) 207-252 (2004)

SPB Academic Publishing bv, The Hague

Morphological data, extant , and the myriapod stem-group

Gregory+D. Edgecombe

Australian Museum, 6 College Street, Sydney, NSW 2010, , e-mail: [email protected]

Keywords: Myriapoda, phylogeny, stem-group,

Abstract Tagmosis; long-bodied fossils 222

Fossil candidates for the stem-group? 222

Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant provides a basis for defending myriapod Fig. 2 251 and identifying those morphological characters that

are to taxon to The necessary assign a the Myriapoda. the most of the allianceofhexapods and need notrelegate myriapods “Perhaps perplexing taxa

1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136).

modates Myriapoda and Tetraconata as sister taxa. No known

pre-Silurianfossils have characters that convincingly place them

in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible

and tentorial endoskeleton,exceptional fossil preservation seems

confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that

Cambrian Lagerstdtten like the Burgess Shale and

Chengjiang have contributed to knowledge of Contents arthropod inter-relationships, they are notably si-

lent on the matter of myriapod origins and affini-

Introduction 207 ties. Few comparisons have been made between

Arthropod phylogeny: the Recent tree 208 marine organisms and members of the Taxonomic and character sampling 209 the myriapod crown-group, i.e., Chilopoda (centi- Cladistic methods 210 and and Results 210 pedes) Progoneata (symphylans, pauropods

The dearth of well-founded Reconstructing the myriapod ground pattern 213 ). compari-

213 Autapomorphies of ' sons is a reflection ofreal patterns in the fossil record Mandible 213 (a lack of appropriately-aged and litter ) First maxilla 216 the terrestrial habits of and cryptic, crown-group with crystalline cone [Mandibulata] myriapods, but it is also influenced by imprecise and multilayered rhabdom [Myriapoda] 217

Ollier characters 218 or flawed concepts of myriapod morphology and

Autapomorphies of Myriapoda 218 fossils that be relationships. Identifying may mem- Tentorial bars and tentorial mobility 218 bers of the myriapod stem-group requires a well- Separated, independently musculated gnathal lobe 220 founded hypothesis of myriapod phytogeny in the Other characters 221 broader context of Arthropoda, based on Mandibular comb lamellae 221 precisely defined characters that ‘Tracheate” characters in Myriapoda 221 apomorphic can potentially

Downloaded from Brill.com10/09/2021 01:58:52PM via free access - 208 G.D. Edgecombe Myriapod stem-group

be examined in fossil material. Budd al. As et (2001: coding genes (Regier and Shultz, 1997, 2001a, b;

noted when the well from 38) evaluating “myriapod-like” Shultz and Regier, 2001) as as several

Cambrian fossil Xanthomyria, “The ground-plan kinds of non-sequence data. The latter includes brain

features for remain many groups [of arthropods] ultrastructure(Strausfeld, 1998; Locsel et al., 2002), uncertain”. That uncertainty impedes understand- neurogenesis (Duman-Scheel and Patel, 1999; Simp-

the or contributions of ultrastructure ing significance possible son, 2001), eye (Melzer et al., 1997),

fossils. and mitochondrial gene (Boore et al., 1998).

The palaeontological context of Myriapoda has These studies [reviewed by Dohle (2001) and Richter been reconsidered based on developments in ar- (2002a)] have contributed to a perception that myria- thropod phylogcny that have come from exclusively pods are more “basal” than crustaceans and hexa- neontological data, such as gene order, neurogenesis, pods. and molecular Budd for sequences. (1999: 286), In short, Myriapoda is variably seen, even in the example, considered the possibility of a - latest literature, as either monophyletic (Edgecombe

hexapod alliance to invite a radical repositioning and Giribet, 2002), paraphyletic (Kraus, 2001) or

“It of the Myriapoda: is hard to see how the myri- polyphyletic (Loesel et al., 2002). Myriapods are

be apods may be considered to the to variably allied to either hexapods, chelicerates, or

of any the arthropod stem-group taxa discussed a crustacean-hexapod , or are left unassigned here...; if the Tracheata [=Myriapoda + ] in the euarthropod stem-group. The present review

be are to abandoned, the possibility of myriapods aims to establish constraints on the systematic posi- representing an independent line of arthropodisation tion of myriapods by synthesising character evi-

a remains dence available for their in the (from lobopodous ancestor) open...”. crown-group context

as derived ofother Data come from Likewise, “Regarding crustaceans extant Arthropoda. a range

makes in the difficult... of certainly fitting myriapods non-sequence sources, including external mor-

But other if they do not fit in here, then there is no phology, internal anatomy, ultrastructure, embry- obvious for them to be tied into and order. Cladistic place arthropod ology, gene expression, gene phylogeny” (Budd, 2001: 71). analysis of this evidence permits the ground pat-

The enigmatisation of myriapods has not been tern of the myriapod crown-group to be clarified. exclusively palaeontological. Rejection of a myri- This in turn allows fossils, including potential stem-

alliance Tracheata be evaluated apod-hexapod (the or Atelocerata) group Myriapoda, to more precisely. after decades ofalmost universal acceptance stem- med first from analyses of molecular sequence data, such as studies based on small subunit rRNA (Frie- Arthropod phylogeny: the Recent tree drich and Tautz, 1995, 2001; Giribet et al., 1996).

These analyses offered an alternative resolution of It hardly need be said that extant taxa have some

sister of fossils. classes of character myriapods as group , though advantages over Some this result was or at best rendered am- such as mitochondrial order and rejected, data, gene biguous, for the same genes with denser taxonomic ultrastructure, are confined to extant taxa, as is true sampling (Giribet and Ribera, 1998, 2000). A di- for most other genetic and ultrastructural informa- vision of into + tion and soft anatomical Euarthropoda (Chelicerata many characters. The es-

Myriapoda) and (Crustacea + Hexapoda) has, how- calation of missing data for fossils is not confined ever, been endorsed in some other molecular analy- to molecular data; a sobering proportion of the non-

Hox ses, including those based on gene sequences sequence characters analysed in this study (see

(Cook et al., 2001), sequences for much of the Appendix) are unknown for all fossils, e.g., whole mitochondrial genome(Hwang et al., 2001; Delsuc blocks of characters for embryology, brain and eye et and and muscles. al., 2003), hemocyanin sequences (Kusche structure, For extant taxa, conjectures and Kusche et Inde- of refer Burmester, 2001; al., 2002). primary can to gene expression pendent support for the exclusion of Myriapoda from patterns (see the example ofDistal-less and dachs- a crustacean-hexapod clade has come from nuclear hund expression in the mandible below), embryo-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology , 73 (3) - 2004 209

logical development, and details of ultrastructure tively, for summaries from opposing perspectives) that will be unknown for fossils. These details permit have agreed on the monophyly of +

a rigour in formulating hypotheses of homology Tardigrada + Euarthropoda. that be with and The taxonomic is may not possible fossils, larger sample designed to span the

suites of character data more kinds of within the extant Taxo- (including major groups Arthropoda.

character I nomic based terminal data) are available. shall not, however, sampling is on taxa for which

endorse the conclusion drawn by Patterson and at least four of eight widely-sampled nuclear ribo-

Rosen (1977) that these epistemological matters somal, nuclear protein-coding, and mitochondrial

mean that fossils are subordinate in available Giribet to extant taxa genes are (see et al., 2001). The

It has al. phylogenetic analysis. been amply demon- terminal taxa used here are as in Giribet et (2001)

strated that a Recent-only tree may be overturned with the addition of the myriapods Cryptops (Chilo-

on the basis of including extinct taxa in the sample, poda: Scolopendromorpha) and Spirostreptoidea

a phenomenon that has been defended both theo- (Diplopoda: ) for which most of the

retically and empirically (Gauthier et al., 1988; genes used in the molecular character set are now

available. In marker is maxi- O’Leary, 1999). many cases, diversity

The mised present analysis is confined to extant taxa by combining sequence data from different

because terminal code the taxa are selected to include to for a supraspecific terminal taxon,

groups for which multiple-gene molecular samples the assumptions of monophyly of these supraspecific

are available, permitting combined-data approaches groupings, e.g., , , Stomato-

to In arthropod phylogeny (Giribet ct al., 2001). a poda, being relatively unproblematic in the con-

palaeontological context, it serves as the “Recent text of the deep branchings in arthropod phylogeny.

that be and The data include of tree”, a hypothesis can tested, poten- a range non-sequence evi-

the inclusion of fossil characters tially overturned, by taxa. dence, including describing gene expres-

all for molecular sion and mitochondrial Despite missing codings (and many patterns gene order, together

non-molecular) characters in fossils, extinct termi- with more traditional “morphological” characters

internal nals could be included in the taxonomic sample (external morphology, anatomy, ultrastruc-

(see Schram and Hof, 1998, and Giribet et al., 2002, ture, embryology, and development). 1 have not

for analyses of crustacean and relation- segregated molecular versus non-molecular data,

since the used ships, respectively, that score fossil taxa for their homology concepts in formulating

morphological characters). these characters are similar, all are amenable to

parsimony analysis, and none involve the issues

base specific to sequence data, e.g., frequencies,

Taxonomic and character sampling treatment of gaps, transversiomtransition costs. Earlier versions of the dataset (Edgecombe et

The Giribet present study expands upon the morphologi- al., 2000; et al., 2001) coded the traditional cal character set of Giribet et al. (2001), which was hypothesis of segmental correspondence between

modified from a synthesis by Edgecombe et al. and second antennae, which implied a

(2000). The Edgecombe et al. (2000) dataset loss of deutocerebral in Chelicerata

included 211 characters for Arthropoda s.l. (= Ony- (Bullock and Horridge, 1965; Weygoldt, 1985). The

chophora + Tardigrada + Euarthropoda or Arthro- present version instead codes for segmental ho- poda s. str.). Characters in that work that pertained mology between the cheliceral and first antennal

to Annelida which invariant in the based Hox or are in-group segments, on gene expression domains for this study (autapomorphies of Arthropoda s.l.) (Damen ct al., 1998; Telford and Thomas, 1998;

are now excluded. The in-group is Euarthropoda, Scholtz, 2001; see Hughes and Kaufman, 2002a,

with and in of peripatid and peripatopsid onychophorans and fig. 10) patterns development the ner-

tardigradcs used as out-groups. Participants in the vous system in Limulus (Mittmann and Scholtz,

Ecdysozoa versus Articulata debate [see Schmidt- 2003). The alignment of segments in the head of

Rhaesa and et al. (1998) and Scholtz (2002), respec- euarthropods onychophorans follows a model

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 210 - G.D. Edgecombe Myriapod stem-group

for Onychophora outlined by Eriksson and Budd weights. Ambiguity in the cladograms based on the

(2000) and Eriksson et al. (2003). reweighted characters is confined to the internal

relationships of the Pantopoda, ,

within the Diplopoda, and Phyllopoda within the

Cladistic methods , such that character optimisations at

the basal nodes of Mandibulata and Myriapoda arc

unaffected. shown The dataset includes 319 characters (Appendix I, Character optimisations are on

Table I). Most multistate characters are coded as a cladogram selected by both equal weights and unordered. Characters 3, 27, 76, 134, 151, 164 and successive weights (Fig. 2, Appendix 2).

211 present information that justifies coding for a The higher-level are as in the most con-

transformation series, and are scored as ordered. gruent combined (morphological + molecular) cla-

Two characters (8 and 128) involving ontogeny are dogram of Giribet et al. (2001), with Euarthropoda

1 2 scored as variable (“either or but not 0”). resolved as (Pantopoda (Chelicerata (Myriapoda

Minimal length cladograms were computed with (Crustacea, Hexapoda)))). Myriapoda is monophyl-

PAUP* version 4b 10 (Swofford, 2002). A heuris- etic but not strongly supported, with a jackknife

tic tree space search was implemented with the frequency of 63% and a Bremer support of 1. It is

commands: hsearch addseq=random nchuck=10 composed of the sister taxa Chilopoda and Progo-

chuckscore=l nrcps=5000 randomize=trees; hsearch neata (see Fig. 3 for taxonomic groupings in the

start=current nchuck=0 chuckscore=0. As discussed Myriapoda). In some suboptimal cladograms (one

above, trees are rooted between Euarthropoda and step longer than the shortest) myriapod monophyly

the is contradicted in favour sister onychophoran and out-groups. Group of a group relation-

support was evaluated by parsimony jackknifing ship between the Progoneata and the Hexapoda,

(Farris et al., 1996), using PAUP*, with a heuristic which together constitute the Labiophora (Kraus

search using 1000 replicates and 33% character and Kraus, 1994).

Bremer The internal of the deletion, saving one tree per replicate. sup- phylogeny Chilopoda identi-

of to fies the port (Bremer, 1994) up 5 extra steps was Notostigmophora (order Scutigeromorpha)

computed using a heuristic search with NONA ver- as the sister group of the four orders that comprise

sion 2.0 (Goloboff, 1998). To select a cladogram the Pleurostigmophora. This scheme of relation-

for showing character optimisations, successive ships is widely endorsed by morphologists (Shino-

Shear and approximations weighting (Farris, 1969) was ap- hara, 1970; Dohlc, 1985; Bonamo, 1988;

plied with PAUP*, using the maximum fit of the Borucki, 1996; Prunescu, 1996; Edgecombe et al.,

rescaled consistency index (RCI). 1999), and is congruent with the analysis ofnuclear

rRNA (Edgecombe et al., 1999) and the combined

analysis with multiple molecular markers (Giribet

Results et al., 2001). The Pleurostigmophora hypothesis

contradicts the phylogeny and classification out-

With the analytical procedures outlined above, parsi- lined by Ax (1999), in which the Geophilomorpha

of mony analysis finds 648 shortest cladograms 619 was resolved as sister to all other Chilopoda. Rela-

= Index of in steps (Consistency Index 0.65; Retention tionships classes the Progoneata are as ar-

= 0.87; Rescaled Consistency Index = 0.56). The gued by Dohle (1980, 1998) and Kraus and Kraus

strict of these is shown in indi- with the the sister of consensus Fig. 1, (1994), as group cating jackknife frequencies and Bremer support. the Dignatha (= + Diplopoda). In the

Successive approximations weighting selects 54 Diplopoda, Penicillata (=) is the sister of the minimal of and in the length cladograms based on equal group , latter,

I. Strict of648 minimal based data in Fig. consensus length cladograms ofarthropod relationships on Table 1. Numbers above nodes are Bremer support; numbers below nodes are parsimony jackknife frequencies.

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 211

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 212 G.D. Edgecombe - Myriapod stem-group

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 213

(sampled by ) is the sister to the of Budd (2001: fig. 1). A stem-group myriapod must

Helminthomorpha (sampled by Juliformia) (Eng- be expected to possess the apomorphies of the more

and hoff, 1984; Enghoff et ah, 1993). inclusive clade Mandibulata, should possess

At a more inclusive level, the Myriapoda unites at least some of the apomorphies of the myriapod

with clade of the Crustacea and in the the characters that a Hexapoda crown-group (these being pro-

clade Mandibulata(jackknife frequency 99%, Bre- vide positive evidence for a relationship to Myria-

mer support 4). The Crustacea and Hexapoda are poda). Unique autapomorphic characters are outlined

both resolved with in the with indications of their as monophyletic, strong sup- following, along

Tetraconata in port. Their grouping as has weaker expression fossils.

support (present in 68% of jackknife replicates,

Bremer support 1). Trees one step longer than the Autapomorphies of Mandibulata

shortest include some with the Myriapoda as sister

of the Hexapoda, i.e., monophyletic Tracheata. In Mandible

all most parsimonious cladograms, Crustacea in-

of cludes a clade composed of the and The homology mandibles(Crampton, 1921; Snod-

Branchiopoda (=Phyllopodomorpha Ax, 1999), with grass, 1938, 1950) provides the classical evidence

the sister that crustaceans and as group (=Thoracopoda myriapods, hexapods comprise

Hessler, 1992). However, neither the Thoracopoda a monophyletic group. A rejection of this homol-

nor in for Phyllopodomorpha is present in the jackknife ogy figured prominently arguments arthropod

consensus, andboth have weakBremer support (1). polyphyly. Crustacean mandibles were accurately

Jackknifing resolves the basally within seen by Manton (1964) to be gnathobasic in ori-

the Crustacea (Schram, 1986; Schram and Hof, 1998) gin, but myriapod and hexapod mandibles (which

lack in 61% of the replicates but the grouping of non- invariably a palp: Fig. 4C) were thought to

bite the of remipede crustaceans (=Eucrustacea sensu Ax, 1999) with tips whole limbs. The ‘whole limb'

is in all Bou- not present minimal length cladograms based theory was rejected by Lauterbach (1972),

on the full character set. The cladograms based on dreaux (1979), and Weygoldt (1979), all of whom

reweighted characters likewise resolve remipedes considered the positional equivalence of mandibles

basally in the Crustacea (Fig. 2), unite the two to be best explained by a single origin. Further,

members of the , and resolve mala- they argued that myriapod mandibular musculature

costracan interrelationships the same as in the analy- is coxal, as is implied by a gnathobasic origin, rather

sis of Richter and Scholtz (2001: figs. 5-8). than being that of a telopodite, as implied by a ‘whole

The fundamental in the limb’ could be ho- groups Hexapoda are origin [mandibles potentially

(Ellipura ( ( (Tricholepidion mologous even if it were true that they were vari-

(Zygcntoma, )))))). The contentious issue ably wholelimb or gnathobasic, but using Manton’s

of the of is resolved in more severe a shared as placement Tricholepidion criterion, identity gna-

favour of it sister to all the other Dicon- thobases refutes the claim of The being group non-homology].

dylia (Boudreaux, 1979; Staniczek, 2000; Beutel characterisation of a mandible can be made with

and Gorb, 2001) rather than sister to considerable precision (Wiigele, 1993; Bitsch, 2001).

s.str. (Kristensen, 1998). Segmentally, mandibles are the of the

first post-tritocerebral segment and, functionally,

Reconstructing the myriapod ground pattern they are the anteriormost mouthpart of the adult

head. They share similar topological relationships

The to phylogeny (Figs 1-3) serves as a basis for in- other components of the head capsule, being

base terpreting morphological characters at the of embedded in a chewing chamber beneath the la-

the of node brum in crown-group Myriapoda, i.e., the crown (between the labrum and the hypopharynx

Tig. 2. Minimal length cladogram based on equally weighted and successive approximations weighted characters used to show character optimisations. Nodes 1-52 as in Appendix 2.

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 214 - G.D. Edgecombe Myriapod stem-group

Fig. 3. Cladogram for extant Myriapoda using taxonomic sample in Figs. 1 and 2, showing higher-level systematic groupings and exemplarorganisms. Ordinal names (Scolopendromorphaand Geophilomorpha) abbreviated within Epimorpha. Drawings from Eason

(1964), Eisenbeis and Wichard (1985), Harvey and Yen (1989), Hennig (1972) and Snodgrass (1952).

myriapods: Fig. 4A), and have a coxal endite used tip of a whole limb. Distal-less expression is en-

for food manipulation. tirely absent in hexapods (Panganiban et al., 1995;

Gene expression data are consistent with the Niwaetal., 1997; Popadic etal., 1996, I998;Scholtz

homology of the mandibles throughout the Mandi- et al., 1998). These data are consistent with myri- bulata. Though these data are not amenable to ob- apod and hexapod mandiblesbeing gnathobasic like servations on fossils, they are important because those of crustaceans. A coxal identity of the man-

contribute to the of homol- dible is also dachshund they general question suggested by expression ogy (Scholtz, 2001; Richter, 2002a). In the diplo- in the Tribolium (Prpic et ah, 2001). Expres-

the Homeobox Distal-less has pod , gene sion patterns are similar in all three gnathal append-

in lateral maxilla and This only a temporary expression a position, ages (mandible, labium). similarity

entire which, by comparison to Crustacea, is interpreted suggests a serial homology between the man- as the vestigial anlage of a palp (Scholtz et ah, 1998). dible and the coxal parts of the maxilla and labium

In adult myriapods, distal parts of the mandible are and the coxa of the legs.

Another therefore lacking, which invalidates Manton’s con- important observation concerning the cept of a whole limb mandible, i.e., biting with the homology of mandibles is the absence of Distal-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 215

electron of characters in All scales 100 Lithobio- Fig. 4. Scanning micrographs gnathal extant Myriapoda. pm. A-C, Chilopoda,

morpha; D-E, Diplopoda, ; F, Chilopoda, Scutigeromorpha. A, Paralamyctes (Haasiella) subicolus. Ventral view of

mandible embedded beneath labrum and head, showing (md) (la) clypeus (cl); B, Paralamycles (Thingathinga) ?grayi. Ventral view

ofhead, showing first maxillae bordering mouth, t, telopodite offirst maxilla. C, Paralamyctes Haasiella ) cammooensis. Mandible,

division into lobe and base Cladethosoma clarum. lobe of showing gnathal (gnL) (b), D-E, D, gnathal mandible, showing pars

incisivus with external tooth tooth and and with molar and (et), internal (it) pectinate lamellae (pi) pars molaris (pm) plate (mp)

anterior fringe (0; E, detail of pectinate lamellae. F, Scutigerina weberi. Distal part of gnathaledge, showing pectinate lamellae.

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 216 G.D. - Edgecombe Myriapod stem-group

less expression in the mandibularis (Scholtz from the and corpus 4) , respec-

ct Dis- al., 1998; Scholtz, 2001; Richter, 2002a). tively, are known to have mandibles of the same

tal-less is if at and and expression transitory present all, size topological relationships as the mandible is confined that to an area represents a palp anlage, of extant Scolopendromorpha. The chilo-

whereas in the maxillula/first maxilla and in other pod Devonobius has the mandible in a comparable

limbs, can be in Distal-less expressed the inner lobes position under the labrum and paralabral

as well (Scholtz, The 2001; Richter, 2002a). man- as in extant Scolopendromorpha and Craterostigmus dible is thus differentiated from other, more poste- (Shear and Bonamo, 1988: figs. 14, 17 versus 49,

rior limbs with to this of Distal-less In respect aspect 50). any stem-group myriapod, the mandible is

be in expression. expected to embedded a chewing chamber The gnathal edge of the mandible in myriapods, between the labrum and the hypopharynx (charac- and shows further similari- crustaceans hexapods ter of the Mandibulata) (cf. Fig. 4A). Absence of ties that in suggest correspondences substructures the palp is a general character of the myriapod

et In the The (Edgecombe ah, 2003). particular, man- crown-group (Fig. 4C). coding adopted for the in dibular gnathal edge taxa within each of these mandibular allows that its palp (character 128) pre-

groups is differentiated into a distal incisor part, or sence in larval stages is general for Crustacea, and

incisivus, and a molar or that in pars proximal part, pars it is likely a palp is present basal mandibulates. molaris The is (Fig. 4D). pars incisivus typically a

blade-like with process a row of teeth (e.g., in Sym- First maxilla

phyla: Richter et ah, 2002, figs. 39, 41, 43). The

molaris typically has a flattened surface, dis- All members of the mandibulate share pars crown-group

playing evidence for fusion close a origination by (or modification of the postmandibular appendage

of that contact) spines are arranged in rows (see as a mouthpart, variably called a maxillula (Crus-

for Edgecombe et ah, 2003, examples from the tacea), maxilla (Hexapoda), first maxilla (Chilo-

Chilopoda, Symphyla, Ellipura, Insecta, Malaco- poda), or incorporated into the gnathochilarium

and The molaris is straca Branchiopoda). pars fring- (Diplopoda). Detailed homology of substructures

ed on one side a row of with of the by spines open gaps maxillae, however, is less developed than is

between the and spines, generally has a cluster of the case for the mandible. Whether particular endites

or bristles the molar spines proximal to or of the maxilla that are conserved across plate groups, The broad of the molaris process. homology pars such as the lobate maxillulary endites of crusta-

was Kraus suggested by (1998, his “Molar hook”), ceans or the lacinia and galea of the Hexapoda, have

as a for and broader between synapomophy Myriapoda Hexapoda, homologies groups is presently and extended the molaris subsequently to pars of unknown.The serial comparison of gnathal append- Crustacea (Kraus, 2001). ages in embryos (Machida, 2000; Prpic et al. 2001)

In of is in- summary, a single origin mandibles might shed light on this question.

dicated by topological relationships of the mandible Most evidence indicates that the first maxilla

within the head details of capsule, geneexpression 1 borders the mouth at the crown node of Myriapoda. and musculature that indicate coxal and The a identity, taxon Monomalata, which was conceived as

detailed substructures of the includ- gnathal edge, including Chilopoda, Diplopoda and Pauropoda, was the molaris and its built ing pars surface up from based on this relationship, “transformation of the

Fossils that spine rows. are evaluated as first into labium-like being po- post-mandibular pair a organ tential should stem-group myriapods possess man- closing the pre-oral cavity from behind” (Sharov, dibles of the kind other Mandibulata. 1966: A same as The 66). debate over whether or not diplopods mandible in is and crown-group myriapods strongly pauropods express a second maxilla (Hilkcn and this renders it sclcrotiscd, especially prone to and Kraus, 1994; Kraus and Kraus, 1994) or lack fossilisation. For the example, scolopendromorphs an appendage on the postmaxillary segment (Dohle,

richardsoni 1979; Mazoscolopendra (Mundel, fig. 1980, 1998) impacts upon the question of which

2) and Cratoraricus oberlii (Wilson, 2003: figs 3, maxillary segment borders the mouth. The com-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to 73 - Zoology, (3) 2004 217

bined evidence from innervation, and in embryology, mus- xenus (Penicillata), this case the number of

culation, and expression favours the latter view is gene cells (four) the same as in the typical “tetraconate”

(Scholtz et al1998). Dismissal of ommatidium. This developmental agrees with the interpretation data from the well-understood Glomeris as of pecu- Spies (1981) that the vitreous bodies of Polyxemis liarities of that taxon’s distinctive gnathochilarium are relics of a cone. crystalline A crystalline cone is (Kraus, 2001) weakened by helminthomorph di- has also been determined in in Chilopoda, the “pseu- plopods, e.g., (Popadic et al., show- dofaceted” of 1998), eye Scutigeromorpha (Hanstrom, the ing same embryological as Glomeris. patterns 1934; Paulus, 1979, 2000), but with a larger num-

Maxillary palps are uniformly in Chilo- ber of cells than in present Tetraconata. Other chilopods

poda, represented a and by (generally) two-part telopo- diplopods lack a crystalline cone (Spies, 1981), dite (Fig. 4B). The absence of has maxillary palps but the data from Penicillata and Scutigeromorpha been considered to be for apomorphic Progoneata are significant because these lineages are sister

(Kraus and Kraus, 1994). Claims that a is re- of all other palp groups Diplopoda and Chilopoda, re- tained in penicillate diplopods (Shear, 1998) are spectively (Fig. 3).

disputed (Kraus and Brauckmann, 2003). The that Regard- possibility a crystalline cone in the om- less of the in interpretation diplopods (or whether matidium is an apomorphy for the Mandibulata

the lateral the in cone on maxillary stipes (Richter is its shared Symphyla 2002a) suggested by presence

is a vestigial palp), have a in Chilopoda maxillary palp, members of Chilopoda, Crustacea, Hexapoda, as do Hexapoda and Crustacea, and its and presence possibly Diplopoda (Symphyla and Pauropoda characterises the myriapod crown node. are uniformly blind). Polarity is determined by out- Positive evidence for fossil a being a stem-group group comparison with , the only cheli- would therefore be myriapod provided by having a cerates that retain The faceted compound eyes. eye

maxilla differentiated as a rather of gnathal appendage Limulus has an extended cornea rather than a

than a limb. The maxilla locomotory would form cone crystalline (Fahrenbach, 1999). A crystalline

the rear border of the 4B in pre-oral cavity (cf. cone on the in 2 Fig. optimises cladogram Fig. as a and retain the Chilopoda), should ofa mandibulate presence palp autapomorphy under accelerated trans-

or telopodite. formation (ACCTRAN).

Another characteristic of lateral myriapod eyes,

Ommatidium with crystalline cone [Mandibulata] whether retaining evidence for being mandibulate- and multilayered rhabdom [Myriapoda] type ommatidia (Scutigeromorpha and, less confi-

dently, Penicillata) or modified to form simple-eye A crystalline cone of four cone Sem- composed (or stemmata(Chilognatha; Pleurostigmophora), is that

per) cells is accepted as of the ground the rhabdom part pattern is composed of multiple layers of for Crustacea and Hexapoda (Paulus, 1979, retinular 1989, cells. In the case of Scutigeromorpha and 2000). Melzer et al. (1997) observed that processes Penicillata, the rhabdom has two layers of retinu- from the the cone cells pass between retinula cells lar whereas cells, many layers are present in Pleuro- to the proximal basement membrane in the same, stigmophora and Chilognatha (Paulus, 1979,1986, highly detailedmanner in Crustacea (Triops, Lepi- 1989, 2000; Spies, 1981). Paulus (1986) viewed durus, Panulirus, Squilla, ) and Insecta the of the rhabdom layering as a potential autapo-

(, Drosophila), which Dohlc cited of (2001) morphy Myriapoda because a similar construc- as an in favour of important argument these taxa tion occurs in only the larval eyes of some insects.

sharing a unique common ancestor. Interpretations Fossils to are unlikely preserve ommatidial struc- of the myriapod stemmata (clusters of simple, single- ture in detail to determine the adequate presence lens ocelli) as a modified ommatidium (Paulus, 1986, of a the crystalline cone, layering ofthe rhabdom, have been Most 1989) more contentious. recently, or other conditions of general myriapods, e.g., a Paulus that of cells (2000) suggested remnants cone variable and number of relatively large corneagenous be may represented by vitreous bodies between the cells compared to those of hexapods and crusta- lens and rhabdom in the pin-cushion Poly- ceans (Paulus, 2000). Concerning gross morphol-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 218 D. - G. Edgecombe Myriapod stem-group

of the lateral into ogy eyes, an arrangement se- noreceptors (Paulus, 2000). The validity of a mono-

in parated stemmata should be observable fossil layered acrosome as a myriapod autapomorphy is

material, but true ommatidia from called into the distinguishing question by bilayered acrosome, with

be difficult. “pseudofaceted” eyes can For example, a perforatorium, in (Mazzini etal., 1992). in Carboniferous the arc Of the characters diplopods, eyes composed noted above, only the presence

of to 1,000 units in rows of median for fossil up arranged (Kraus, 1974), eyes (known chelicerates and

but whether these faceted is are eyes uncertain be- insects) is likely to be determinable in fossils be-

the details needed cause to identify an ommatidium ing evaluated as stem-group myriapods (whereas

are not Stemmata absence of median preserved (Spies, 1981). appear eyes seems impossible to es-

to be at less in diagnostic inclusive nodes than Myria- tablish definitively a fossil myriapod). Discus-

poda, possibly being apomorphic for Chilognatha sion below considers positive characters rather than

within Diplopoda and Pleurosfigmophora within absences.

Chilopoda (Kraus, 1998). Based on the ommatidia

in the sister of these two groups clades, Penicillata Tentorial bars and tentorial mobility and Scutigeromorpha, respectively, stem-group My-

riapoda might be expected to possess a faceted (com- Structural details of the cephalic endoskcleton and

pound) with a cone. its functional role in mandibular eye crystalline movements pro-

vide the most compelling evidence for myriapod

Other characters monophyly.

The tentorial cephalic endoskcleton is restricted

A few additional indicators for the monophyly of to myriapods and hexapods. In myriapods, the ten-

Mandibulata not testable with are directly fossil torium includes so-called head apodemes (ectoder-

material. For a membrane in mal of the example, pcritrophic invaginations premandibular region) as

the (character and a restricted well gut 188) Antennapedia as a complex of non-invaginated arms that are domain expression (character 317; Hughes and Kauf- fused to the head apodemes (Fig. 5). The head

2002b) arc of man, autapomorphies Mandibulata apodemes of Myriapoda are rods or plates homo- under both accelerated and transformation. delayed logised by Snodgrass (1950) with the anterior ten-

Under accelerated transformation, additional auta- torial arms of Ectognatha, in which they likewise of pomorphies Mandibulata include cells arise as cuticular (ectodermal) invaginations. The fromwalls of mesodermal developed somites (char- probability of primary homology ofthese structures

8: acter Anderson, 1973), a moulting gland (character is maintained by recent workers (Bitsch and Bitsch,

24: Wiigclc, 1993), three ganglia in the pre-oseo- 2000,2002; Koch, 2000,2003; Klass and Kristensen,

brain phageal (character 50), midline neuropil 2 of 2001). The positioning of the invagination site in

Loesel et al. (2002) (character 54), and oocytes Chilopoda and Symphyla was described by Koch in the ovarian lumen developing (character 309: (2001) as shared with Hexapoda, though Bitsch and 1988; Ikuta and Bitsch indicated Makioka, Makioka, 1999). (2002) that the head apodemes of

myriapods have their anterior point of invagina-

tion more medial than that of the anterior tentorial

Autapomorphies of Myriapoda pits in insects.

The detailed relationships of the anterior tento-

Reductive characters have in some rial exhibit figured argu- arms a common pattern in the Myriapoda. ments for of For In the head monophyly Myriapoda. example, particular, apodemes (‘posterior pro- Ax cited the absence ofmedian of the (1999) (“loss”) eyes cess tentorium’; Koch, 2003) in the Chilopoda and a cone evidence well crystalline (but see above) as as as the Progoneata are fused to a transverse for myriapod monophyly. Other shared absences bar (Bitsch and Bitsch, 2002; Koch, 2003: “fultural noted in previous studies include the lack of a sclerites” of which Snodgrass, 1950, 1952), may in the perforatorium sperm (Baccetti et al., 1979; extend to the lateral cranial wall (tb in Fig. 5). The and absence of media- Jamieson, 1987) scolopidial posterior processes are also merged with sclerites

Downloaded from Brill.com10/09/2021 01:58:52PM via free access - Contributions to Zoology, 73 (3) 2004 219

Fig. 5. Apomorphic similarities in the tentorial cephalic endoskeleton (A-B) and mandible (C-D) in Chilopoda and Diplopoda(from

Snodgrass, 1950,1952).A, CLithobius (Chilopoda: Lithobiomorpha); B,Arctobolus (Diplopoda;); D, ‘Fontana’ (Diplopoda:

Abbreviations lobe Polydesmida). (after Koch, 2003): eb, epipharyngeal bar; f, gnathal flexor; gnL, gnathallobe; pp, posterior process

oftentorium (=headapodeme of Snodgrass); hb, hypopharyngeal bar; Hypo, hypopharynx; mdB, mandibularbase; tb, transverse bar

(= fulturae ofSnodgrass),

that form a hypopharyngeal bar (hb in Fig. 5), and myriapods (Bitsch and Bitsch, 2002). As such, the

serve as supports for the hypopharynx. An epi- transverse bar is a general character for Myriapoda,

bar pharyngeal (eb in Fig. 5) serves as the articu- except for Geophilomorpha (Koch, 2003), and a

lation of the mandible in the Chilopoda and the homologue is not known in Hexapoda or Crusta-

Symphyla (Koch, 2003). The similarity in the trans- cea. Thetransverse bar maps on the cladogram (Figs.

verse bar was thought by Snodgrass (1952) to pro- 1, 2) as a myriapod autapomorphy.

vide in evidence of In addition the sclerites that a “strong point a relationship” to particular merge

between the Diplopoda, Pauropoda and Chilopoda. with the anterior tentorial arms in myriapods, the

In each case, the transverse bar supports the apo- functional role of the tentorium in myriapods

demes that give rise to mandibular adductor muscles. differs from that of hexapods in a fundamental man-

Symphyla possess typically myriapodan posterior ner. In Myriapoda, movements of the tentorial apo-

but processes were thought by Snodgrass (1950, demes serve to abduct the mandibles, accompanied

bar. the 1952) to lack the transverse However, the trans- by a shift of dorsoventral mandibular muscles

verse apophysis shown by Ravoux (1975) in South to the tentorial apodeme. These tentorial movements

gerella is the homologue of transverse bar in other were judged by Manton (1964) and Boudreaux

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 220 G.D. Edgecombe — Myriapod stem-group

(1979) as a of evidence in favour of strong point secondarily subdivided in the Myriapoda (Tauter- the of monophyly Myriapoda. A counterargument bach, 1972).

to this of view raised Klass point was by and Kris- Telognathy is perhaps most elaborate in the Di- in the beliefthat tentorial tensen (2001) movements plopoda, in which the mandibular base plate is could be the plesiomorphic, i.c., being precursor largely immobile, forming the side of the head

of an immobile tentorium in Hexapoda. That theory capsule (shared with Symphyla), and the gnathal is dependent upon the of the Atelocerata/ lobe is with monophyly strongly separated, an especially en- Trachcata (which is the disputed by Tetraconata hanced muscular independence (Fig. 5D). In the and is scenario that hypothesis), a is not possible Hexamerocerata have a Pauropoda, strong separa-

to test with out-group comparison because the ten- tion of the gnathal lobe from the mandibular base torium itself is in other The Kraus and in lacking groups. ‘swing- (Hiither, 1968; Kraus, 1994), as Diplo-

tentorium on the ing’ maps cladogram (Figs. 1, 2) poda, and this is presumed to be plesiomorphic

as a myriapod aitfapomorphy under accelerated relative to the single-piece mandible ofTetramero- transformation. cerata. Single-piece mandibles in Myriapoda (Geo-

The of the tentorium can be determined presence philomorpha and ) are associated

in the best In preserved fossil material. the Devo- with enhanced entognathy. Fragmentation of the

nian mandible in is arthropleurid-like diplopod Microdecemplex Chilopoda expressed as a series of Wilson and Shear identified rolfei, (2000) the ten- scutes on the gnathal lobe rather than the mandibular

torium with sufficient to recognise shared precision base, the numbers and arrangements of which are derived characters of the with Diplopoda respect specific to ordinal groups (Manton, 1965; Borucki,

to as well The lateral shape as origin. origin of the 1996). The sutures/intcrnal ridges that define the tentorium in the fossils is indicated the extent limits of mandibular by scutes in Chilopoda have no

of a “lateral bar” and Shear, 2000: (Wilson figs. apparent relationship to podomeres and can instead 14, 15) that corresponds in its and orien- be position considered as internal strengthening ridges

tation to the transverse bar in crown-group myri- (Bitsch, 2001), indicating a secondary subdivision

apods. a of gnathobasic mandible rather than primary leg

. The primitive state for myriapods is

Separated, independently musculated gnathal lobe likely a bipartite mandible composed of the base

plate and gnathal lobe (Koch, 2003). As discussed above, a gnathobasic mandible is an The separation of the gnathal lobe in Myriapoda character for the Mandibulata apomorphic taxon has a characteristic pattern ofmusculation (Fig. 5C- (=Myriapoda + Elaboration of the basic Tetraconata). D). Chilopoda (Fig. 5C), Diplopoda (Fig. 5D), and

mandible with to structure and muscula- share the respect Symphyla gnathal lobe musculated by a tion is observed in the Myriapoda. flexor that a large arises in common position on

Most is the division of significant myriapod man- the dorsal surface of the cranium (Snodgrass, 1950;

dibles into an musculated independently gnatha( Kluge, 1999). The dorsal muscles of hexapods and

lobe and a base the latter subdivided in Hexa- do plate, crustaceans not serve as gnathal lobe flexors.

merocerata and condition Diplopoda, a that has been Traditionally this difference has been ascribed to

described as a tclognathic mandible. Some work- the dorsal rather than the dorsal remoter, promo-

ers (Kraus and Kraus, 1996; Kukalova-Peck 1998) ter, forming the cranial adductor (Manton, 1964). have that argued telognathy (with the mandibular The view that the mandibular flexor is derived from

base including a cardo and stipes that correspond extrinsic limb musculature has, however, been ques-

to is more shared between tioned Koch who podomeres) generally by (2003), noted that an origin as and but the myriapods hexapods, evidence for telo- endite musculation cannot be ruled out.

in gnathy was criticised Staniczek fossils will lack Hexapoda by Though preservation of the man-

(2000) and Bitsch The conclusion of these dibular (2001). musculature, the separation of the gnathal studies is that mandibles are simply gnathobasic in lobe can be determined in well preserved material. the and ground pattern of the Mandibulata, are The arthropleurid-like Microdecemplex rolfei (Wil-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 221

son and has clear delineation of the oder der Mandibel” described Shear, 2000) rynx by Hiither (1968,

mandibular gnathal lobe and base plate (“stipes”), Fig. 8) in hexamerocerate pauropods. Comb lamellae

in a manner comparable to Diplopoda, Hexamero- in pauropods wouldmake a loss in Symphyla equally

and cerata, Symphyla. The gnathal lobe has an parsimonious as independent gains in chilopods and that enlarged apodeme certainly indicates its mus- diplopods.

cular independence. The arthropleurid Eoarthro- pleura devonica has a large condyle delimiting the

basal articulation of its gnathal lobe (Kraus and “Tracheate” characters in Myriapoda Brauckmann, 2003: fig. 22).

Acceptance of a crustacean-hexapod clade, Tetra-

Other characters conata, forces the putative synapomorphies of myria-

and be pods hexapods to reinterpreted as convergent.

A few additional characters optimise on the cla- Early proponents of the Tetraconata (Averof and

dogram (Figs. 1, 2) as myriapod autapomorphies Akam, 1995; Friedrich and Tautz, 1995) attempted

under a specific model ofcharacter transformation, to link these characters to terrestrial habits and, in

but are not testable with fossils. Under this is directly some cases, a plausible aposteriori interpre- accelerated transformation, sperm dimorphism (char- tation. Malpighian tubules, tracheae, and absence

acter 286) shared by Symphyla (Dallai and Afzelius, of exopods can be related to terrestrialisation. Similar

and 2000) Chilopoda (Carcupino et ah, 1999) and a posteriori interpretations of other “tracheate”

the axonemal endpiece plume shared by Pauropoda characters, notably the tentorium and limbless in-

and Chilopoda (character 298: Jamieson, 1986) are tercalary segment / association of the tritocerebral

autapomorphic for the Myriapoda. ganglia in the brain, are less obvious.

The traditional Tracheata characters cannot be

comb Mandibular lamellae readily dismissed from the ground pattern of Myria-

poda; indeed, acceptance of Tetraconata strength-

Distally (relative to the mouth) on the mandibular ens the monophyly of the Myriapoda because these

characters gnathal edge, chilopods and diplopods share a se- serve as potential autapomorphies. Char-

ries of multiple, imbricate, hyaline lamellae (comb acters with this distribution, potential autapomor-

or pectinate lamella). Multiple lamellae are present phies of Myriapoda under the Tetraconata hypothesis

at the crown node of both the include: limbless Chilopoda [present (Paulus, 2000), a intercalary seg-

in Scutigeromorpha (Fig. 4F) and Plcurostigmo- ment in the head; the association ofthe tritocerebral

phora] and the Diplopoda (present in Penicillata ganglia with the brain, with nerves to the labrum

and Chilognatha: Fig. 4E). These comb lamellae and frontal ganglion; the mandible lacking a palp;

are sufficiently similar in their positioning and details pretarsal segment of the legs with a single muscle,

as to posit primary homology (Edgecombe and a depressor; cuticular anterior tentorial apodemes;

Giribet, 2002), and structures are not corresponding postantennal (Tomosvary) organs; ectodermally- in in the same position crustaceans or hexapods. derived Malpighian tubules; absence of midgut Some insects possess comb-like elements on the glands; tracheae. These characters can be optimised endites maxillary (Arens, 1994), but these do not as present at the crown nodeof the Myriapoda, with

share the more detailed topological correspondence the possible exception of tracheae, for which the

observed in The of all myriapods. strongest counterargu- evidence of primary homology occurrences

comb ment against lamellae as a myriapod auta- in the Myriapoda is inconclusive (see Hilken, 1998,

is pomorphy their absence in Symphyla (Richter et for arguments in defense of convergent origins of and in the ah, 2002), present dataset they are op- myriapod tracheae; Klass and Kristensen, 2001, for

timised in as independently evolved the Diplopoda a defense of tracheal homology).

and A the Chilopoda. more decisive answer to the

question of homology would be provided by

study ofthe “lamellenartige Chitinstruktur des Pha-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 222 G.D. Edgecombe - Myriapod stem-group

Tagmosis: long-bodied fossils pods (according to the phylogenetic hypothesis in

Figs. 1 and 2), these characters are not profoundly

Budd et al. (2001) struggled with the question of informative. whether the euarthropod ground pattern involved The earliest well-corroborated Myriapoda in the a serially homonymous, multisegmented body. This fossil record (Fig. 6) are members of the crown-

is the forefront fossils such rather than of the issue brought to by as group parts stem-group. A species

Xanthomyria Budd et al., 2001, and Pseudoiulia from the Stonehaven Group, Scotland (late-Wen-

Hou and Bergstrom, 1998, which have very elon- lock-early Ludlow: Wilson and Anderson, 2004),

Almond gate, homonymous trunks. However, comparison was recognised by (1985) as a definite of myriapod-like fossils and the euarthropod ground member of the Diplopoda. The Stonehaven taxa pattern (Budd et al., 2001) is influenced by an as- Cowiedesmus, Albadesmusand Pneumodesmuswere sumption that myriapods are basal euarthropods. all assigned by Wilson and Anderson (2004) to the

In the context of the Mandibulata hypothesis, an , along with the Lower Devonian

trunk is especially elongate not necessarily (or even Archaedesmida and Upper Carboniferous Eupho- probably) associated with the myriapod ground beriida. Cowiedesmus has modified anterior trunk pattern. appendages that may represent (Wilson

and character For the myriapod crown-group at least, the ques- Anderson, 2004), a conventionally

the tion of trunk segmentation can be addressed. Chilo- considered to diagnose long-bodied millipedes,

15 the poda have post-maxi 11 ipede leg pairs at crown the Helminthomorpha. The mid members node. This number is shared and invariant in the of the Archipolypoda date the crown-group for the

Scutigeromorpha, Lithobiomorpha and Craterostig- Chilognatha, and probably Helminthomorpha, to a

and is the basal in minimal of late Ludlow. mus, optimised as state Chilopoda age Wenlock-early By and Pleurostigmophora (Minelli et ah, 2000). Trunk extension, the crown groups for the Diplopoda, segment numbers in Progoneata likewise indicate Dignatha, Progoneata, and Myriapoda (Fig. 3) have

minimal this old that the crown node involves only a moderate numer a age at least (Fig. 6).

have trunk and in various ofsegments. Symphyla 12 leg pairs Arthropleurids, formerly placed po-

9-11. in Pauropoda have The diplopod ground pat- sitions or allied to the Myriapoda, are now es- tern involves comparable segmentation to other tablished as members of the Diplopoda (Wilson and

and progoneates. Penicillata, sister group of all other Shear, 2000; Kraus Brauckmann, 2003). The

Diplopoda, have 11-17 trunk leg pairs (Enghoff et Upper Silurian (Pridoli)-Upper Devonian Eoar- ah, 1993). The escalation of trunk segment num- thropleura (Stormer, 1976; Shear and Selden, 1995) bers within the Helminthomorpha (Diplopoda) and and the Carboniferous-LowerPermian

Geophilomorpha (Chilopoda) are apomorphic states, comprise the Arthropleurida sensu Kraus and

These share several neither retentions from the myriapod ground pat- Brauckmann, 2003. taxa apo-

As mil- tern nor from the euarthropod ground pattern. morphic characters with the extant polyxenid such, large trunk segment numbers in fossil lipedes, the Penicillata (Kraus and Brauckmann,

Micro- such as Xanthomyria and Pseudoiulia do not pro- 2003). The Middle-Upper Devonian

close vide evidence for an especially relationship decemplex has been considered an arthropleurid to Myriapoda. (Wilson and Shear, 2000), but this is disputed by

Kraus and Brauckmann (2003), who allow that it

be Ei- may more closely related to Chilognatha.

Fossil candidates for the stem-group? ther interpretation nests the Arthropleurida within

the clades Progoneata, Dignatha and Diplopoda, such

The argument for fossils being allied to the Myria- that they are not particularly germane to questions

the poda has generally emphasised a lack of post-cepha- concerning myriapod stem-group. lic tagmosis and uniramous appendages. Given that The earliest known (Fig. 6) are also

the the former state is a symplesiomorphy (Dohle, 1980) nested within crown-group of Chilopoda. The and the latter homoplastic with uniramy in hexa- record for Scutigeromorpha has been extended back

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 223

Fig. 6. Phylogeny of Myriapoda with minimal divergence dates calibrated by Silurian - Carboniferous fossil occurrences. Phylo-

genetic position ofArtbropleurida and Microdecemplicida follows Kraus and Brauckmann (2003). Archipolypoda is as delimitedby

Wilson follow: Crussolum et al., Anderson and Trewin and Anderson (2004). Nurpbers refer to records as 1-3. spp. (Shear 1998;

2003) 4. Latzelia (Mundel, 1979); 5. Devonobius (Shear and Bonamo, 1988); 6. Mazoscolopendra (Mundel, 1979); 7-8. Eoarthropleura

9-13. and spp. (Shear and Selden, 1995); Arthropleura spp. (Hahn et ah, 1986; Briggs Almond, 1994; Hannibal, 1997,and references

therein); 14-15. Microdecemplex (Wilson and Shear, 2000); 16. Amynilyspes, Archiscudderia, Glomerospis (Hannibal and Feldmann,

1981); 17. Alhadesmus (Wilson and Anderson, 2004); 18. Archidesmus (Wilson and Anderson, 2004); , Cowiedesmus, 19. Palaeodesmus(Wilson and Anderson, 2004);20. Unnamed species (Shear et ah, 1996), 21 Anthracodesmus (Wilson and Anderson,

2004) unnamed 22. 23. species (Shear, 1994); Myriacantherpestes (Burke, 1979); Acantherpestes, Euphoberia , Myriacantherpestes

(Burke, 1979), Xyloiulus, Nyranius, Plagiascetus (Hoffman, 1963), Pleurojulus (Kraus, 1974), Hexecontasoma (Hannibal, 2000).

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 224 G.D. Edgecombe - Myriapod stem-group

to the Upper Silurian (basal Pfidoli), with the fos- Bergstrom, 1998, from the Lower Cambrian Cheng-

sils characters shared with noted having apomorphic leg jiang , was by Budd et al. (2001). Pseudo-

Lower with extant Scutigeromorpha (Shear et ah, 1998). iulia was itself compared the Middle Cambrian

Devonian material of the same genus, Crussolum, Meristosoma Robison and Wiley, 1995, by Hou and

adds maxillipede characters of Scutigeromorpha Bergstrom (1998). The purportedly myriapod-like

(Anderson and Trewin, 2003). The Middle Devo- character of Pseudoiulia cambriensis is the serial

nian Devonobius delta Shear and of the which includes 32 chilopod Bonamo, homonymy trunk, seg-

is also nested within the of in 1988, crown-group ments its preserved (posterior) portion in the sole

either sister which it described. Chilopoda, being variably regarded as specimen upon was Legs are of group Epimorpha s.str. (Shear and Bonamo, 1988) unknown forXanthomyria and Meristosoma, whilst

sister or to Craterostigmus (Borucki, 1996). Its those ofPseudoiulia appear to have setigerous flaps,

in is be membership Pleurostigmophora beyond ques- presumed to exopods. The latter would not ex-

tion. clude Pseudoiulia from the myriapod stem-group

A Lower Silurian (Llandovery) marine arthro- if, as is commonly considered, Euarthropoda and

pod from the Waukesha Lagerstatte was documented Mandibulata have fundamentally biramous append-

Mikulic by et al. (1985) as myriapod-like, but the ages (Boudreaux, 1979; Weygoldt, 1986). Neither

has been described. Shear species not fully (1998) Xanthomyria nor Pseudoiulia preserve a head, such

noted resemblance between this species and the that no comparisons are possible for the best indi-

Silurian-Lower Upper Devonian group Kampeca- cators of myriapod affinity, i.e., the mandibles,

in with to them a or The anterior shield rida, particular respect sharing tentorium, Tomosvary organs.

limbless posterior (cf. the Pragian Lever- of Meristosoma (Robison and Wiley, 1995: figs.

hulmia Anderson and is too mariae Trewin, 2003). Kam- 1,2) structureless to determineany apomorphic

with pecarids have diplosegments, legs articulated with characters shared Myriapoda or to suggest an

the sterna, and a possible collum segment, and thus alternative placement in the Arthropoda. Myriapod-

to be allied appear to diplopods and pauropods like reconstructions of the Middle Cambrian ma-

(Shear, 1998) rather than parts of the myriapod stem- rine species Cambropodus gracilis Robison, 1990

group. Some characters of the figured specimen of (Delle Cave and Simonetta, 1991: fig. 13C; Retal-

such the 2000: the Waukesha arthropod, as division of lack, fig. 6) include many features that are

the into and tergum pre- metatergites, expanded not preserved in the fossil (Shear, 1998).

ventral proximal leg segments, and a projection of Considering other Palaeozoic fossils that have

be than the , appear to autapomorphies rather been suggested to bear on higher-level systematics

general characters for Myriapoda. of myriapods, the DevonianMaldybulakia Tesakov

The of prediction stem-group myriapods in the and Alekseev, 1997, was initially recognised as

Cambrian has a sound phylogenetic basis. In the myriapod-like (Tesakov and Alekseev, 1992) and

context of the Mandibulata(Fig. I), the record of subsequently compared to the Dignatha in particu-

phosphatocopines in the Early Cambrian indicated lar (Edgecombe, 1998). However, the tagmosis and

in an advanced in the stem- lobation of be taxa position crustacean tergal Maldybulakia may more com-

that time This in group by (Walossek, 1999). implies patible with those seen certain aberrant cheli-

that the divergence of the Myriapoda from the Tetra- cerates, such as the synziphosuran Willwerathia

Crustacea dates conata (or between and Tracheata) (Anderson et ah, 1998). This is an indication of

least at to the Early Cambrian. A few Cambrian the limits of tergal material when attempting to

have been in arthropods compared to myriapods identify problematic arthropods as myriapods. Tergal recent all of these characters literature, taxa sharing a serially provide strong apomorphies for mem-

trunk with number of in clades within homonymous a large terg- bership Myriapoda, e.g., heterotergy

ites, a the in pattern that is also found within crown with an alternation tergite lengths between pedi-

ofCrustacea in Resemblance be- and in group remipedes. gerous segments seven eight Chilopoda; tween the Upper Cambrian Xanthomyria Budd et diplotergy in Diplopoda, and calcification in Chilo- al. and 2001, Pseudoiulia cambriensis Hou and gnatha, but tergal apomorphies for Myriapoda as a

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 225

The lobes whole are difficult to specify. paratergal thropoda (Fig. 1) demandsdivergence of the Myria-

may provide a basis for characterising Myriapoda poda from the Tetraconata by the Cambrian, and

that determined can be in fossils. The absence of the record suggests the presence of

in paraterga Chilopoda, Symphyla and Pauropoda myriapods in the (Retallack, 2000,2001).

has been considered to be an apomorphic reduc- Assignments to the myriapod stem-group require

tion in the myriapod ground pattern (Boudreaux, strong morphological arguments and a consider-

1979), though this interpretation forces paraterga ation of the character evidence that underpins the

and be in diplopods (Wilson Shear, 2000) to con- systematics of extant arthropods.

vergent with those in other arthropods, e.g., hexa-

pods, crustaceans, . Still, fit to the tree (Figs. Acknowledgments 1-3) optimises an absence of paraterga at the base of the and lack of myriapod crown-group, a paraterga I thank Buz Wilson and for their collaboration in a fossil taxon would be consistent with an ad- in earlier versions of the other col- dataset. They and many

vanced on the position myriapod stem-group. leagues have provided stimulating and instructive discussions

about arthropod morphology. Shane Ahyong, Wolfgang Dohle,

Markus Koch, Stefan Richter, and Gerhard Scholtz have been

thanks for debates and discussions Conclusions especially helpful. My our does not imply their agreement with the views herein. Yongyi

Zhen The referees (Australian Museum) prepared figures. pro- Morphological data that have been cited in support vided useful suggestions for improving the manuscript. of myriapod non-monophyly (Kraus, 2001; Loesel

et ah, 2002) have been included in the current analy- References sis. In the context of more exhaustive character

sampling, Myriapoda unites as a clade, with par- Abzhanov Kaufman TC. 1999. Homeotic and the A, genes ar- ticular support from the structure of the mandible, head: thropod expression patterns ofthe labial, prosbosci- together with details of the tentorial endoskeleton and in pedia, Deformed genes crustaceans and insects. Proc. and its to the mandible. In those mid- relationship Natl. Acad. Sci. USA 96: 10224-10229.

of Palaeozoic fossils in which some these details AbzhanovA, Kaufman TC. 2000. Crustacean (malacostracan)

Hox and the evolution ofthe trunk. can be observed, evidence is available for mem- genes arthropod Devel-

111: 2239-2249, in the indeed opment bership crown-group of Myriapoda, and Abzhanov A, Popadid A, Kaufman TC. 1999. Chelicerate Hox within membership Chilopoda, e.g., Devonobius, and the Evol. Dev. genes homology ofarthropod segments. or Earlier Palaeo- Diplopoda, e.g., Microdecemplex. 1: 77-89.

zoic fossils that have been compared to Myriapoda Alberti G. 1995. Comparative spermatology of Chelicerata:

review and In: Ausio Justone possess no convincing apomorphies of the myri- perspective. Jamieson, BGM, J,

eds. in and Tax- of the J-L, Advances SpermatozoaI Phylogeny apod crown-group or even the crown-group natl. onomy. Mem. Mus. Hist. nat. 166: 203-230. more inclusive clade Mandibulata. This cannot be Almond JE. 1985. The Silurian-Devonian fossil record of the construed as evidence against the monophyly of Myriapoda. Phil. Trans. R. Soc. Land. B 309: 227-237. Mandibulata, that the is given group supported by Anderson l)T. 1973. Embryology and Phylogeny in

detailed similarity in extant members, whereas and Arthropods. Oxford; Pergamon Press.

in Anderson DT. 1979. Embryos, fate and the phylogeny the Early Palaeozoic fossils question are poorly maps,

ofarthropods. In: Gupta AP, ed. ArthropodPhylogeny. New known. From the kinds of characters that provide York: Van Nostrand Reinhold, 59-105. the data in defenseof myriapod monophyly, as based Anderson LI, Poschmann M, Brauckmann C. 1998. On the

on extant it seems that arthropods, interpreting Early Emsian (Lower Devonian) arthropods of the Rhenish Slate

Palaeozoic fossils as stem-group myriapods will Mountains: 2. The synziphosurine JVillwerathia. Paldonlol.

1. 72: 325-336. require truly exceptional preservation. This is not

Anderson LI, Selden P. 1997. Opisthosomal fusion and meant to discourage the search, since all compet- phylogeny of Palaeozoic Xiphosura. Lethaia 30: 19-31. ing theories of arthropod phylogeny predict stem- Anderson LI,Trewin NH. 2003. An Early Devonian arthropod group before the Silurian. Indeed, the- myriapods fauna from the Windyfield Cherts, Aberdeenshire, Scotland. best supported phylogeny based on the extant Ar- Palaeontol. 46; 467-509.

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 226 G.D. Edgecombe - Myriapod stem-group

Arens W. 1994. in the Striking convergence mouthpart evolu- Boudreaux HB. 1979. ArthropodPhytogeny with Special Ref-

tion ofsome J. Zool. Evol. stream-living grazers. Syst. erence to Insects. New York: J. Wiley & Sons.

Research 32: 319-342. Boxshall G. 1998. Comparative limb morphology in major Attenis CG. 1926. Chilopoda. In: Kiikenthal W, Krumbach T, crustacean The coxa-basis groups: joint onpostmandibular

eds. Handbuch der Eine Zoologie. Naturgeschichte der limbs. In: Fortey RA, Thomas RH, eds. Arthropod Rela- Stammedes Tierreiches. Berlin, Leipzig: Walter de Gruyter, tionships. London: Chapman & Hall, 155-167.

17-402. Bremer K. 1994. Branch support and tree stability. Attcms CG 1930. Myriapoda 2, Scolopendromorpha. In 10: 295-304.

Schulze FE, Kiikenthal eds. Das 54. Berlin W, Tierreich, Briggs DEG, Almond JE. 1994. The arthropleurids from the

Walter 1-308. de Gruyter, Stephanian (Late Carboniferous) of Montceau-les-Mines.

Averof M, Akam M. 1995. -crustacean relationships: In: Poplin C, Heyler 19, eds. Quand le Massif Central etait

from comparative developmental and molecular sous insights I’equateur: un ecosysteme Carbonifere a Montceau-

studies. Phil Trans. R. Soc. Biol. Sci. London, B347: 293- les-Mines. Mem. Sec. Sci. 12. Paris: Comite des Travaux

303. Historiques et Scientifiques, 127-135.

Ax P. 1999. Das der System Metazoa II. Ein Lehrbuch der Build GE. 1998. Stem from group arthropods the Lower

phylogenetischen Systematik. Stuttgart: Gustav Fischer Cambrian Sirius Passet fauna ofNorth Greenland.In: Fortey Verlag. RA, Thomas RH, eds. Arthropod Relationships. London: Baccctti B, Burrini AG, Dallai R, I’allini V. 1979. Recent work Chapman & Hall, 125-138,

in myriapod spermatology (The spermatozoon of Arfhro- Budd GE. 1999. The morphology and phylogenetic significance XXXI). In: Camatini, ed. poda M, Myriapod Biology. Lon- of Kerygmachela kierkegaardi Budd (Buen Formation, don: Academic Press, 97-104. Lower Cambrian, N Greenland). Trans. R. Soc. Edinburgh:

Baccetti B, Dallai R. 1978. The of evolution myriapod sperma- Earth Sci. 89: 249-290.

tozoa. Ahh. Verb, nalurwiss. Ver. Hamburg 21/22: 203-217. GE. Budd 2001. as ‘stem-group arthropods’: the

Barth FG. 1985. Slit sensilla and the measurement ofcuticular evidence from the Cambrian fauna. Zool. Anz. 240: 65-279.

strains. In: Barth FG, ed. . Neurobiologyof Ber- Budd GE, Hogstrom AES, Gogin I. 2001. A myriapod-like

lin: 162-188. Springer-Verlag, arthropod from the Upper Cambrian of East Siberia.

Stiinner Winter Bergstrom J, W, G. 1980. Palaeoisopus, Palaontol. Z. 75: 37-41.

Palaeopantopus and Palaeothea, pycnogonid arthropods Bullock TH, Horridge GA. 1965. Structure and Function of

from the Lower Devonian Hunsriick West Slate, . the Nervous System of , Vols. I, II. San Fran-

Z. 54: Paldont. 7-54. cisco: W. H. Freeman and Co.

Beutel SN. 2001. of RG, Gorb Ultrastructure attachment Burke JJ. 1979. A new millipede genus, Myriacantherpestes specializations ofhexapods(Arthropoda): evolutionary pat- (Diplopoda, Archipolypoda) and a new species Myria- terns from inferred a revised ordinal J. Zool. from the phylogeny. Syst. cantherpestes bradebirksi, English measures. Evol. Research 39: 177-207. Kirtlandia 30: 1-24.

Kitsch J. 2001. The arthropod mandible: morphology and Baldacci Fausto evo- Carcupino M, A, AM,Scapigliati G, Ma/.zini lution. Phylogenetic implications. Ann. Soc. Entomol. Ft: M. 1999. Sperm dimorphism in Chilopoda: comparison of (NS.) 37: 305-321. Scolopcndromorpha and Geophilomorpha. Invert. Reprod. Bitseh Bitseh J. 1998. Internal C, anatomy and phylogenetic Dev. 35: 45-53.

insect relationships among apterygote clades P, Jubcrthie C. 1983. in (Hexapoda). Cassagnan Neurohemal organs Ann. Soc. Entomol. Fr. 34: 339-363. (N.S.) . In: Gupta AP, ed. Neurohemal Organs of Ar- Bitsch C, liitsch J. 2000. The phylogenetic Their interrelationships thropods: Development, Evolution, Structures, and

of of the higher taxa apterygote hexapods. Zool. Scripta Functions. Springfield: Charles C Thomas, 281-318.

29: 131-156. Clarke KU. 1979. Visceral anatomy and arthropod phylogeny. Bitsch C, Bitsch J. 2002. The endoskeletal strauctures in ar- In: Gupta AP, ed. Arthropod Phylogeny. New York: Van and thropods: cytology, morphology evolution. Arthropod Nostrand Reinhold, 467-549.

Struct. Dev. 30: 159-177. Cook Smith CE, ML, Telford MJ, Bastianello A, Akam M.

Bonato L, Minelli A. 2002. Parental in 2001. Hox and the care Dicellophilus genes phylogeny ofthe arthropods. Cun: carniolensis (C. L. Koch, 1847): new behavioural evidence Biol. 11: 159-161.

with for the implications higher phylogeny of Crabill RE Jr. 1960. A American of centipedes new genus cryptopid cen-

Zool. Anz. 241: (Chilopoda). 193-198. with an annotated the tipede, key to scolopendromorph gen- Boorc JL, Collins Stanton Daehler Brown TIM, D, LL, VVIM. era from America north ofMexico. Proc. U. S. Natl. Mus.

1995. Deducing the pattern of arthropod phylogeny from Ill: 1-15

mitochondrial DNA Nature 376: 163-165. rearrangements. Crampton GC. 1921. The phylogenetic origin of the mandi- Boore JL, Lavrov DV, Brown WM. 1998. Gene translocation bles of and their insects arthropodanrelatives - a contribu-

links insects and crustaceans. Nature 392: 667-668. tion to the study ofthe evolution of the Arthropoda. J. N. Y. Borucki H. 1996. und Evolution phylogenetisches system der Entomol. Soc. 29: 63-100.

Chilopoda Verb, Ver Dahms H-U. (Mandibulata, Tracheata). naturwiss. 2000. Phylogenetic implications ofthe crustacean

35: 95-226. Hamburg nauplius. Hydrobiologia 417: 91-99.

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) -2004 111

Dallai Afzelius 1993. Characteristics of the tail Crustacea In; Deuve ed. the R, BA. sperm + Hexapoda. T, Origin of

of the velvet , Euperipatoides leuckarti (Onycho- Hexapoda.Ann. Soc. Entomol. France (TV. S.) 37: 85-103.

phora). Tissue Cell 25: 907-913. Duman-Scheel M, Patel NH. 1999. Analysis of molecular

Dallai R, Afzelius BA. 1999. Accessory microtubules in insect marker expression reveals neuronal homology in distantly

function and related 126: 2327-2334. spermatozoa: structure, phylogenetic signifi- arthropods. Development

In: ed. The Male Gamete - From Basic JA. 1996. Evidence for sister be- cance. Gagnon C, Dunlop a group relationship

Science to Clinical Applications. Vienna, IL: Cache River tween andTrigonotarbida.Bull. Bn arachnol. Soc.

Press, 333-350. 10: 193-204.

Dallai R,Afzelius BA. 2000. Spermatozoa ofthe ‘primitive type’ Dunlop JA. 1998. The origins of tetrapulmonate book lungs

in Scutigerella (Myriapoda, Symphyla). Tissue Cell 32: 1- and their significance for chelicerate phylogeny. In: Selden

8. PA, ed. Proceedings of the IT'’ European Colloquium of

Dallai R, Frati F, Lupctti P, Adis J. 2003. Sperm ultrastructure , 9-16.

of Mantophasma zephyra (Insecta, Mantophasmatodea). Dunlop JA. 1999. A redescription of the Carboniferous arach-

Zoomorphol. 122: 67-76. nid Plesiosiro madeleyi Pocock, 1911 (Arachnida:

Dallai R, Lupctti P, Frati F, Nardi F, Afzelius, BA. 2001. Bi- Haptopoda). Trans. R. Soc. Edinburgh: Earth Sci. 90: 29-

nucleate and biflagellate spermatozoa in Tricholepidion 47.

gertschi Wygodzinsky (Insecta, Zygentoma). Tissue Cell 33: DunlopJA,Webster M. 1999. Fossil evidence, terrestrialization

606-613. and arachnid phylogeny. J. Arachnol. 27: 86-93.

Damen WGM, Hausdorf M, Seyfarth E-A, Tautz D. 1998. A Eason TH. 1964, Centipedesofthe British Isles. London: Warne

conserved mode of head segmentation in arthropods re- and Co.

GD. 1998. from vealed by the expression pattern ofHox genes in a . Edgecombe Early myriapodous arthropods

Proc. Natl. Acad. Sci. USA 95; 10665-10670. Australia: Maldybulakia from the Devonian of New South

Delle Cave L, Simonctta AIM. 1991. Early Palaeozoic arthro- Wales. Rec. Aust. Mus. 50: 293-314.

pods and problems ofarthropod phylogeny: with some notes Edgecombe GD, Giribet G. 2002. Myriapod phylogeny and the of In: Llorente on taxa of doubtful affinities. In: Simonetta AM, Conway relationships Chilopoda. Bousquets J,

and the Morrone eds. de Morris S, eds. The Early Evolution of the Metazoa JJ, Biodiversidad, Taxonomia y Biogeografta

Significance ofProblematic Taxa. Cambridge: Cambridge Artropodos de : Hacia una Slntesis de su Conocimiento.

Univ. Press, 189-244. Mexico: Prensas de Ciencias, Universidad Nacional Automoma

dc Mexico, 143-168. Dolsuc F, Phillips M J, Penny 1). 2003. Comment on “Hexapod

origins: monophyletic or paraphyletic?”. Science 301: Edgecombe CD, Giribet G, Wheeler WC. 1999. Filogenia de

de los I482d. Chilopoda: combinando secuencias genes ribosomicos

18S 28S In: de Haro Mendez Dcwel RA, Build GE, Castano DF, Dcwcl WC. 1999. The or- y y morfologia, Melic A, JJ, M,

eds. Evolucion de Bol. ganization of the subesophageal nervous system in Ribera I, y Filogenia Arthropoda. Soc.

tardigrades: insights into the evolution of the arthropod Entomol. Aragon. 26: 293-331.

hypostome and tritocerebrum. Zool. Anz. 238: 191-203. Edgecombe GD, Richter S, Wilson GDF. (2003)Themandibular

Dewel RA, Dewel WC. 1996. The brain of Echiniscus gnathaledge; Homologousstructures throughoutMandibulata?

the 12,h viridissimus Peterfi, 1956 (Heterotardigrada); a key to un- In: Hamer M, ed. Proceedings of International Con-

the of and the Inverts. 44: 115-135. derstanding phylogenetic position tardigrades gress ofMyriapodology. Afr.

evolution of the arthropod head. Zool. J. Linn. Soc. 116; Edgecombe GD, Wilson GDF, Colgan DJ, Gray MR, Cassis

35-49. G. 2000. Arthropod cladistics: combined analysis of His-

Dewel WC. 1998. The of in H3 U2 snRNA and Dewel RA, place tardigrades ar- tone and sequences morphology.

thropod evolution. In: Fortey RA, Thomas RH, eds. Arthro- Cladistics 16: 155-203.

pod Relationships. London: Chapman and Hall, 109-123. Eisenbeis G, Wichard W. 1985. Atlas zur Biologie der

Diederich R.l, Merrill VKL, Pultz MA, Kaufman TC. 1989. Bodenarthropoden. Berlin, Heidelberg; Springer-Verlag.

homeotic The and frontal in Isolation, structure, and expression of labial, a Elofsson R. 1965. nauplius eye organs

ofthe involved in Malacostraca Sarsia 19: 1-54. gene AntennapediaComplex Drosophila (Crustacea).

The and frontal of the head development. Genes Dev. 3: 399-414. Elofsson R. 1966. nauplius eye organs

Dohlc \V. 1980. Sind die Myriapoden eine monophyletische non-Malacostraca (Crustacea). Sarsia 25: 1-128.

Gruppe? Eine Diskussion der Verwandtschaftsbeziehungen EnghoffH. 1984. Phytogeny ofthe millipedes - a cladistic analy-

der Antennaten. Ahh. naturwiss'. Ver. Hamburg 23: 45-104. sis. Z. Zool. Syst. Evol.-forsch. 22: 8-26.

Dohlc W. 1985. Phylogenetic pathways in the Chilopoda. Bijdr Enghoff II, Dohle W, Blower JG. 1993. Anamorphosis in mil-

Dierkunde 55: 55-66. lipedes (Diplopoda) - the present state of knowledge, with

considerations. Dohle W. 1998. Myriapod-insect relationships as opposed to an some developmentaland phylogenetic Zool.

insect-crustacean sister In: J. Linn. Soc. 109: 103-234. group relationship. Fortey RA,

Thomas RH, eds. Arthropod Relationships. London: Eriksson BJ, Budd GE. 2000. Onychophoran cephalic nerves

Chapman and Hall, 306-315. and their bearing on our understanding of head segmenta-

of Dohlc W. 2001. Are the insects terrestrial crustaceans? A dis-“ tion and stem-group evolution Arthropoda. Arthropod

cussion of some new facts and arguments and the proposal Struct. Dev. 29: 197-209.

of for the Head in the proper name Tetraconata monophyletic unit Eriksson BJ,Tait NN, Budd GE. 2003. development

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 228 - G.D. Edgecombe Myriapod stem-group

the with onychophoran Euperipatoides kanangrensis par- kingdom: a search for a reliable outgroup for inter-

ticular to reference the central nervous system. J. Morphol. nal arthropod phylogeny. Mol. Phylog. Evol. 9: 481-488.

255: 1-23. Giribet G, Ribera C. 2000. A review of arthropod phylogeny:

Fahlander K. 1938. Anatomie und data based Beitriige zur systematischen new on ribosomal DNA sequences and direct

Einteilung derChilopoden. Zool. Bidr. Uppsala 17: 1-148. character optimization. Cladistics 16: 204-231.

Fahrcnbach Wll. 1999. Meroslomata. In: Harrison FW, Foclix Goloboff PA. 1998. NONA Version 2.0. New York: Amer. Mus.

RF, eds. Microscopical Anatomy of Invertebrates, Volume Nat. Hist.

HA. ChelicerateArthropoda. New York: Wiley-Liss, 21-115. Goodwin TW. I960. Biochemistry of pigments. In: Waterman

Farris JS. 1969. A successive approximations approach to char- TH, ed. The Physiology of Crustacea. I. Metabolism and

acter weighting. Sysl. Zool. 18: 374-385. Growth. New York, London: Academic Press, 101-140,

Farris .IS, Albert VA, Kallcrsjo M, Lipscomb A, Kluge AG. Grenier JK, Garber TL, Warren R,Whitington PM, Carroll

1996. S. 1997. Evolution ofthe Hox Parsimony jackknifing outperforms neighbor-joining. entire arthropod gene set pre-

Cladistics 12: 99-124. dated the origin and radiation ofthe onychophoran/arthro-

Firstinan B. 1973. The relationship of the chelicerate arterial pod chide. Current Biol. 7: 547-553.

to the evolution of the endosternite. Arachnol. system J. 1: Gupta AP. 1983. Neurohemal and neurohemal-endocrine or-

1-54. and their evolution in gans arthropods. In: Gupta AP, ed.

Fodclai D, Mindli A. 2000. Phytogeny of geophilomorph cen- Neurohemal Organs of Arthropods. Their Development,

tipedes: old wisdom and new insights from morphology. Evolution, Structures, and Functions. Springfield: Charles

In: Golovatch eds. C Wytwer J, S, Progress in Studies on Thomas, 17-50.

Myriapoda and Onychophora. Fragm. faun. Suppl. 43: 61- Hackman RH. 1984. Cuticle: Biochemistry. In: Bereiter-Hahn 71. J, Matoltsy AG, Sylvia Richards K, eds. Biology of the In-

J. 1969. Francois Anatomic et morphologic cephalique des tegument. I. Invertebrates. Berlin: Springer-Verlag, 583-610.

Mem. Mus. natn. Hist. not. protoures (Insecta Apterygota). Ilahu G, Hahn R, Brauckmann C. 1986. Zur Kenntnis von

1-144. Paris A 59: Arthropleura (Myriapoda; Ober-Karbon). Geol. Paleontol.

Friedrich M, Tautz D. 1995. Ribosomal DNA phylogeny of 20: 125-137.

the extant classes and the evolution of major arthropod Hannibal JT. 1997. Remains of Arthropleura, a gigantic

myriapods. Nature 376: 165-167. myriapod arthropod, from the of Ohio and

Friedrich M, Tautz I). 2001. Arthropod rDNA phylogeny re- Pennsylvania. Kirtlandia 50: 1-9.

visited: a Carlo simula- consistency analysis using Monte Hannibal JT. 2000. Hexecontasoma, a new helminithomorph

tion, In: Deuve T, ed. the Ann. Soc. Origin of Hexapoda. millipede (Hexecontasomatidae n. fam.) from the Mazon

Entomol. France (N. S.) 37: 21-40. Creek, Illinois, fauna (Carboniferous, ). In:

Fuller H. I960. Untersuchungeniiber den Ban der Stigmen bei Golovatch S, eds. Wytwer J, Progress in Studies on

Zool. 129-144. Chilopoden. Jahrb. (Anal.) 78: Myriapoda and Onychophora. Fragm. faun. Suppl. 43: 19-

Fiirst von Lieven A. 2000. The transformation from mono- 35.

condylous to dicondylous mandibles in the Insecta. Zool Hannibal JT, Fcldmann RM. 1981. Systematics and functional

Anz. 239: 139-146. morphology of oniscomorph millipeds (Arthropoda:

Gabe M. 1972. Contribution du maxillaire a 1’histologie rein Diplopoda) from the Carboniferous of North America. J.

des Chilopodes. Ann. Sci. Nat. Zool 14: 105-129. Paleontol. 54: 730-746.

Gauthier J, Kluge AG, Rowe T. 1988. Amniote phylogeny and Hanstrom B. 1934. Bemerkungen iiber das Komplex-Auge der

the importance offossils. Cladistics 4: 105-209. Scutigeriden. Lunds Univ. Arks. 30: 1-13.

Gcrbcrding M. 1997. Germ band formation and early Harvey MS, Yen AL. 1989. to Wisps. An Illustrated Guide

of kindti first to Australia neurogenesis Leptodora (Cladocera): evidencp s Terrestrial Invertebrates. Melbourne: Oxford

for neuroblasts in the entomostracan crustaceans. Invert Univ. Press.

Re Dev. 32: 63-73. J. 1979. of recent studies prod. Haupt Phylogenetic aspects on

Gereben-Krenn B-A, Pass G. 1999. of In: Camatini ed. Circulatory organs myriapod sense organs. M, Myriapod Bi-

Diplura (Hexapoda): the basic design in Hexapoda? Inti. J. ology. London: Academic Press, 391-406.

Insect Morphol. Embryol. 28: 71-79. Hcnnig W. 1969. Der Stammegeschichte der Insekten. Frank-

Giribet G, Carranza S, Baguna J, Ruitort M, and Ribera C. furt: Verlag W, Kramer.

1996. F irst molecular evidence for the existence of a HennigW. 1972. Taschenbuch der Speziellen Zoologie. Teil 2.

+ Tardigrada Arthropoda clade. Mol. Biol. Evol 13: 76-84. Wirbellose II. Gliedertiere. Frankfurt/Main, Zurich: Verlag

Giribet G, Edgecombe GD, Wheeler WC. 2001. Arthropod Harri Dcutsch.

based phylogeny on eight molecular loci and morphology. Hcrbst C. 1891. Beitrage zur Kenntnis der Chilopoden. Bibl.

Nature 413: 157-161. Zool. 3: 1-42.

Giribet G, Edgecombe GD, Wheeler WC, Babbitt C. 2002. Hessler RR. 1992. Reflections on the phylogenetic position of

and Phylogeny systematic position ofOpiliones: a combined the Cephalocarida. Acta Zool. 73: 315-316.

of analysis chelicerate relationships using morphological Milken G. 1997. Tracheal systems in Chilopoda: A comparison

and data. Cladistics 18: 5-70, under molecular phylogenetic aspects. Entomol. Scand. Suppl. 51:49-

Giribet G, Ribera C. 1998. The position of arthropods in the 60,

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 229

Milken G. 1998. Vergleich von Tracheensystemen unter Deuve T, ed. Origin of the Hexapoda. Ann. Soc. Entomol.

phylogenetischenAspekt. Verh. naturwiss. Vet: Hamburg 37: France (IV. S.) 37: 265-298.

NJ. 1999. Mitos Sistematica de 5-94. Kluge en y principios

Milken G, Kraus O. 1994. Struktur und Homologie der Nomeclatura Zoologica. In: Melic A, de Haro JJ, Mendez M,

des der Ribera eds. de Bol. Soc. Komponenten Gpathochilarium Chilognatha I, Evolucion y Filogenia Arthropoda.

(Tracheata, Diplopoda). Verh. naturwiss. Ver. Hamburg 34: Entomol. Aragon. 26: 347-377.

33-50. Koch M. 1997. Monophyly and phylogenetic position of the

Hoffman R. 1963. New genera and species ofUpper Diplura (Hexapoda). Pedobiologia 41: 9-12.

Diplopoda. J. Paleontol. 37: 167-174. Koch M. 2000. The cuticular cephalic endoskeleton of prima-

Hon X-G, Bergstrom J. 1998. Three additional arthropods from rily wingless hexapods; ancestral state and evolutionary

the Early Cambrian Chengjiang fauna, Yunnan, southwest changes. Pedobiologia 44: 374-385.

China. Acta Palaeontol. Sinica 37: 395-401. Koch M. 2001. Mandibular mechanisms and the evolution of

11 ughes CL, Kaufman TC. 2002a. Exploring the myriapod body hexapods. In: Deuve T, ed. Origin of the Hexapoda. Ann.

of the ten Hox in centi- Soc. Entomol. France 37: 129-174. plan: expression patterns genes a (N. S.)

pede. Development 129: 1225-1238. Kocli M. 2003. Monophyly of the Myriapoda? Reliability of

Kaufman TC. 20021). Hex and the evolu- the 12‘ h International Con- Hughes CL, genes current arguments. Proceedings of

tion of the Evol. Dev. 4: 459-499. Inverts. 44: 137-153. arthropod . gress ofMyriapodology. Afr.

Hiither W. 1968. Erstnachweis der Pauropoda Hexamerocerata Kraus O. 1974. On the morphology of Palaeozoic diplopods.

fur Siidamerika, mil Beschreibung ciner neuen Art. Rev. In: Blower JG, ed. Myriapoda. Symp. Zool. Soc. bond. 32:

fcol. Biol. Sol 5: 561-567. 13-22.

Hwang UW, Friedrich M, Tautz I), Park CJ, Kim W. 2001. Kraus 0.1998. Phylogenetic relationships between higher taxa

Mitochondrial protein phylogeny joins myriapods and of tracheate arthropods. In: Fortey RA, Thomas RH, eds.

chelicerates. Nature 413: 154-157. ArthropodRelationships. London: Chapman and Hall, 295-

Ikeda Y, Machida R. 1998. Embryogenesis of the dipluran 303;

Lepidocampa weberi Oudemans (Hexapoda, Diplura, Kraus 0.2001. “Myriapoda” and the ancestry ofthe Hexapoda.

Campodeidae): external morphology. J. Morphol. 237: 101- In: DeuveT, ed. Origin ofthe Hexapoda,Ann. Soc. Entomol.

115, France (N. S.) 37: 105-127.

Ikuta K, Makioka T. 1999. Evolution of ovarian structure and Kraus O, Brauckmann C. 2003. Fossil giants and surviving

oogenesis in maxillopodan crustaceans. In: Schram FR, dwarfs. Arthropleurida and Pselophognatha (Atelocerata,

VaupelKlein JC von, eds. Crustaceans and the Diplopoda): characters, phylogenetic relationships and con-

Crisis. Proceedings of the Fourth International Crustacean struction. Verh. naturwiss. Ver. Hamburg 40: 5-50.

Congress. Leiden: Brill, 91-100. Kraus O, Kraus M. 1994. On “Myriapoda”-Insecta interrela-

and niches Inims AD. 1939. On the antennal musculature in insects and tionships, phylogenetic age primary ecological

other arthropods. Quart. J. Micros. Sci. 81: 273-320. (Arthropoda, Tracheata). Verh. naturwiss. Ver. Hamburg 34:

Jamieson BGM. 1986. The spermatozoa of the Chilopoda 5-31.

On / insect interrelation- (): an ultrastructural review with data on dimor- Kraus O, Kraus M. 1996. myriapod

phism in rubripes and phylogenetic discus- ships. In: Geoffrey J-J, Mauries J-P, Nguyen Duy-Jacquemin

sion. J. Submicros. Cytol. 18: 543-558. M, eds. Acta Myriapodologica. Mem. Mus. natn. Hist. nat.

Jamieson BGM. 1987. The Ultrastructure and Phytogeny of 169: 283-290.

Insect Spermatozoa. Cambridge: Cambridge Univ. Press. Kristenscn NP. 1981. Phylogeny of insect orders. Ann. Rev.

Jamieson BGM. 1991. Ultrastructure and phylogeny of crusta- Entomol. 26: 135-157.

cean spermatozoa. Mem. Qld. Mus. 31: 109-142. Kristensen NP. 1991. Phylogeny ofextant hexapods. In: CSIRO,

Jamieson BGM, Dallai R, Afzelius BA. 1999. Insects, Their ed. The Insects of Australia. Melbourne: Melbourne Univ.

Spermatozoa and Phylogeny. New Delhi: Oxford Publish- Press, 125-140.

ing. Kristensen NP. 1998. The groundplan and basal diversifica-

Juberthie C, Bonaric JC. 1990. Ecdysial glands and tion ofthe hexapods. In: Fortey RA, Thomas RH, eds. Ar-

eedysteroids in terrestrial Chelicerata. In: Gupta AP, ed. thropod Relationships. London: Chapman and Hall,

Morphogenetic Hormones ofArthropods. Volume I. 2. Em- 281-293.

bryonic andPostembryonic Sources. New Brunswick, Lon- Kukalova-Peck J. 1991. Fossil history and the evolution of

don: Rutgers Univ. Press, 269-305. hexapod structures. In: CSIRO, ed. The Insectsof Australia.

Kaufman ZS. 1967. The phylogenetic relationships ofthe Chi- Melbourne; Melbourne Univ. Press, 141-179.

other of the Atelocerata. Rev. Entomol. Kukalova-Pcck J. 1998. and ‘basal’ lopoda to groups Arthropod phytogeny mor-

USSR 48: 12-20. phological structures. In: Fortey RA, Thomas RH, eds. Ar-

Mass K-D. 1998. Possible homologies in the proventriculi of thropod Relationships. London: Chapman and Hall,

Dicondylia (Hexapoda) and Malacostraca (Crustacea). Zool. 249-268.

Anz. 237: 43-58. Kunze JC. 1983. Stomatopoda and the evolution of the

Klass K-D, Kristensen NP. 2001. The ground plan and affini- Hoplocarida. In: Schram FR. ed., Crustacean Phylogeny.

of Crustacean Rotterdam: A. A. 165-188. ties hexapods: recent progress and open problems. In: Issues, 1. Balkema,

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 230 G.D. Edgecombe - Myriapod stem-group

Kusche Burmester T. 2001. K, Diplopod hemocyanin se- Martin JVV,Laverack MS 1992. On the distributionof the crus-

and the of the dorsal quences phylogenetic position Myriapoda. tacean organ. Ada Zool. 73: 357-368.

Mol. Biol. Evol. 18: 1566-1573. Mazzini M, Carcupino M, Fausto AM, Puri C, Zapparoli M. Kusche K, II, Burmester Ruhberg T. 2002. A hemocyanin 1992. Further observations on the ultrastructure of mature

from the of Onychophora and the emergence of respiratory sperm Scutigera coleoptrala (L.) (Chilopoda-Scutigero-

Natl. Acad. pigments. Proc. Sci. USA 99: 10545-10548. morpha). J. Sumicrosc. Cytol. Pathol. 24: 251-256.

Larink 0.1997. Apomorphic and plesiomorphic characteristics Mclzcr RR, Diersch R, Nicastro 1), Smola U. 1997.Compound

in , and evolution: conserved and cell Archaeognatha, Zygentoma. Pedobiologia eye highly retinula cone pat-

41: 3-8. terns indicate a common origin ofthe insect and crustacean

Lauterbach K-E. 1972. Uber die sogenannte Ganzbein- ommatidium. Naturwiss. 84: 542-544.

Mandibel derTracheata, insbesondere der Zool. Myriapoda. IMikulic DG, Briggs DEG, Klussendorf J. 1985. A new ex-

Anz. 188: 145-154. ceptionally preserved biota from the Lower Silurian of Wis-

Lauterbach K-E. 1983. Zum Problem der Monophylie der Crus- consin, USA, Phil. Trans. R. Soc. B 311: 75-85.

Verb, Ver. tacea. naturwiss. Hamburg 26: 293-320. Minelli A, Foddai D, Pereira LA, Lewis JGE. 2000. The evo-

Lavrov l)V, Boorc JL, Brown WM. 2002. Complete mtDNA lution of segmentation ofcentipede trunk and appendages.

for mito- sequences of two millipedes suggest a new model J. Zool. Syst. Evol. Research 38: 103-117.

chondrial gene rearrangements: Duplication and nonrandom Minet J, Bourgoin T. 1986. Phylogenie et classification de

loss. Mol. Biol. Evol. 19: 163-169 Hexapodes (Arthropoda). Cah. Liason 63: 23-28.

Legendre R. 1985. The and neu- stomogastric nervous system Mittmann B, Scholtz G. 2003. Development of the nervous

In: Barth ed. rosecretion. FO, Neurobiology of Arachnids. system in the “head” of Limulus polyphemus (Chelicerata:

Berlin: 38-49. evidence Springer-Verlag, Xiphosura): morphological for a correspondence

Locke l luie P. 1977. of 1M, Bismuth staining Golgi complex is between the segments of the chelicerae and of the (first)

a characteristic arthropod feature lacking in Peripatus. Na- antennae ofMandibulata, Dev. Genes Evol. 213: 9-17.

mrc 270; 341-343. K. 2002. On the of the Miyazaki shape forgeut lumen in sea

Loesel R, Nassel HR, Strausfeld NJ. 2002. Common design in (Arthropoda: Pycnogonida). J. Mar. Biol. Ass. U.K.

a unique midline neuropile in the brains of arthropods. Ar- 82: 1037-1038.

Struct. Dev. 31: 77-91. J. 1995. and thropod Monge-Najera Phytogeny, biogeography repro- Machida R. 2000. Serial homology ofthe mandible and max- ductive trends in the Onychophora. Zool. J. Linn. Soc. 114:

illa in the jumping bristlotail unimaculatus 21-60.

based external Machida, on embryology (Hexapoda, Mundel P. 1979. The centipedes (Chilopoda) of the Mazon

J. Archaeognatha, ). Morphol. 245: 19-28. Creek. In: Nitecki, MH, ed. Mazon Creek Fossils. New York:

Machida R, Ando II. 1998. Evolutionary changes in develop- Academic Press, 361-378.

mental ofthe potentials embryo proper and embryonic mem- Nielsen C. 1995. Animal Evolution. Interrelationships of the

branes with the along derivative structures in Atelocerata, Living Phyla. Oxford: Oxford Univ. Press. with special reference to Hexapoda (Arthropoda). Proc. Nielsen C. 1998. The phylogenetic position ofthe Arthropoda.

ArthropodEmbryol. Jpn. 33: 1-13. In: Fortey RA, Thomas RH, eds. ArthropodRelationships.

Makioka T. 1988. Ovarian structure and oogenesis in London: Chapman & Hall, 11-22.

chelicerates and other Proc. Nilsson D-E. 1989. and ofthe arthropods. Arthropod. Optics evolution .

Soc. 23; 1-11. Embryo!. Jpn. In: Stavenga DO, Hardie RC, eds. Facets of Vision. Berlin:

Manton SM. 1964. Mandibular mechanisms and the evolution Springer-Verlag, 30-73.

of Phil. arthropods. Trans. R. Soc. Land., B 247: 1-183. Niwa N, Saitoh M, Ohuchi II,Yoshioka II, Noji S. 1997. Cor-

Manton SM. 1965. The evolution of relations between arthropodan locomotory Distal-less expression patterns and struc- Functional mechanisms, Part 8. requirements and body del- tures of appendages in development of the two-spotted in sign the Chilopoda, together with a comparative account cricket, Gryllus bimaculatus. Zool. Sci. 14: 115-125. of their skeleto-muscular and systems an Appendix on a O’Leary M.A. 1999. Parsimony analysis oftotal evidence from

between forces of annelids and extinct and extant and the comparison burrowing taxa cetacean-artiodactyl ques-

and its the chilopods bearing upon evolution of the tion (Mammalia, Ungulata). Cladistics 15: 315-330.

arthropodanhaemocoel.J. Linn. Soc. Land. (Zool.) 45:251- Osorio I), Averof i\l. Bacon JP. 1995. Arthropod evolution:

483. great brains, beautiful bodies. Trends Ecol. Evol. 10: 449-

Manton SM. 1972. The evolution of arthropodan locomotory 454.

mechanisms, Part 10. Locomotory habits, morphology and Panganiban G, Scbring A, Nagy L, Carroll S. 1995. The de-

evolution of the hexapod classes. Zool. J. Linn. Soc. 51: velopment of crustacean limbs and the evolution of arthro-

203-400. pods. Science 270: 1363-1366.

Manton SM. 1979. Functional and the evolution Pass G. 1991. Antennal in morphology circulatory organs Onychophora,

of the classes. In: ed. hexapod Gupta AP, Arthropod Myriapoda and Hexapoda: Functional morphologyand evo- New York: Phytogeny. Van Nostrand Reinhold, 387-465. lutionary implications. Zoomorphol. 110: 145-164.

Martin JW. 1992. In: Harrison Humes AG, Pass G. 2000. innova- Branchiopoda. FW, Accessory pulsatile organs: evolutionary

eds. Microscopical Anatomy of Invertebrates, Volume 9. tions in insects. Ann. Rev. Entomol. 45: 495-518.

Crustacea. New York: 25-224. Wiley-Liss, Patterson C, Rosen DE. 1977. Review of ichlhyodecliform and

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 231

other Mesozoic teleost fishes and the theory and practice change. In: Gastaldo RA, Dimichele WA, eds. Phan- global erozoic

ofclassifying fossils. Bull. Amer. Mus. Nat. Hist. 158: 81- erozoic Terrestrial Ecosystems. Paleontol. Soc. Papers 6:

172, 21-45.

Paulus HF. 1979. Eye structure and the monophyly ofthe Ar- Retallack GJ. 2001. Scoyenia burrows from Ordovician

thropoda. In: Gupta AP*ed. ArthropodPhylogeny. New York: palaeosols of the Juniata Formation in Pennsylvania.

Van Nostrand Reinhold, 299-383. Palaeontol. 44: 209-235.

Paulus HF. 1986. Evolutionswege zum Larvalauge der Insekten Richter S. 1999. The structure of the ommatidia of the

Model! fur die und die der - ein Entstehung Ableitung Malacostraca - Verb, (Crustacea) a phylogenetic approach.

ozellaren der von Lateralaugen Myriapoda Fazettenaugen. nalurwiss. Ver. Hamburg (NF) 38: 161-204. Zool. Jb. Sysl. 113: 353-371. Richter S. 2002a. The Tetraconata concept: hexapod-crustacean

Pnulus HF. 1989. Das in der Feinstruk- Homologisieren relationships and the phylogeny of Crustacea. Org. Divers.

Das der und turforschung: Bolwig-Organ hoheren Dipteren Evol. 2: 217-237.

seine mil Stemmata und Ommatidien Homologisierung Richter S. 2002b. Evolution of optical design in the

eines der Mandibulata.Zool. ursprunglichen Fazettenauges Malacostraca. In: Wiese K, ed. The Crustacean Nervous

32: 437-478. Beitrage (N.F.) System. Berlin: Springer-Verlag, 512-524.

I’aulus HF. 2000. I’hylogeny of the Myriapoda - Crustacea - Richter S, Edgecombe GD, Wilson GDF. 2002. The lacinia

Insecta: a new using photoreceptor structure. J. Zool attempt - mohilis and similar structures a valuable character in ar- Syst. Evol. Research 38: 189-208. thropod phylogenetics? Zool. Anz. 241: 339-361. Peterson M, Rogers BT, Popadic A, Kaufman TC. 1999. The Richter S, Seholtz G. 2001. Phylogenetic analysis of the embryonic expression pattern oflabial, posterior homeotic Malacostraca. J. Zool. Syst. Evol. Research 39: 113-136. and the complex gene teashirt homologuein an apterygote Rilling G. 1968. . Grosses Zoologisches insect. Dev. Genes Evol. 209: 77-90. Praktikum 13b, Stuttgart: Gustav Fischer. Popadic A, Panganiban G, Rusch 1), Shear \VA, Kaufman Robison RA. 1990. Earliest known uniramous arthropod. Na- TC. 1998. Molecular evidence for the gnathobasic deriva- ture 343: 163-J64. tion ofarthropod mandibles and for the appendicularorigin Robison RA, Wiley EO. 1995. A new arthropod, Meristosoma: of the labrum and other structures. Dev. Genes Evol. 208: more fallout from the Cambrian explosion. J. Paleontol 69: 142-150. 447-459. Popadic' A, Kusch 1), Peterson M, Rogers BT, Kaufman Rosenberg J. 1979. Topographic und Feinstruktur des TC. 1996. Origin of the arthropod mandible. Nature 380: Maxillarnephridium von Scutigera coleoplrala (L.) (Chilo- 395. poda, Notostigmophora). Zoomorphol. 92: 141-159. Prpic N-M, Wigand B, Damen VVGM, Klinger M 2001. Ex- J. 1983. Coxal in Rosenberg organs Scolopendromorpha(Chi- pression of dachshund in wild-type and Distal-less mutant lopoda): Topography, organization, fine structure and signi- Tribolium corroborates serial homologies in insect append- fication in centipedes. Zool. Jb., Anal. 110; 383-393. Evol. 467-477. ages. Dev. Genes 211; Sanders HL. 1963. Significance of the Cephalocarida. In: Prunescu CC. 1996. Plesiomorphic and apomorphic character Whittington HB, Rolfe WDI, eds. Phylogeny and Evolution states in the Chilopoda. In: Geoffrey J-J, Maudes J-P, of Crustacea. Cambridge: Mus. Comp. Zool., Spec. Publ., Nguyen Duy-Jacquemin M, eds. Acta Myriapodologica. 163-175. Mem. Mus. natn. Hist. nat. 169: 299-306. Scheller, U. 1982. Symphyla. In: Parker SP, cd. Synopsis and Prunescu CC. 1997. The anatomy and evolution of the genital Classification ofLivingOrganisms. New York: McGraw Hill, system in Scolopendromorpha (Chilopoda). Enl. Scand. 688-689. Suppl. 51: 41-47. Schniidt-Rhacsa A, Bartolomaeus T, C, Ehlcrs U, Ravoux P. 1975. Endosquellete et musculature cephaliques de Lemburg JR. 1998. The of the Arthropoda in the Scutigerella immaculate Newport (Symphyla: Scuti- Garcy position J. Morphol. 238; 263-285. gerellidae). Bull. Mus. nail Hist. nat. 332: 1189-1238. phylogenetic system.

Scholtz G. 1998. band formation and head Uegier JC, Shultz JW. 1997. Molecular phylogeny of the ma- Cleavage, germ seg-

mentation: the ofthe In: indicates of and groundpattern Euarthropoda. Fortey jor arthropod groups polyphyly crustaceans

RA, Thomas RH, eds. Arthropod Relationships. London: a new hypothesis for the origin ofhexapods. Mol Biol Evol

14: 902-913. Chapman and Hall, 317-332.

Scholtz G. 2000. Evolution of the in mala- Regier JC, Shultz JW. 2001a. A phylogenetic analysis of nauplius stage

Myriapoda (Arthropoda) using two nuclear protein-encod- costracan crustaceans. J. Zool. Syst. Evol. Research 38: 175-

Zool J. Linn. Soc. 132: 469-486. 187. ing genes.

Regier JC, Shultz JW. 2001b. Elongation Factor-2: a useful Scholtz G. 2001. Evolution of developmental patterns in ar-

for Evol. 20: - the its gene arthropod phylogenetics. Mol. Phylog. thropods analysis of gene expression and bearing

136-148, on morphology and phylogenetics. Zool. 103: 99-111.

Reissland Corner P. 1985. Trichobothria. In: Barth Scholtz G. 2002. The Articulata - what A, FG, ed,„ hypothesis or is a seg-

Neurobiology of Arachnids. Berlin: Springer-Verlag, 138- ment? Org. Divers. Evol. 2: 197-215.

161. Seholtz G, Mittmann B, Gerberding M. 1998. The pattern of

Ordovician life and Retallack GJ. 2000. on land Early Paleozoic Distal-less expression in the mouthparts of crustaceans,

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 232 G.D. - Edgecombe Myriapod stem-group

myriapods and insects: new evidence for a gnathobasic Leiobunum aldrichi (Weed, 1893) (Arachnida: Opiliones

mandible and the common origin of Mandibulata. hit. J. Palpatores) and its evolutionary significance. Zool. J. Linn.

Dev. Biol. 42: 801-810. Soc. 128: 401-438.

Schram FR. 1986. Crustacea. Oxford: Oxford Univ. Press, Shultz JW. 2001. Gross muscular anatomy of Limulus

Schram FR, HofCHJ. 1998. Fossils and the interrelationships polyphemus (Xiphosura, Chelicerata) and its bearing on

of major crustacean groups. In: Edgecombe GD, ed. Ar- evolution in the Arachnida. 1 Arachnol. 29: 283-303.

thropodFossils and Phylogeny. New York: Columbia, 233- Shultz JW, Regicr JC. 2001. Phylogenetic analysis of arthro-

302, two nuclear pods using protein-encoding genes supports a

Scliram FR, Koenemann S. 2001. Developmental genetics and crustacean + hexapod clade. Proc. R. Soc. bond. B 267:

arthropod evolution: part I, on legs. Evol. Dev. 3: 343-354. 1011-1019.

Schiirmann FW. 1995. Common and special features ofthe nerv- Slewing R. 1963. Studies in malacostracan morphology. In:

of ous system Onychophora: a comparison with Arthropoda, Whittington HB, Rolfe WDI, eds. Phylogeny and Evolution Annelida and other invertebrates. Breidbach some In: O, of Crustacea. Cambridge: Mus. Comp. Zool., Spec. Publ.,

Kutsch W, eds. The Nervous System of Invertebrates. An 85-110.

and Basel: Birkhauser P. 2001. A review of Evolutionary ComparativeApproach. Simpson early development of the nerv-

139-158. Verlag, ous system in some arthropods: comparison between insects,

Seifert G. 1990. Morphology, histology, and ultrastructure of crustaceans and myriapods. In: Deuve T, ed. Origin of the

the ecdysial glands in Myriapoda. In: Gupta AP, ed. Mor- Hexapoda. Ann. Soc. Entomol. France (7V. S.) 37: 71-84.

phogenetic Hormones of Arthropods. Volume I. 2. Embry- Snodgrass RE. 1938. Evolution ofthe Annelida,Onychophora,

and onic Postembryonic Sources. New Brunswick, London: and Arthropoda. Smithsonian Misc. Coll. 97: 1-159.

Univ. Press, 307-341. Rutgers Snodgrass RE. 1950. Comparative studies on the jaws of

Seldcn PA, Shear WA, Bonamo PM. 1991. A spider and other mandibulate arthropods. Smithsonian Misc. Coll. 116: I-

arachnids from the Devonian of New York, and reinter- 85.

pretations of Devonian Araneae. Palaeonlol. 34; 241-281. Snodgrass RE. 1952. A Textbook ofArthropod Anatomy. Ithaca

Sharov AG. 1966. Basic ArthropodanStock. New York: Pergamon Cornell Univ. Press.

Press, Spies T. 1981. Structure and phylogenetic interpretation of

Shear WA. 1994. from the East Myriapodous arthropods Visean of diplopod eyes (Dlplopoda). Zoomorphol. 98: 241-260.

West Scotland. Kirkton, Lothian, Trans. R. Soc. Edinburgh: Staniczek All. 2000. The mandible of (Insecta:

Earth Sci. 84: 309-316. Zygentoma) and (Ephemeroptera): its morphol-

Shear WA. 1998. The fossil record and evolution ofthe and Myriapoda. ogy phylogenetic significance. Zool. Anz. 239: 147-178.

In: Thomas eds. Fortcy RA, RH, Arthropod Relationships. Storch V, Ruhberg H. 1993. Onychophora. In: Harrison FW,

London: and 211-219. Chapman Hall, Rice ME, eds. Microscopic Anatomy ofInvertebrates, Vol-

Shear WA, Bonamo PM. 1988. Devonobiomorpha, a new order ume 12. Onychophora, Chilopoda, and Lesser Protostomata.

ofcentipeds (Chilopoda) from the Middle Devonian ofGilboa, New York: Wiley-Liss, 11-56.

New York State, USA, and the phylogeny of centiped orders. Stormer L. 1976. Arthropods from the Lower Devonian (Lower

Amer Mas. 2927: 1-30. of Novitates Emsian) Alken-an-der-Mosel, Germany. Part 5:

Shear \VA, Gensel I’C, Jeram AJ. 1996. Fossils of terres- and additional with large Myriapoda forms, general remarks on

trial from arthropods the Lower Devonian of Canada. Nature fauna and problems regarding invasion of land by arthro-

384: 555-557. pods. Senckenbergiana lelhaea 57: 87-183.

Shear WA, Jeram AJ, Selden PA. 1998. (Arthro- Strausfeld 1998. - Centiped legs NJ. Crustacean insect relationships: the use

poda, Chilopoda, the Silurian and ofbrain to Scutigeromorpha) from characters derivephylogeny amongst segmented

Devonian of and the Britain Devonian ofNorth America. Anteif invertebrates. Brain Behav. Evol 52: 186-206.

Mus. Novitates 3231: 1-16. Strausfeld NJ, Buschbeck EK, Gomez RS. 1995. The arthro-

Shear WA, Selden PA. 1995. Eoarthropleura (Arthropoda, pod mushroom body: its functionalroles, evolutionaryenig- from die Silurian Arthropleurida) ofBritain and the Devonian mas and mistaken identities. In: Briedbach O, Kutsch W,

of North America. N. .lb. Geol. Paldonlol. Abh. 196: 347-375. eds. The Nervous System ofInvertebrates. An Evolutionary

Shear WA, Sclden PA, Rolfe WDI, Bonamo PiM, Grierson JD. and Comparative Approach. Basel: Birkhauser, 349-381. 1987. New terrestrial arachnids from the Devonian of Gilboa, Sturm H. 1997. The mating behaviour of Tricholepidion gerlschi

New York (Arachnida, Amer. Mus. Novitates 1961 ). Wygod., (, Zygentoma) and its com-

2901: 1-74. parison with the behaviour of other “Apterygota”. Shinohara K. 1970. On the phylogeny of Chilopoda. Proc. Jap. Pedobiologia 41: 44-49.

Soc. Zool. 65: Bilinski S. 1990. Ovariole and Syst. 35-42. §tys P, types the phylogeny of

Shultz J W. 1989. Morphology oflocomotory appendagesin Arach- hexapods. Biol. Rev. 65: 401-429.

nida: evolutionary trends and phylogenetic implications. Zool. Stys P, Zrzavy J, Weyda F. 1993. Phylogeny of the Hexapoda

J. Linn. Soc. 97: 1-56. and ovarian metamerism. Biol. Rev. 68: 365-379.

Shultz JW. 1990. Evolutionary morphology and phytogeny of Swofford DL. 2002. PAUP*: Phylogenetic Analysis Using Par-

the Arachnida. Cladistics 6; 1-38. simony (*and Other Methods). Sunderland, MA: Sinauer.

Shultz JW. 2000. Skeletomuscular of the harvestman Telford RH. 1998. ofhomeobox anatomy MJ,Thomas Expression genes

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 233

shows chelicerate retain their deutocerebral 1986. - the arthropods seg- Weygoldt P. Arthropod interelationships phylo-

ment. Proc. Natl. Acad. Set. USA 95: 10671-10675. genetic-systematic approach. Z. Zool. Syst. Evol.-forsch. 24;

Tesakov AS, Alekseev AS. 1992. Myriapod-like arthropods from 19-35.

the Lower Devonian of central Kazakhstan. Paleontol. J. Weygoldt P, Paulus HP. 1979. Untersuchung zur Morphologie,

26:18-23. Taxonomie und Phylogenie der Chelicerata. II. Clado-

The and affinities of the Tiegs OW. 1947. development und die der Chelicerata. Z. Zool. gramme Entfaltung Syst.

based of J. Pauropoda, on a study Pauropus sylvaticus. Q. Evol.-forsch. 17: 177-200. Sci. Micro sc. 88: 165-336. Williams TA. 1999. Morphogenesis and homology in arthro- Verhoeff KW. 1902-25. Chilopoda. In; Bronn HG, ed. Klassen pod limbs. Amer. Zool 39; 664-675. und Ordnungen des Tierreichs, 5, Aht. 2, Buck I. Leipzig; Wilson HM. 2003. A new scolopendromorph Akad. Verlagsges, 1-725. (Myriapoda: Chilopoda) from the Lower Cretaceous Wagele J-W. 1993. Rejection of the “Uniramia” hypothesis and (Aptian) of Brazil. J. Paleontol. 77: 73-77. implications of the Mandibulata concept. Zool. Jh., Syst. Wilson, II M, Anderson, LI. 2004. Morphology and 120: 253-288. of Paleozoic millipedes (Diplopoda: Chilognatha: Ar- Wagele J-W, Stanjek G. 1995. Arthropod phylogeny inferred chipolypoda) from Scotland. J. Paleontol. 77: 169-184. from partial 12SrRNArevisited: monophyly ofthe Tracheata Wilson HM, Shear WA. 2000. Microdecemplicida, a new or- J. Zool Evol. dependson sequence alignment. Syst. Research der of minute arthropleurideans (Arthropoda: Myriapoda) 33: 75-80. from the Devonian ofNew York State, U.S.A. Trans. R. Soc. Walossck D. 1993. The Upper Cambrian Rehbachiella and the Edinburgh: Earth Sci. 90: 351-375. phylogeny of Branchiopoda and Crustacea. Fossils and

Winter G. 19S0. zur und Strata 32: 1-202. Beitrage Morphologic Embryologie

des vorderen Korperabschnittes (Cephalosoma) der Walossek D. 1995. The Upper Cambrian Rehbachiella, its lar- Gerstaecker, 1963. I, und Struktur val development, morphology, and significance for the Panlopoda Entstehung

Z. Zool. 18: phylogeny of Branchiopoda and Crustacea. Hydrobiologia des-Zentralnervensystems. Syst. Evol.-forsch.

27-61. 31: 1-13.

Walossek D. 1999. On the Cambrian diversity ofCrustacea. In: Wirkner CS, Pass G. 2002. The in Chilo-

Klein eds. Crustaceans and the functional and Acta Schram FR, Vaupcl JC von, poda: morphology phylogenetic aspects.

Biodiversity Crisis. Proceedings ofthe Fourth International Zool. 83: 193-202.

Crustacean Congress. Leiden: Brill, 3-27. Yahata K, Makioka T. 1994. Phylogenetic implications of struc-

JA. 2002. A Waloszek D, Dunlop larval (Arthro- ture of adult ovary and oogenesis in the penicillate diplopod,

Cambrian ‘Orsten’ of poda: Pycnogonida) from the Upper Eudigraphus nigricians (Miyosi) (Diplopoda: Myriapoda).

and the of Sweden, phylogenetic position pycnogonids. J. Morphol. 222: 223-230.

Palaeontol. 45: 421-446. Zrzavy J, §tys P. 1995. Evolution of metamerism in Arthro- Walossek D, Muller KJ. 1990. Upper Cambrian stem-lineage poda: developmental and morphological perspectives. Q.

crustaceans and their upon the origin bearing monophyletic Rev. Biol. 70: 279-295.

ofCrustacea and the position of.Agnostus. Lethaia 23: 409-

427. Received: 12 November 2002

Walossek D, Muller KJ. 1992. The ‘alum shale window’ - con-

tribution of‘Orsten’ arthropods to the phylogeny ofCrusta-

cea.Acta Zool. 73: 305-312.

Walossek Muller KJ. 1998a. Cambrian D, ‘Orsten’-type ar- Appendix 1. Characters used in phylogenetic thropods and the phylogeny of Crustacea. In: Fortey RA, analysis Thomas RH, eds. Arthropod Relationships. London:

Chapman and Hall, 139-153. For characters described Edgecombe ct al. (2000), a Walossek I), Miillcr KJ. 1998b. Early arthropod phylogeny in by citation E# indicates the relevant character number in light ofthe Cambrian “Orsten” fossils. In: Edgecombe GD. that of additional characters used ed. Arthropod Fossils and Phytogeny. New York: Columbia study. Descriptions

Giribct et al. (2001) are available electronically as Univ. Press, 185-231. by Supplementary Informationfrom www.naturc.com., and Wegerhoff R, Breidbach O. 1995. Comparative aspects of the

arc cited here as G#, with the number to the chelicerate nervoussystem. In: Breidbach O, Kutsch W, eds. refering character number in that The Nervous System ofInvertebrates. An Evolutionary and study.

ComparativeApproach. Basel: Birkhauser Verlag, 159-179. absent; (I) Weygoldt P. 1979. Significance of later embryonic stages and I. Non-migratory gastrulation: (0) present

head development in arthropod phylogeny. In: Gupta AP, [El] (Anderson, 1973).

ed. ArthropodPhytogeny. New York: Van Nostrand Reinhold, 2. Early cleavage: (0) total cleavage with radially ori-

107-135. ented position ofcleavage products; (1) intralecithal

Weygoldt P. 1985. Ontogeny of the arachnid central nervous cleavage [E3; G2] (Scholtz, 1998).

system. In: Barth FG, ed. Neurobiology ofArachnids. Ber- 3. Blastokinesis with amnioserosal fold: (0) absent;

lin: Springer-Verlag, 20-37. (1) amniotic cavity open; (2) amniotic cavity closed,

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 234 G.D. Edgecombe - Myriapod stem-group

amnioserosal fold fuses beneath the embryo [E5; ing nephridia, genital tract, and photoreceptors); G3] (Machida and Ando, 1998). ORDERED in (1) present (at most) sperm. This refines the 4. Blastoderm cuticle (cuticular egg envelope); (0) coding of Edgecombe et ah (2000: character 17), (1) absent; present [E6; G4] (Anderson, 1973; which coded the euarthropod state with reference and Machida Ando, 1998). to cilia being present only in sperm (versus also 5. Dorsal closure of definitive dorsal clo- embryo: (0) present in the photoreceptors in Onychophora, and sure (dorsal covering of in the in embryo participates some other tissues, such as the nephridia, geni- definitive dorsal closure); (I) dorsal tal tracts and ventral of the provisional developing organ an- closure (embryonic dorsal covering degenerates teriormost segment: Eriksson et ah, 2003). withoutparticipating in the definitve which closure, 20. Tendon cells with tonofilaments penetrating epi- is exclusively derived from the dermis: embryo) [G5] (Ma- (0) absent; (1) present [E18] (Boudreaux, chida and Ando, 1998). 1979; Dewel and Dewel, 1998). 6. Ectoteloblasts forming of 21. part metanaupliar/egg- Dorsal longitudinal eedysial suture with forking

naupliar region of band: on head: germ (0) absent; (1) pre- (0) absent; (1) present [G20] (Kaufman, sent, at anterior border of blastopore [E7; G6] 1967; Boudreaux, 1979). (Gerberding, 1997). 22. Transverse and antennocellar sutures on head

7. Caudal absent; shield: papilla: (0) (1) present, anteroven- (0) absent; (1) present [G21] (Edgecombe derived from trally folded, preanal growth zone et ah, 1999], [G7] 23. Resilin (Scholtz, 2000). protein: (0) absent; (1) present [E21] (Hack- 8. Fat Body: (0) absent; fat cells (1) body develop man, 1984). from vitellophages in yolk; (2) fat cells de- 24. body Moulting gland: (0) absent; (1) present [E22] (Sei- velop from walls ofmesodermal somites [E9] (An- fert, 1990; Wagcle, 1993). Wagele (1993) noted derson, 1973). that the moulting glands in insects and crustaceans 9. Midgut developed within the (0) cells yolk: midgut are hypodermal derivations of the second max- enclose the (1) lumen of yolk; embryonic midgut illa, and are absent in chelicerates. The ultrastruc- lacking yolk globules (Tiegs, 1947; Dohle 1980). ture of the so-called moulting gland ofspiders has, 10. Fate ordering of tissues: map embryonic (0) pre- however, led some workers to consider these en- mesoderm sumptive posterior to presumptive mid- docrine cells as homologous with the insect pro- mesoderm anterior thoracic gut; (1) presumptive to midgut; gland (Juberthie and Bonaric, 1990). (2) mesoderm midventral, cells sink and prolifer- 25. Bismuth staining of Golgi complex beads: (0) not midgut internalises ate, during cleavage; (3) me- staining; (1) staining [E23; G24] (Locke and Hide, soderm diffuse the through ectoderm; (4) midgut 1977).

develops from anterior and posterior rudiments at 26. Metanephridia with sacculus with podocytes: (0) each end of midventral mesodermband [E10; G9] absent; (I) present [E24] (Nielsen, 1998; Schmidt- (Anderson, 1973, 1979). Rhaesa et ah, 1998). with 11. Embryological development: (0) a growth zone 27. Distribution of segmental glands: (0) on many rise to both the and giving prosoma ; at most last four segments; (1) on cephalic seg- with (I) a growth zone giving rise to the opislho- ments and first two post-cephalic segments; (2) soma [G10] (Anderson, 1973; Dunlop and Webster, on at most second antennal and/or maxillary seg- 1999), ments [E25] (Lauterbach, 1983; Wagele, 1993). 12. Engrailed expressed in mesoderm patterning: (0) ORDERED

absent and present; (1) [E2; Gil] (Zrzavy Stys( 28. Maxillary nephridia: (0) absent in postembryonic 1995; Dohle, 1998). stadia; (I) paired; (2) fused nephridia ofboth max- 13. Epimorphic development: (0) absent; (1) present illary segments. Edgecombe et ah (1999: charac-

[Ell]. ter 31) employed states 0 and 2 for Chilopoda 14. larva Nauplius or absent; egg-nauplius: (0) (1) (describing Craterostigmus + Epimorpha s.str. and

[E12; G13] (Dahms, + present 2000; Scholtz, 2000). Scutigeromorpha Lithobiomorpha, respectively), (motionless after but additional 15. Pupoid stage stage hatching, pu- an state is added to accommodate poid remains encased in embryonic cuticle): (0) the paired maxillary nephridia in Symphyla, Pauro- absent; (1) [El3] present (Anderson, 1973; Dohle, poda and Diplopoda. Dohle (1985) accordingly 1980). considered presence of maxillary nephridia to be 16. Imaginal (post-adult) moult: (0) present; (1) ab- symplesiomorphic for Chilopoda. Sampling for sent (Kristensen Beutel and Gorb 1991; 2001). chilopods employs descriptions by Herbst (1891), 17. Sclerotisation of cuticle into articulated hard, ter- Fahlander(1938), Manton (1965), Rilling (1968), gal : Gabe (0) absent; (I) present [E14], (1972), and Rosenberg (1979). Coding for 18. Cuticle calcification: (0) absent; (1) present [G17] the homologue in Hexapoda, the labial kidneys (Enghoff, 1984). (Gabe, 1972), follows Bitsch and Bitsch (1998: 19. Cilia: (0) present in several organ systems (includ- character 13). Codings for Crustacea are based on

Downloaded from Brill.com10/09/2021 01:58:52PM via free access - Contributions to Zoology, 73 (3) 2004 235

the paired maxillary glands (Martin, 1992 for bran- 44. EC neurons: (0) ECa and EPa only; (1) ECa, ECp

chiopods; Richter and Scholtz, 2001, character 58 and ECI. A series of Engrailed-postive neurons

for malacostracans). can be identified as homologues in malacostra-

29. Coxal gland orifice, leg I: (0) absent; (1) present cans, collcmbolans and insects (Dumen-Scheel and

[G301], Gabe (1972) and Shultz (1990) indicated Patel, 1999). Collembolaand Insecta share more

that the coxal glands of chelicerates are likely detailed similarity in having a third EC neuron

homologous with paired excretory organs ofother (ECI) versus two in Malacostraca. As for charac-

arthropods and onychophorans (see characters 27, ter 43, Oniscidea is coded from Porcellio and

28). Given the segmental correspondence of cheli- Arthropleona from Folsomia (Dumen-Scheel and and the mandibleof ceratc leg I Mandibulata, an Patel, 1999).

absence of mandibular nephridia permits coding 45. Globuli cells: (0) confined mainly to brain, in

of this character. massive clusters; (1) making up majority ofneu- 30. and ventral ofventral cord Tdmosvary organ (protocerebral “temporal organs” ropil layer nerve [E40] at side of head behind insertion of ): (0) (Schumann, 1995).

absent; (1) present [E26; G27] (Haupt, 1979). Simi- 46. Corpora allata:: (0) absent; (1) present [E41] (Cas-

larities in crustaceans and between Bellonci’s organ sagnau Juberthie, 1983; Wagcle, 1993). and the of and hexa- 47. Intrinsic cells in ncurohcmal temporal organs myriapods secretory protocercbral

pods allow for a possibility of homology (Klass organ: (0) absent; (1) present [E42] (Gupta, 1983). and Kristcnsen, 2001). 48. Enlarged epipharyngeal ganglia: (0) absent; (1) 31. reservoir: (0) absent; (1) present present [E43] (Francois, 1969; Kristensen, 1991).

[E27] (Monge-Najcra, 1995). 49. Innervationofmouth area by anterior stomogastric

32. Malpighian tubules formed as endodermal exten- nervous system: (0) absent; (1) present. Tardigrades

sions of the midgut: (0) absent, (1) [E28] (Shultz, and euarthropods share innervation of the stomo-

1990). deum, pharynx and integument near the mouth by

33. tubules formed ectodermal the anterior Malpighian as exten- stomogastric nervous system (Dewel

sions of the hindgut: (0) absent; (1) single pair of et ah, 1999), whereas oynchophorans lack this hind- innervation in the Malpighian tubules atjuncture ofmidgut and mouth area (Eriksson and Budd,

gut; (2) multiple pairs of tubules at anterior end 2000). The corresponding structures in Onycho-

ofhindgut [E29] (Clarke, 1979; Bitsch and Bitsch, phora are the muscular lips or oral papillae, which Eriksson 1998). and Budd (2000) suggested are epider-

34. Form of ectodermal Malpighian tubules: (0) elon- mal derivativesrather than part ofthe stomogastric

gate: (1) papillate [E30] (Bitsch and Bitsch, 1998). system. In arthropods, the anterior sympathetic

35. Neck organ: (0) absent; (1) present [E3I; G32] ganglia in the mouth region function as endocrine

similar to the (Martin and Laverack, 1992; Walossek, 1993). organs neurosecretory cells of the 36. CNS Hemoglobin; (0) absent; (1) present [G34] (Good- (Legendre, 1985).

win, 1960; Clarke, 1979). 50. Ganglia of pre-oesophageal brain; (0) protocere-

37. Subcutaneous hemal channels in body wall: (0) brum; (1) protocerebrum and deutocerebrum; (2) deuto- and tritocerebra absent; (1) present [E34] (Monge-Najera, 1995). proto-, [E44] (Dewel and

38. Dorsal heart with segmental ostia and pericardial Dewel, 1996; Walossek and Muller, 1998a). sinus: (0) absent; (1) present [E36; G36]. 51. Ganglia ofpost-oral appendages fused into single

39. Interval valves formed by lips of ostiae project- nerve mass: (0) absent; (1) present [E45] (Wcger-

ing deeply into the heart lumen to prevent haemo- hoff and Breidbach, 1995).

lymph backflow within the heart: (0) absent; (1) 52. Fan-shaped body with neurons extending laterally

present. Codings are restricted to Chilopoda, us- into protocerebral lobes: (0) absent; (1) present

ing data from Wirkner and Pass (2002). [G47] (Strausfeld, 1998). 40. Circumesophageal circulatory vessel ring with ven- 53. Midlineneuropil 1: (0) absent; (1) present. Immuno-

tral, trumpet-shaped opening towards head: (0) ab- staining permits midline neuropils to be identified

sent; (1) present [G37] (Gcreben-Krenn and Pass, in chilopods, crustaceans, hexapods and chelicerates

1999; Wirkner and Pass, 2002). (arcuate body: see character 55) but they are ab- 41. Slit sensilla: (0) absent; (1) present [E38; G38] sent in Diplopoda (Loesel et ah, 2002).

(Barth, 1985; Shultz, 1990). 54. Midline neuropil 2: (0) absent; (1) present. The 42. Ganglion formation: (0) ganglia formed from an stratified midline neuropil ofChilopoda ( Scolopen-

invagination of the ventral organ; (1) neuroblasts dra spp.) shares immunoreactivity properties (allo- [E39; G39| (Duman-Schecl and Patel, 1999;Dohle, statin-likc immunoreactivity and tachykinin-related

2001). peptide) with the modular central complex of the

43. Early differentiating neurons aCC, pCC, RP2, U/ brain in hexapods and crustaceans (Loesel et al.,

CQ, EL and AUN: (0) absent; (1) present [G40] 2002).

(Duman-Scheel and Patel, 1999). 5 5. Arcuate body in brain: (0) absent; (1) present [G48]

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 236 - G.D. Edgecombe Myriapod stem-group

Strausfeld the arcuate which 73. Reduction of of (1998) regarded body, processes crystalline cone-pro-

has conserved structure of highly (e.g., palisades ducing cells: (0) all cells have processes that pass columnar intersected neurons by discrete layers through clear zone and rhabdom; (1) only acces-

of to be tangential processes), a chelicerate/pyc- sory cells have processes [G65] (Richter, 1999). nogonid Locsel ct al. (2002) al- synapomorphy. 74. Distally displaced nuclei of accessory crystalline

lowed for a with the central cells: possible homology cone (0) absent; (I) present [G66] (Richter, of other body arthropods. 1999). 56. in brain: (0) absent; (1) Ellipsoid body present 75. Clear zone between dioptric apparatus and retina: [G50] (Strausfeld, absent 1998). (0) (apposition eye); (1) present (superpo- Noduli in brain: 57. (0) absent; (1) present [G51] sition for and eye). Codings apposition superpo- (Strausfeld, 1998). sition eyes in Malacostraca follow Richter (2002b).

58. Protocerebral bridge, composed of small bushy terminals Of with a clear zone coded here, Ana-

dendrites that intersect axons between the two spides (refracting superposition eye) differs in detail halves of the brain; dendrites supply complex pat- from Homarus and the presumed basal state for tern ofaxonal projections to the fan-shaped body; Reptantia (reflecting superposition eye). Branchio- (0) absent; (I) (Strausfeld, present [G52] 1998). for Cladocera pods except some have simple ap- 59. Mushroom body calyces: (0) absent; (1) present position eyes, and apposition eyes are likewise (Strausfeld ct al., 1995). present in basal insects (Nilsson, 1989; Richter, 60. of Ccphalon composed one pair ofpreoral append- 2002b). ages and (at least) three pairs of postoral append- 76. Optic neuropils: (0) no chiasmata; (1) one chiasma ages: (0) absent; (1) present [E47] (Walossek, 1993; (between lamina ganglionaris and medulla); (2) Scholtz, 1998). two chiasmata (between lamina ganglionaris and 61. Cephalic kinesis (movable ophthalmic / antennu- medulla/ between medulla and lobula) [E54; G67] lar segments and articulated rostrum): (0) absent; (Osorio et al., 1995; Strausfeld, 1998). ORDERED (1) present [E48; G54] (Siewing, 1963; Kunze, 77. Lateral eye rhabdomes with quadratic network: (0) 1983). absent; (1) present [G68] (Wcygoldt and Paulus, 62. Flattened head capsule, with head bent posterior 1979; Dunlop and Webster, 1999). to the clypeus, accommodating antennae at ante- 78. Number of median (0) (1) four; (2) rior of head: eyes: none; margin (0) absent; (1) present [E49; three; (3) two; (4) one (embryonic) [E57] (Paulus, G55] (Dohlc, 1985). 1979). 63. Clypcofrontal sulcus (epistomal suture): (0) ab- 79. Inverted median eye: (0) absent; (1) present [E58] sent; (1) present [G56] (Bitsch and Bitsch, 2000). (Paulus, 1979). 64. Lateral eyes: (0) absent; (1) simple lens with 80. Median fused to naupliar (0) absent; cup-shaped retina; (2) stemmata with rhabdom of eyes eyes: rctinular (1) present [E56] (Lauterbach, 1983). multilayered cells; (3) facetted; (4) ony- 81. Type of sensory cells in naupliar (0) inverse; chophoran eye [E52] (Paulus, 2000). eye: (1) everse [G72] (Elofsson, 1966; Paulus, 1979). 65. Compound eyes medial margins: (0) separate; (1) 82. Tapetal cells in of naupliar (0) absent; medially contiguous [E53] (Hennig, 1969). cups eye: (1) present [G73] (Elofsson, 1966). 66. Compound eye stalked, basally articulated: (0) absent 83. Dorsal frontalorgans: (0) absent; (eye sessile); (1) present [G59], (1) present [G74] (Elofsson, 1965, 1966). 67. Compound eyes internalised early in ontogeny, shifted into 84. Posterior medial frontal (0) absent; dorsally a cuticular pocket: (0) ab- organ: (1) pre- sent sent; (1) present [G60] (Walossek, 1995). [G75] (Elofsson, 1966). 85. Ocular tubercle: (0) absent; 68. Ophthalmic ridges: (0) absent; (1) present [G61] (1) present [G77] (Gi- (Anderson and Selden, 1997). ribet et al., 2002). Ommatidiumwith 86. Trichobothria innervated several 69. crystalline cone: (0) absent; (I) by sensory cells, with dendrites present. See text discussion of ommatidia. having only indirect contact with the hair base: 70. “Tetraconate” eye (two corneageneous cells, four (0) absent; (1) present [G78] (Reiss- cells in retinulawith land and Semper crystalline cone, eight Corner, 1985). Basal bulb cells): (0) absent (variable, higher numberofparts); 87. in trichobothria; (0) absent; (I) present

(1) present [ESS; G62] (Paulus, 2000). [E59] (Haupt, 1979).

71. Pigment cells in ommatidium: (0) corneagenous 88. Head/mouth orientation: (0) head prognathous, cells not primary pigment cells; (I) two corneag- mouth directed anteroventrally; (1) head hypog- enous cells are primary pigment cells [ESI] (Paulus, nathous, mouth directed ventrally; (2) mouth di-

1979). rected posteriorly [G81] (Bitsch and Bitsch, 2000). 72. cells; Crystalline cone (0) tetrapartite crystalline 89. Labrum: (0) absent; (1) present [E64], According

cone; (1) cone bipartitite, with two accessory cells; to Eriksson and Budd (2000) the so-called labrum five cells (2) cone [G64] (Martin, 1992; Richter, of Onychophora is pharyngeal and non-homolo- 1999). gous with the euarthropod labrum, which devel-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 237

from bilobed (Scholtz, 1998). 104. Antennal rami: (0) uniramous; multiramous ops a anlage (1) 90. Fleshy labrum with setulate sides and specialised [E72; G96], 105. Antennal sensilla: glands: (0) absent; (1) present [E65] (Walossek apical cone (0) absent; (1) present

and Muller, 1990). [E74] (Enghoff, 1984).

91. Entognathy (overgrowth of mandibles and maxil- 106. Two lateral areas bearing club-like sensilla basi- conica terminal antennal article: lae by cranial folds); (0) absent; (1) present [E66] on (0) absent; (1) and (Kluge, 1999). present (Foddai Minclli, 2000). 107. Intrinsic muscles of antenna: ab- 92. Admentum differentiatedlatero-ventrally on each (0) present; (1) sent (Imms, 1939). side ofhead capsule, developed from posterior part () [E75; G99] 108. and differentiated in antenna, with ofmouth fold: (0) absent; (1) present [G85] (Koch, Scape pedicel Johnson’s (0) absent; (1) 1997; Ikcda and Machida, 1998). organ: present [G100]

93. Sclerotic sternum formedby antennalto maxillulary (Imms, 1939). 109. Antennal circulatory vessels: (0) antennal vessels sternites: (0) absent; (1) present [E67] (Walossek, joined with dorsal vessel; antennal and dorsal 1999). (1) vessels separate; (2) antennal vessels absent [E77] 94. Tritosternum: (0) absent; (1) present [G87] (Shultz, (Pass, 1991). 1990). 110. Ampullo-ampullary dilatorand ampullo-aorlic dila- 95. Clypeolabrum and labium mobility: (0) free; (1) tor muscle; (0) absent; (1) [G103] (Pass, immobile [E68] (Kukalova-Peck, 1991). present 2000). 96. Hypopharynx: (0) absent or only a median lingua; 111. in basal of first Statocyst segment antenna: (0) (1) complete hypopharynx consisting of lingua and absent; (1) present [G104] (Richter and Scholtz, paired superlinguae [G89] (Bitsch and Bitsch, 2001). 2000). 112. Cheliceral segmentation: (0) three segments, the 97. Fulturae: (0) absent or limited to a hypopharyngeal last two forming a chela; (1) two segments, sub- between suspensorium; (1) present, in groove chelate, “clasp-knife” type [G106] (Shear et ah, arthrodial membrane of maxilla and labium, con- 1987). necting hypopharynx with posterior tentorial apo- 113. Plagula ventralis: (0) absent; (1) present [G107] demes [G90] (Bitsch and Bitsch, 2000). So-called (Shear et ah, 1987). fulturae of myriapods are not positionally equiva- 114. Cheliceral tergo-deutomerite muscles: (0) absent; lent to the fulturae ofhexapods, the details ofwhich (1) present [GI08] (Shultz, 2000), are added to the character definition(Koch, 2003). 115. Appendage on third (tritocerebral) head segment: with 9 8. Posterior process oftentorium fused anteriorly (0) unspecialised locomotory leg; (1) second an- hypopharyngeal bar and transverse bar; (0) absent; tenna; (2) intercalary appendage absent; (3) pedi- (1) present [G9I] (Bitsch and Bitsch, 2002; Koch, palp; (4) oral papilla with slime glands and adhesive 2003). glands [E78], The presumed plesiomorphic state 99. Triradiatcpharyngeal lumen: (0) absent; (1) present is that observed in fossil groups such as trilobites, [E69] (Schmidt-Rhaesa et ah, 1998; Miyazaki, in which this post-antennal limb is undifferenti- 2002). ated from other cephalic limbs (or, for that mat- 100. Three-branchedepistomal skeleton supporting the ter, from trunk limbs). This state is grouped with dilator muscles: pharyngeal (0) absent; (1) present that in tardigradcs (locomotory leg 2: Dewcl and (Shultz, 2000). [G93] Dewel, 1996, table 2) as an undifferentiatedloco- 101. Stomothecae: (0) absent; (1) present [E70; G94] follows Eriks- motory leg. Coding for Onychophora

(Shultz, 2000). son and Budd (2000) and Eriksson et al. (2003), 102. Post-cephalic filterfeeding apparatus with stemitic identified with the oral/slime papilla as segmen- food groove: (0) absent; (1) present [E7I] (Walos- tal equivalent ofthe tritocerebrum-inncrvatedlimb

sek, 1993). in euarthropods). 103. Appendage of second (dcutocerebral) head seg- 116. Single segmented antennal scale: (0) absent; (1) che- ment: (0) locomotory leg 1; (1) antenna; (2) present [GII0] (Schram, 1986).

licera/chelifore; (3) jaw. Segmental correspondence 117. Antennal naupliar protopod: (0) short; (1) long between leg I of Onychophora and Tardigrada and [E80] (Sanders, 1963).

the antennal segment ofarthropods was proposed 118. Distal-less expressed in mandible:(0) present (in-

by Dewel and Dewel (1996: table 1), whereas cluding transient expression in embryo and in palp);

Eriksson et al. (2003), followed here, considered (1) absent in all ontogenetic stages [E81; G112]

the jaw ofOnychophora to bethe segmental equiva- (Popadic et ah, 1998; Scholtz et ah, 1998).

lent of the euarthropod antenna, with the first leg 119. Mandible (gnathobasic appendage of third limb-

of onychophorans corresponding to the mandible bearing metamere is main feeding limb of adult

(and homologues) of euarthropods. Winter(1980) head, embedded beneath labrum, lacking Distal-

defendedprimary homology of chelicerae and che- less expression at inner margin): (0) absent; (1) lifores. present [E82; G113] (Bitsch, 2001; Scholtz, 2001).

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 238 G.D. Edgecombe - Myriapod stem-group

120. Mandibular base plate forming side of head: (0) 131. Pre- and metatentorium fused: (0) absent; (1) pre-

absent; (1) present [E83] (Manton, 1979). sent [G122] (Koch, 2000). 121. musculated flexor aris- Anterior tentorial cuticular Independently gnathal lobe, 132. arms: (0) absent; (1) the cranium: tentorium ectodermal ing dorsally on (0) absent; (1) present developing as invaginations;

[Cl 15] (Kluge, 1999; Staniczek, 2000). (2) cuticular fulcro-tentorium. Bitsch and Bitsch 122. Pectinate lamellae on mandible: (0) absent; (1) (2000: character 20) coded the fulcro-tentorium

See discussion in comb present. text (“Mandibular of (here state 2) as non-homologous with

lamellae”). the true tentorium of Ectognatha (state 1), and 123. Mandibular ‘shovel’ with terminal teeth: ab- (0) interpreted the endoskcletal formationsofCollem- sent; (I) 2001). present (Koch, bola and Diplura to be a complex endosternite 124. Second (anterior) mandibulararticulation with the composed of connective fibers rather than a cu- cranium, movement limited to transverse adduc- ticular tentorium.Koch (2000), however, endorsed tion around a horizontal axis of swing: (0) absent; homology between the anteriortentorial apodemes ( I ) [G1I6] (burst von Lievcn, 2000; Sta- present of Collembola, Diplura and Ectognatha, citing that anterior arti- niczek, 2000). Arguments an of identical sclerotic common points origin, e.g., culation is in present non-dicondylian hexapods connections with the labrum. Bitsch and Bitsch (Collcmbola, Diplura, Archaeognatha: Koch, 2001) (2002) allow that Folsom’s arms of Collembola, articulations are dismissed by Bitsch (2001); these which are cuticularstructures, are reasonably homo- are non-permanent. logised with the anteriortentorial plates of insects. 125. Ball-and-socket mandibular articulation: (0) ab- The slender rods considered as the tentorial apo- sent; (I) present, formed between clypeal condyle demes in Diplura ( Metajapyx) by Koch (2001) are and mandibularridges [G117] (burst von Lieven, regarded by Bitsch and Bitsch (2002) as tendons 2000; Staniczek, 2000). ofthe mandibularmuscle. This point ofview im- 126. Mandibularscutes: (0) absent; (1) present (man- plies an absence of anterior apodemes in Diplura. dible composed of 2-5 movable scutes formed by 133. Posterior suspension of anterior apodemes to cra- subdivision of gnathal lobe) [E85] (Boudreaux, nial wall: (0) absent; (1) present [G124] (Koch, 1979). 2000) (see discussion of character 132 for Diplura). 127. Pour sclerites of mandible intersecting at cruci- 134. Anterior tentorium: (0) absent (separate rod-like form suture: (0) absent; (I) present. Homologies anterior tentorial apodemes); (1) anterior part of of particular sclerites/laminae of the mandible in tentorial apodemes forms arched, hollow plates Chilopoda were considered by Manton(1965). Pour other remain that approach each mesially but sepa- consistently-defined sclerites in Scolopendromor- anterior tentorium roof rate; (2) an unpaired [G125] pha [=laminae condylifera, dentifera, triangularis (Koch, 2000). ORDERED and manubrii of Crabill (I960)] meet at a cruci- 135. Swinging tentorium (mandible adbucts by tento- form intersection [Ndhtekreuz of Verhoeff (1918 rial movements): (0) absent; (1) present [E89] in Verhoeff, 1902-1925)]. Coding is confined to (Manton, 1964). the telognathic mandibleof myriapods. 136. Mandibulararticulationwith tentorium: 128. Mandibular of third (0) gnathal palp: (0) present (appendage lobe articulates with epipharyngeal bar; (1) man- limb-bearing cephalic mctamere with telopodite); dible articulates with hypopharyngeal bar (Koch, (I) absentthroughout ontogeny;(2) present in larva, 2003). absent in adult [E86; G119]. 137. Suspensory bar from mandible: (0) absent; 129. Hand-shaped ‘movable appendage’ between pars (1) and molaris mandible: ab- present [E90] (Boudreaux, 1979). incisivus pars on (0) 138. connective lamina: sent; (1) present (Richter et al., 2002). Intergnathal (0) present; (1) absent (Bitsch and Bitsch, 2000; Staniczek, 130. Posteriortentorial apodemes: (0) absent; (1) present [GI28] 2000). as metatentorium.Posterior tentorial apodemes are lacking in myriapods. Manton (1964) regarded the 139. Mandibulo-hypopharyngeal muscle: (0) absent; (1)

anatomy, connections, and associated muscles of present [GI29] (Staniczek, 2000).

“posterior tentorial arms” in Collembola and Di- 140. Complete postoccipital ridge: (0) absent; (1) present

plura to indicate homology with the fused poste- [E91] (Staniczek, 2000).

rior tentorial bar (metatentorium) of Ectognatha. 141. Ovigers; (0) absent; (1) present [G131].

Koch (2000) defended this homology, but Bitsch 142. Salivary glands: (0) arise as ectodermal invagina- and Bitsch tions (2002) considered the structures in on second maxilla/labium; (I) arise as me-

question (lingual stalks of Collembola; hypopha- sodermal segmental organs offirst maxillae [E92]

ryngeal apodemes of Diplura - both fulturaesensu (Anderson, 1973).

Bitsch and Bitsch, 2002) to be entirely exoskel- 143, Opening of maxillulary salivary glands: (0) pair

etal structures, and thus not homologous with the of openings at base of second maxillae; (1) me- dian endoskcletal formations in insects. opening in midventral groove of labium; (2)

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 239

medianopening in salivarium, between labium and merged, bordering side of mouth cavity]: (0) ab- and hypopharynx [E93] (Bitsch Bitsch, 1998). sent; (1) present [E97] (Kraus and Kraus, 1994; 144. Maxillae on fourth limb-bearing metamere: (0) Dohle, 1998).

absent; (1) present [E94], 155. Coxae of second maxilla medially fused: (0) ab- 145. First maxillary precoxal segment: (0) absent; (1) sent (coxae of fifth metamere not fused); (1) present

present [E95] (Boxshall, 1998). [E104] (Dohle, 1985). 146. Numberof medially-directed lobateendites on basal 156. Comb-like fringe of simple bristles on tarsus of of first maxilla: podomcre (0) two endites; (1) one telopod ofsecond maxilla: (0) absent; (I) present. endite have comb-like [E96] (Boxshall, 1998; Walossek, 1999). Scolopendromorpha a fringe along

Applicability to non-crustaceans and possibly ho- the side ofthe tarsus ofthe second maxillary telopo- endites lacinia mologous (e.g., and galea) are un- dite [see, e.g., Scolopendra (Attems 1930, figs. 61, certain. 63; Borucki 1996, fig. 49); Cryptops (Attems 1930, 147. First Borucki identified maxillary palps: (0) present (telopodite present fig. 12)]. (1996, fig. 47) puta-

onappendage offourth metamere); (1) absent [E98] tively homologous elements, the kapillare Besen,

(Kraus, 1998). in Craterostigmus. The scolopendromorph kapillare

148. Hypertrophied maxillary palp: (0) absent; (1) pre- Besen differ from those of Craterostigmus in that denser of sent [E99] (Kristensen, 1998). a fringe simple bristles arises as outgrowths 149. First maxilla divided into cardo, stipes, lacinia, of a narrow band. In Craterostigmus, the fringe is and with similar musculation and function: galea, composed of bifurcating or multifurcating spines

(0) absent; (1) present [E100] (Manton, 1964; that arise directly from the edge of the telopodite,

Kluge, 1999). and intergradc with the terminal claw. 150. Interlocking of galea and superligua: (0) absent; 157. Symphylan-type labium (anterior plate with a row

(l)presenl [G14I] (Kristensen, 1998; Koch,2001). ofpapilla-bearing lobes distally and tapering proxi- 151. First maxilla coalesced with sternal intermaxillary mal arms that extend back to a pair of cervical

plate: (0) absent; (1) present, with unfused stipital sclerites): (0) absent; (1) present [G146] (Kraus and elements and intermaxillary components; (2) mental Kraus, 1994, 1996). consolidated 158. Linea ventralis: ofgnathochilarium [E10I], Pauropods (0) absent; (1) present [E105] and diplopods have classically been united based (Koch, 1997). Divided on the maxilla being combinedwith an intermax- 159. glossae and paraglossae: (0) undivided

illary plate, with similar embryonic relations be- pair of glossae and paraglossae; (I) glossae and

tween the components (e.g., Dohle, 1980, figs. paraglossae bilobed [El06] (Kristensen, 1991). This is fused in 160. Rotation of labial 10-13). complex chilognathan Anlagen: (0) absent; (1) present diplopods to form the gnathochilarium (state 2 [G149] (Ikeda and Machida, 1998). Hilken and and 161. Widened of labial here). and Kraus (1994) Kraus apical segment palp: (0) absent;

Kraus (1994, 1996) disputed the view that poly- (1) present [G150] (Kristensen, 1998).

xenid diplopods possess a true gnathochilarium 162. Collum covering posterior part of head capsule the median be the second and of II: (considering portion to part segment (0) absent; (1) present

maxillae) and restrict a “perfect” gnathochilarium [G152] (Enghoff, 1984).

to the Chilognatha. As noted by Ax (1999), the 163. Direct articulationbetween first and fourth articles

structural and functional union of the maxillae in oftelopodite ofmaxilliped: (0) absent; (1) present

pauropods and diplopods provides an apomorphy [El07] (Attems, 1926). Coxosternite regardless of whether or not second maxillae are 164. of maxilliped sclerotised in midline:

considered to be incorporated. The consolidation (0) coxae separated medially, with sternitepresent of the mental elements of the gnathochilarium in in adult; (1) coxosternal plates meeting medially,

Chilognatha (Wilson and Shear, 2000), with with flexible hinge; (2) coxosternal plates meet- lobi the specialised on stipes, is scored as a trans- ing medially, hinge sclerotised and non-functional

formation of the unfused stipital/palpal and inter- [El 08] (Shear and Bonamo, 1988). ORDERED in and Penicillata. coxosternite maxillary components Pauropoda 165. Maxilliped deeply embedded into cu-

ORDERED ticle above second trunk segment: (0) not embed- 152. Second maxillae on fifth metamere: (0) append- ded; (I) embedded [EI09] (Manton, 1965). trunk age developed as limb; (1) well developed 166. Maxilliped segment with pleurite forming a girdle

maxilla differentiated as mouthpart; (2) vestigial around coxosternite: (0) small lateral pleurite; (1)

appendage; (3) appendage lacking [El02]. large girdling pleurite [El 10] (Manton, 1965). 153. Egg tooth on second maxilla: (0) absent (no em- 167. Tergite of maxillipede segment fused with tergite fifth bryonic egg tooth on cuticle of limb-bearing of first pedigerous segment; (0) separate tergites; Fusion of the metamere); (1) present [E103] (Dohle, 1985). (1) single tergite. maxillipede terg- 154. Maxillary plate [basal parts of fifth limb-bearing ite to the first pedigerous trunk tergite is unique

metamere (second maxilla or labium) medially to Scolopendromorpha.

Downloaded from Brill.com10/09/2021 01:58:52PM via free access - 240 G.D. Edgecombe Myriapod stem-group

168. Sternal muscles truncated in maxilliped segment, 186. Gut caeca; (0) absent; (1) present along midgut; into head: sternal muscles not extending (0) ex- (2) restricted to anterior part of midgut [E124;

tended into head; (1) sternal muscles truncated G175] (Clarke, 1979; Bitsch and Bitsch, 1998). [El 11] (Manton, 1965). 187. Proctodeal dilation: (0) posterior section of hind- 169. tooth Maxilliped plate (anteriorly-projecting, ser- gut simple, lacking a dilation; (1) proctodeum

rate coxal endite): (0) absent; (1) present [El 12] having a rectal ampulla with differentiatedpapil-

(Shear and Bonamo, 1988). lae [E125] (Bitsch and Bitsch, 1998). 170. absent; Maxilliped poison gland: (0) (1) present 188. Peritrophic membrane: (0) absent; (1) present

[El 13]. [E126] (Clarke, 1979). 171. distal fused Maxilliped segments as a tarsungulum: 189. Radiating, tubulardiverticulawith intracellularfinal (0) tarsus and tarsus and separate pretarsus; (1) phase of digestion: (0) absent; (I) present [E127] fused as tarsungulum [El (Borucki, pretarsus 14] (Snodgrass, 1952). 1996). 190. Prosomal / opisthosomal boundary; (0) absent; (1) 172. Oblique muscle layer in body wall, with fibres behindsixth prosomal appendage pair [El28] (Wa- organised in a chevron (0) absent; (1) pattern: loszek and Dunlop, 2002). [El 15] (Storch and 1993). present Ruhberg, furrows 191. Transverse on prosomal carapace corre- 173. Longitudinal muscles: (0) united sternal and lat- sponding to margins ofsegmental tergites: (0) ab- eral longitudinal muscles; (1) separate sternal and sent; (1) present [E129] (Shultz, 1990). lateral longitudinal muscles, with separate segmen- 192. Fusion of all (opisthosomal) tergites behind oper- tal tendons [El 16] (Manton, 1965). cular into thoracetron: tergite a (0) absent; (1) 174. Superficial pleural muscles: (0) absent; (1) present present [G181] (Anderson and Selden, 1997). [El 17] (Manton, 1965). 193. Opisthosoma greatly reduced, forming a slender 175. ‘Box truss’ trunk axial musculature including cros- tube emerging from between the posteriormost legs, sed, oblique dorsovcntral muscles, paired anterior with terminal anus: (0) absent; (1) present [G182]. and posterior oblique muscles: (0) absent; (1) pre- 194. Lamellaterespiratory derived from poste- The organs sent [El 18], dorsoventral suspensors of the rior wall of opisthosomal limb buds; (0) absent; endosternum and the abdominal dorsoventral mus- (1) present [G183] (Dunlop 1998). arachnids cles of lack certain muscles, e.g., ante- 195. Position of lamellate respiratory organs: (0) on rior oblique muscles (Shultz, 2001) of the box-truss opisthosomal segments 3-7; (1) on opisthosomal arrangement of mandibulates, but Shultz (2001) segments 4-7; (2) on opisthosomal segments 2-3 indicated that the axial muscles of the [G184], in Limulus share all components. 196. Type of lamellaterespiratory (0) book gills; 176. Deep dorsoventral muscles in the trunk; (0) ab- organs: (1) book lungs [G185]. sent; (1) present [El 19] (Manton, 1965). 197. Appendage on first opisthosomal segment: (0) 177. Circular body muscle: (0) present; (1) suppressed appendage on first opisthosomal [E120], present segment in post-embryonic stages; (1) appendage absent 178. Discrete segmental cross-striated muscles attached [El31; G186] (Shultz, 1990). to cuticular apodemes: (0) absent; (1) present chilaria: 198. LimbVII as (0) absent; (1) [G187] [E121 ] (Nielsen, 1995). present

199. First opisthosomal nar- 179. Abdominal muscles: (0) straight; (I) twisted [E122] segment: (0) broad; (1)

developed as (Manton, 1972). row, pedicel [G188] (Shultz, 1990;

180. Proventriculus in the foregut: (0) absent; (1) present Dunlop, 1996). 200. Abdomen somites between the termi- [E123] (Bitsch and Bitsch, 1998; Kdass, 1998)1 (limb-free nal and 181. Lateralia and inferolateralia in the cardiac cham- segment limb-bearing trunk segments, pos-

terior to domain of Ubx, abdA and ber: (0) absent; (1) present [G170] (Richter and expression

Scholtz, 2001). abdB): (0) absent; (1) present [E137] (Grenier et 182. Unpaired superomedianum at transition from car- al., 1997). 201. Pereion dia to pyloric chamber: (0) absent; (1) present tagmosis: (0) one locomotory tagma; (1) [G171] (Richter and Scholtz, 2001). two locomotory tagmata [E138; G190] (Walossek,

183. Inferomedianum antcrius (midventral cardiac 1999; Abzhanov and Kaufman, 2000).

ridge): (0) absent; (1) present [GI72] (Richter and 202. with three limb-bearing segments; (0) ab-

Scholtz, 2001). sent; (1) present [El39],

184. Inferomedianum posterius (midventral pyloric 203. Meso- and metathorax in mature stages bearing

ridge): (0) absent; (1) present [GI73] (Richter and wings: (0) absent; (1) present [G192],

Scholtz, 2001). 204. Wing flexion: (0) absent; (1) present [G193] (Pfen- 185. Atrium between the inferomedianaconnecting the nig, 1969).

cardiac filter with the filter 205. of primary grooves pyloric Segmentation pleon: (0) seven segments; (I)

grooves: (0) absent; (1) present [G174] (Richter six segments (including sixth pleomere fused with and Scholtz, 2001). telson) [G194] (Richter and Scholtz, 2001).

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 241

206. Diplosegments: (0) absent; (1) present [E140] (Eng- 217. Elongate coxopleurites on anal legs: (0) absent;

hoff, 1984). (1) present [E148] (Borucki, 1996). 207. Endosternum (ventral tendons fused into prosomal 218. Pleuron filledwith small pleurites: (0) absent; (1)

endosternum): (0) absent; (1) present [E141], Va- present [E149]. rious arthropods have mesodermally-derived en- 219. Complete body rings: (0) absent (sternites and/or doskeletal of matrix offibrils structures composed a pleurites free); (1) present (Enghoff et al. 1993). Bitsch and (summarised by Bitsch, 2002) but the 220. Longitudinal muscles attach to intersegmental ten- chelicerate endosternum be characterised dons: can by (0) absent; (1) present [E150] (Boudreaux, its consolidationofmultiple prosomal tendons and 1979).

serving as the attachment site of extrinsic many 221. Lobopods with pads and claws: (0) absent; (1) muscles ofthe pedal coxae (Firstman, 1973; Shultz, present [El33],

2001). 222. Articulated limbs with intrinsic muscles: (0) ab- 208. Dorsal cndosternal suspensor of fourth postoral sent; (1) present [EOS] (Nielsen, 1995). segment with anterolateral carapacal insertion: (0) 223. Fundamentally biramous post-antennal limbs (en- absent; and (1) present [G197] (Shultz, 1990). dopod exopod): (0) absent; (1) present [El36; 209. Tergal scutes extend laterally into paratergal folds: G213] (Walossek and Muller, 1998a, b). 224. (0) absent; (1) present [El42; G198] (Boudreaux, Coxopodite(s) with gnathobasic endite lobes me-

1979). dially: (0) absent; (1) present [E151; G214] (Wti- 210. Paramediansutures: (0) absent; (1) present [E143] gele and Stanjek, 1995). 225. of basis and (Manton, 1965). Protopod composed coxa or proxi- 211. sclerites: mal endite: Intercalary (0) absent; (1) developed as (0) absent; (1) present [E160; G215] small and rings; (2) developed as pretergite preste- (Walossek and Muller, 1990, 1998a, b). rnite OR- 226. [EI44] (Manton, 1965; Dohle, 1985). Paddle-like epipods: (0) absent; (1) present [El66] DERED (Flessler, 1992). 212. Trunk heterotergy: (0) absent; (1) present (alter- 227. Trunk limbs with lobate endites formed by folds and short with reversal of nating long tergites, in limb bud, with indistinct proximal-distal axis

lengths between seventh and eighth pedigerous of polarity: (0) absent; (1) present [E167] (Will-

segments) [El45] (Borucki, 1996). iams, 1999; Schram and Koenemann, 2001). 213. Trunk sternites: each with 228. Coxal (0) segment large ster- swing: (0) coxa mobile, promotor-remotor sternal divided into hemisternites between num; (1) area two swing coxa and body; (1) coxa with lim- linea ventralis sternal ited by ; (2) area mostly mem- mobility or immobile, promotor-remotor swing

branous, with pair of small sternites; (3) sternal between coxa and trochanter [El52], plate (at least that of thoracic segments II and III) 229. Coxopodite articulation: (0) arthrodial membrane;

bears a Y-shaped ridge/apodeme; (4) sternites ex- (1) pleural condyle; (2) sternal condyle; (3) ster- tended rearwards to form substernal laminae; (5) nal and pleural condyles; (4) internal plate [E153;

thoracic sternal areas reduced and partly invagi- G2I9] (Manton, 1972). nated median sternites along line; (6) lacking 230. Coxal vesicles; (0) absent; (1) present at limbbase and [G202] (Bitsch Bitsch, 2000). on numerous trunk segments; (2) on distal part of 214. Trunk endoskeleton in each segment: (0) pair of first abdominal appendage [El55] (Dohle, 1980;

lateral connective plates; (1) pair of sternocoxal Klass and Kristcnsen, 2001).

rods (ventral apodemes); (2) complex connective 231. Styli: (0) absent; (1) present [E156] (Dohle, 1980).

endosternite; (3) endoskeleton mainly cuticular, 232. Musculi laterales: (0) absent; (1) present [G223]

composed of two intrasegmental furcal arms and (Shultz, 1990).

an (Bitsch 233. intersegmental spinal process [G203] Coxotrochanteral joint; (0) simple; (1) complex and Bitsch, 2000; Klass and Kristensen, 2001). [G224] (Shultz, 1989, 1990).

215. Pleural of trunk ab- 234. Trochanteronotal part segments: (0) plcurites muscle: (0) absent; (1) present sent; (1) supracoxal arches (catapleural and ana- [G225] (Bitsch and Bitsch, 2000).

pleural arches) on each segment; (2) pleural part 235. Trochanter distal joint: (0) mobile; (1) short, ring- ofthoracic II and III of like trochanter segments consisting single lacking mobility at joint with pre- with large pleural process; (3) pleuron in femur [El57] (Manton, 1965). each thoracic consists of sclerite segment single 236. Trochanterofemoraljoint ofwalking legs: (0) trans- divided into anterior and posterior parts by pleu- verse bicondylar; (1) vertical bicondylar [G227] ral suture, from which pleural apophysis is invagi- (Shultz, 1989, 1990). internal nated, end connectedto furcal arm [G204] 237. Unique trochanteral femur-twisting muscle; (0) and (Bitsch Bitsch, 2000). absent; (1) present [G228] (Kristensen, 1998). 216. Procoxal and metacoxal pleurites surround coxa: 238. Monocondylic femur-tibia pivot joint: (0) absent; absent (0) pleurites or incompletely surrounding (1) present [G229] (Kristensen, 1998). and surround coxa; (1) procoxa metacoxa coxa 239. Patclla/tibiajoint: (0) free; (1) fused [E168] (Kris-

[El47]. tensen, 1991).

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 242 G.D. — Edgecombe Myriapod stem-group

240. Patellotibial of dorsal joint legs: (0) mono- 256. Abdominal segmentation: (0) six segments; (1) 10

condylar; (1) simple bicondylar; (2) vertical bi- segments; (2) 11 segments;(3) 12 segments [G246] condylar [El69; G231] (Shultz, 1989, 1990). (Ikeda and Machida, 1998).

241. Femoropatellar joint: (0) transverse dorsal hinge; 257. Annulated caudal filament:(0) absent; (1) present

(1) bicondylar articulation [EI70] (Shultz, 1989, [El76] (Kristensen, 1998).

1990). 258. Abdominal segment XI modifiedas cerci; (0) ab- 242. of muscle: arises Origin posterior transpatellar (0) sent; (1) present [E178] (Kristensen, 1991).

on distodorsal surface of femur, traverses femoro- 259. Articulate furcal rami: (0), absent; (1) present ventral axis of receives patellar joint to rotation, [E179] (Walossek and Muller, 1992).

fibres from wall of patella; arises on distal (1) 260. Uropods: (0) absent; (1) present [G250] (Richter of process femur, traverses femoropatellar joint and Scholtz, 2001).

dorsal to axis of rotation, does not receive fibres 261. Styliform post-anal telson: (0) absent; (1) present from patella [E171; G233] (Shultz, 1989). [G251] (Bergstrom et ah, 1980). 243. Elastic arthrodial sclerites spanning tibia-tarsus Paired terminal 262. : (0) absent; (1) present joint: (0) absent; (I) present [G234] (Shultz, 2000). [G252] (Kraus and Kraus, 1994). 244. Tarsus segmentation: (0) not subsegmented; (1) 263. Anal segment with a pair of large sense calicles, subsegmented [El73]. each with a long sensory : (0) absent; (1) present 245. Tarsal organ: (0) absent; (1) present [G236] (Selden [G253] (Scheller, 1982). ct ah, 1991). 264. Egg cluster guarded until hatching, female coil- 246. Origin of pretarsal depressor muscle: (0) pretarsal ing aroundegg cluster; (0) absent; (1) females coils depressor originates on tarsus; (1) pretarsal de- ventrally around cluster; (2) female coils dorsally pressor originates on patella [E158; G237] (Shultz, around cluster [El80] (Dohlc, 1985; Bonato and 1990). Minelli, 2002). 247. Pretarsal levator muscle: (0) present; (1) absent 265. Peripatoid and foetoid stages protected by mother: (depressor is sole pretarsal muscle) [E159] (Snod- (0) absent; (1) present [G255] (Dohlc, 1985). grass, 1952). 266. Female used to manipulate single eggs 248. Pretarsal claws; (0) paired; (1) unpaired [E172; (0) absent; (1) present [E182] (Ax, 1999). G239], 267. Female abdomen with formed by gona- 249. Pretarsal claw(s) articulation: (0) on pretarsal base; pophyses of segments VIII and IX: (0) absent; (1) (1) on distal tarsomcre [E174] (Beutel and Gorb, present [E183; G257] (Bitsch and Bitsch, 2000). 2001). 268. Gonangulum sclerite fully developed as oviposi- 250. Plantulae: (0) absent; (1) present [G241] (Minet tor base, articulating with tergum IX and attached and Bougoin, 1986). I s to 'valvula/valvifer: (0) absent; (I) present [El84] 251. Tracheae/spiracles: (0) absent; (1) pleural spiracles; (Kristensen, 1981, 1998). (2) spiracles at bases of walking legs, opening into 269. Ovipositor opening at anteroventral part of opi- tracheal pouches; (3) single pair of spiracles on sthosoma: (0) absent; (I) present [G259] (Shultz, head; (4) dorsal spiracle opening to tracheal lungs; Giribet et tracheae with second 1990; ah, 2002). (5) open-ended spiracle on 270. Legs on seventh trunk segment transformed into opisthosomal segment; (6) many spiracles scat- absent; tered on body [E161 ] (Hilken, 1998). gonopods: (0) (1) present [G260] (Enghoff ct ah, 1993). 252. Longitudinal and transverse connections between 271. Dignathan-type (0) absent; (1) segmental tracheal branches: (0) tracheae not con- penes: present

nected; (1) tracheae connected [E162] (Dohle, [E186] (Dohle, 1980). 272. anteroventral 1985; Bitsch and Bitsch, 1998). (spermatopositor) opening on of 253. Pericardial tracheal system with chiasmata: (0) part opisthosoma: (0) absent; (1) present [G262]

et dendritic tracheae; (1) long, regular, pipe-like tra- (Giribet ah, 2002). Male cheae with specialised moulting rings [E163] (Hil- 273. parameres: (0) undifferentiated; (1) pair of

ken, 1997). ‘lateralplates’ on segment XI; (2) pairofparameres

254. Abdominal spiracles; (0) present (pleural spiracles on segment IX (second pair variably present on first VIII); into on posterior part of trunk); (1) absent on segment (3) incorporated phallic appa- abdominal absent all abdominal sclerites and segment; (2) on ratus as [G263] (Bitsch Bitsch, 2000).

segments [E164] (Stys and Bilinski, 1990; Larink, 274. Penis on abdominal segment IX: (0) absent; (I)

1997). present [G264] (Bitsch and Bitsch, 2000).

255. Spiracle muscles: (0) absent; (1) present. Muscles 275. Male location: (0) posterior end (opi- with function insert the dorsal and an apodemal on sthogoneate); (1) somite 11 (sixth pereion segment);

ventral sides ofthe subatrial pocket/tracheal pou- (2) somite 12 (seventh pereion segment); (3) somite ches in and scolopendromorphs, e.g., Scolopendra 8 (first opithosomal segment); (4) behind legs of but in other examined Cryptops, not chilopods by somite 8 (second pair of trunk legs); (5) somite Fuller (I960) or Hilken (1997, 1998). 13 (eighth pereion segment); (6) somite 17 (twelfth

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 243

(7) somite 16; (8) on pereion segment); multiple ture sperm; (4) doubletcentrioles, each with a radial between leg bases; (9) segments VIII and IX, more ‘foot’ [E196; G281] (Jamieson et ah, 1999) less hidden bind border of or by sternum VIII; 292. Centriole adjunct; (0) absent; (1) present [E197;

(A) somite 19 (fourteenth trunk segment) [E187; G282] (Jamieson et ah, 1999). 293. bodies’ G265], Sperm ‘accessory developed from the cen- 276. Female gonopore position: (0) on same somite as triole; (0) absent; (1) present [E198] (Jamieson,

male; (1) two segments anterior to male; (2) six 1987; Dallai et al„ 2003).

segments anterior to male; (3) seven segments 294. Cristate, non-crystalline mitochondrial derivatives anterior male to [El88; G266]. in sperm: (0) absent; (1) present [E199] (Jamieson, 277. Genital divided, operculum incorporated into pe- 1987). dicel: 295. bands between (0) absent; (1) present [G267] (Shultz, 1990). Connecting axoneme and mitochon-

278. Genital third dria: operculum overlapping opisthosomal (0) absent; (1) present (Dallai et al., 2003). sternite: (0) absent; (1) present [G268] (Shultz, 296. Supernumary axonemal tubules (peripheral sin-

1990; Dunlop, 1999). glets); (0) absent; (1) formed from the manchette; 279. Postgenital appendages: (0) opercular and/or lamel- (2) formed fromaxonemal doublets [E200] (Dallai

lar; (1) poorly sclerotized or eversible; (2) absent and Afzelius, 1993, 1999). (Shultz, 1990). [G269] 297. Number of protofilaments in wall of accessory 280. Embryonic gonoduct origin: (0) gonoduct arising tubules: (0) 13; (1) 16 (Dallai and Afzelius, 1999). mesodermal aris- 298. Axonemal as a coelomoduct; (1) gonoduct endpiece ‘plume’: (0) endpiece not ex- ectodermal ing as a secondary ingrowth; (2) tended; (1) endpiece extended, plume-like [E201] gonoduct arising in association with splanchnic (Jamieson, 1986).

mesoderm 299. [El89] (Anderson, 1973). Sperm flagellum: (0) present; (1) absent [E203]. 281. Lateral testicular vesicles linked a central, 300. Nucleus of forms by pos- sperm spiral ridge; (0) absent; deferens duct: teriorly-extended (0) absent; (1) (1) present-[E202; G288] (Dohle, 1985; Alberti,

present [El91] (Prunescu, 1996). 1995).

282. Testicular follicles with 301. Nucleus of pectinate arrangement: (0) sperm with a manchette of microtu- absent testicular bules: (elongated sac or sacs); (1) sev- (0) absent; (1) present [G289] (Alberti, eral pectinate follicles present [El92] (Bitsch and 1995).

Uitsch, 1998). 302. Coiling of spermatozoan flagellum: (0) absent (fili- 283. web form Spcrmatophorc produced by ‘SpingriffeT sperm); (1) present [G290] (Alberti, 1995). structure: absent; 303. Medial microtubules in (0) (1) present [E193; G274] spermatozoan axoneme:

(Dohle, 1985). (0) two (9+2); (1) three (9 + 3); (2) none (9 + 0) 284. “By-passing” foreplay, spermatophore transfer on [G291] (Alberti, 1995). web, ritual female: 304. “waiting” by (0) absent; (1) Sperm conjugation: (0) absent; (1) present [G292]

present [G275] (Sturm, 1997). (Dallai et al., 2001). 285. Bean-shaped spermatophore with tough multilay- 305, Female spermathecae formed by paired lateral

ered wall: (0) absent; (1) present (Edgecombe et pockets in mouth cavity: (0) absent; (1) present al., 1999: character 112). [G293] (Kraus, 1998). 286. Sperm dimorphism: (0) absent; (1) present (micro- 306. Ovary shape: (0) sac- or tube-shaped, entire; (1)

sperm and macrosperm) [E194; G276] (Carcupino divided into ovarioles; (2) ovarian network [E204]

et al., 1999; Dallai and Afzelius, 2000). See Giribet (Makioka, 1988; Stys et al., 1993).

et al. (2001: footnote to character 276) for taxo- 307. Asymmetry of oviducts and ejaculatory ducts: (0) nomic of characters. left and ducts left ducts sampling sperm right symmetrical; (1) ru- 287. Acrosomal in filamentous actin complex sperm: (0) dimentary or absent. Dominance or presence of perforatorium present; (1) monolayered (perfora- the right ejaculatory duct alone is shared by Scolo- torium absent); (2) acrosome absent [El95; Gill] pendromorpha, including Cryptops and Scolopen-

(Jamieson et al., 1999). dra (Prunescu, 1997) but not other chilopods. Most 288. Perforatorium bypasses nucleus: (0) absent (per- scolopendromorphs, including Cryptops and Scolo- foratorium also have penetrates nucleus); (1) present [G278] pendridae, at most a rudimentary left (Jamieson, 1991). oviduct (Prunescu, 1997). 289. Periacrosomal material: 308. Location (0) absent; (1) present of ovary germarium: (0) germarium forms

[G279] (Jamieson, 1987). elongate zone in the ventral or lateral ovarian wall; 290. Striated core in subacrosomal absent; in the terminal space: (0) (1) germarium part of each egg (I) present [G280] (Baccetti and Dallai, 1978; tube; (2) single, medianmound-shaped germarium Dallai and the ovarian Afzelius, 2000). on floor; (3) paired germ zones on 291. Centrioles in sperm: (0) proximal and distal cen- ovarian wall [E205; G295] (Makioka, 1988;Yahata trioles present, not coaxial; (1) coaxial centrioles; and Makioka, 1994; Bitsch and Bitsch, 1998). centrioles absent in 309. Site for (2) single centriole; (3) ma- oocyte growth; (0) in ovarian lumen; (1)

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 244 G.D. Edgecombe - Myriapod stem-group

be- on outer surface ofovary, in hemocoel, connected of main expression domain ofproboscipedia

by egg stalk [E206] (Makioka, 1988; Ikuta and hind anterior boundary ofDeformed. The general condition of of is Makioka, 1999). colinearity Hox genes upstream

310. Coxal organs: (0) absent; (1) present [E207] (Ro- altered in insects (Abzhanov and Kaufman, 1999), senberg, 1983). in which the main expression ofproboscipedia is

311. Crural glands: (0) absent; (1) present [E208] (Storch in the maxillaand labium. This is shared by Ther-

and Ruhberg, 1993; Monge-Najera, 1995). mobia, in which pb expression more anteriorly (in

312. Pair of repugnatorial glands in the carapace: (0) the intercalary segment) is weak and transient. 316. domain: absent; (I) present [G299] (Giribet et al., 2002). Deformed expression (0) expressed over

313. Pleural defense with three confined glands benzoquinones: (0) or more segments; (1) expression

absent; (I) present [G300] (Enghoff, 1984). to mandibular and first maxillary segment. De- 314. labial expression domain:(0) expressed over multi- formed expression in arachnids is strong on all confined second four and the mandibular ple segments; (I) expression to walking leg segments, on

antennal/intercalary segment. The Hox gene la- and both maxillary segments inLithobius(Hughes

bial has strong expression in the segment and Kaufman, 2002a, b). It is expressed on the

of arachnids (the araneomorph Cupiennus coded mandibular and first maxillary segments alone in

as a proxy for ; Damen et al., 1998) crustaceans and insects. Taxonomic sampling is

and in the intercalary segment in Lithobius (Hughes as in the preceding character, with Steatoda and and and Achaearanea Kaufman, 2002a), weak or transient ex- (Abzhanov et al., 1999) providing

pression in additional, more posterior segments. additional data for spiders.

In crustaceans and insects, labial expression is 317. Antennapedia expression domain: (0) strong

confined to the second antennal and intercalary throughout trunk; (1) restricted from the posterior

segments, respectively (Hughes and Kaufman, of embryo (Hughes and Kaufman, 2002b).

2002a, b) (Diederich et ah, 1989 for Drosophila). 318. Relative position ofCOl and COII: (0) COI/COI1;

UUUR Codings use data from Porcellio (Abzhanov and (1) C0I/tRNA VC011 [E210; G302] (Boore et

Kaufman, 1999) for Onsicidea, and al., 1995, 1998; Lavrov et al., 2002). of 319, Relative L

315. proboscipedia expression domain:(0) colinear with tRNA UUUR,/NDl [E211;G303] (Boore etal, 1995,

labialand Deformed domains; (1) anterior boundary 1998).

Table / - Codings for 319 characters listed in Appendix 1. Multistate taxa are in the form “(1/2)” (=either 1 or 2 but not 0).

Peripatidae ???????0??7777777077 -?100?0000-710070000 0-00010??0 100-0011??

- — 0???10-0?0 0????????0 --74--00--i i •o O 0 1 1 0--0- 00-?0-00-70- 0--?-?-?l-0 ?-?-?!-

----03--?-03--? 440-0o- o -0 ?-- 0?-0o f'* o 1 I 1 1 1 1

- — -X-7--000-- 0010- o0 0 -00--0000- -00 --???__777 0o

0 — 00000-0-00 00??00 0 1000-00--0 0???-???-?0???-77?-? ?-? 7 66 000-

000??0???? 200001?0002000017000 00700020100070007010 100??????1nn?99999

Peripatopsidae 1100?0?0?0 -010070000 0-00?10??0 100-0011??

i 1 — 1 1 1 1 1 1 - - 1 1 0 -?-?!- 00??10-000 0000000000 --74--00--•o o 0 1,0-- 00-70-o o o 0 ?-?-?!-

1 1 1 1 1 -03--? 40-0 -0- 0 ?-- 0?-0o 1 o 1

1 1 1 l 1 __777 o -— -1-7--000- 0010- 1 0O 0O -00--00 --??? 0

1000-00--0 0???-???-? --?-?--?--_-7-7-_7-- 66 000- 00000-0-00 00??00 0

000??02 2000017000 0070007010 100????00100????00

Eutardigrada 0?00?0???? -?100?00?0 0-0010-??0 000-0700-?

1 1 1 1 1 - - - 00-?0- 0o--7-7-71--?-?!- 0????0-010 0????????00777777770 c- o o 0o 00-?0-

1 1 o -0 0 •o 1 0 1 1 1 1 1 1 -00--?o o 1 o- 00-0o 0- ?-- 0?-0

0 0 o 1 1 O 1 O 1 — --0-?0?110- 0000- ---0 0 -00--00-0-0 0 --???__777 0o

0100-00--0 0???-???-? --?-?--?--__7_7__7__ o 000-ooo- 00000-0-00 00??00 ?

000??00?00 ????00-001 ?00000?1?0?00000?1?0 000????00000????00

EndeisEndels 000????0?? -?000?1011 00?010-??0 000-0001??

1 1 1 M 00???0?0?1 07777777710????????1 —?0•o 0 1 1 1 0 1 100 10-?0-O •O O 0-??-?-01-

-02 -000 ?0- 0-0o-o -0 ?-- l?-0-?00--17-0-700-- 00000?

--0? 00 ?0??-?1100 10010 1-10--0000 -00--00-00-00--00-00 00??? 0

0100000000 0?0?00???0 ??01?00??- 0 0000 00000-0-00 00??80 0

9 9 *? 9 000??0???? ????????0?7777777707 ?0?000?010 n000??????nn •?

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 245

Table I - Continued.

000-0001??000-00017? Colossendeis ???????0?? -??00?1011-770071011 00?010-??0007010-770

00???0?0?1 0?????'???10????????1 --?0 0-- 100 10-?0-10-70- 0-??-?-01-0-77-7-01-

0-0o-o -0 ?-- l?-0-?00--17-0-700-- 00000?000007 -0 --003--?0--- 003 --?0-

00???00777 0 --1 1 0?O •o 1 o00o ?0??-?1100 10010 1-10--0000 -00--00-00

0100000000 0?0?00???0 ??01?00??- 00 0000 00000-0-00 00??80007780 0

000999999000?????? 000???????0009999999 ?????????? ????00???09999009990

Ammotheidae 0?0????0?? -?000?1011-700071011 00?010-??0007010-770 000-0001??000-00017?

- 10- ?0- 0-77-7-01- 007700707100??00?0?1 00?710000100P7100001 --?0- - 7 0 00--- 100 10-70- 0-77-7-01-

--?--?0-0- 0-0 -0 ?-- 17-0-700-- 00000700000? -02 - 0003 0-0 -0 ?-- 17-0-700--

-00--00-00 00??? 00 --- - 0? 00 ?0??0??-?1100?- 71100 10010 7-10--0000 -00--00-00

00000-0-00 00??80 0 0100000000 0?0?00???00?0?00???0 ??01?00??- 0 0000 00000-0-00 007780 0

000??0????000??0???? ????????0? ?0?000???07070007770 000??????000999999

Limulus 0101?0?0??010170707? 0?100?10110710071011 007011170000?0111?00 000-0001??000-00017?

00??0000?1 1010100001 --730-- 7300010000100 710300 --7700-210 0-00-7-000

- 07-0-700-- 000007 002 -0000--00- 0-0o-o -00 ?--

00??? 0101 - -0? 00 ?0??1?11007077171100 1001110011 0101000100 -00--01010 0077?

0111000000 0007007770000?00???0 000070077- 0o 0000 10000-0-00 007730000?

000777700 0007700000000??00000 100000-000 00000270100000027010

0070711700 000-07017? CarcinoscorpisCarcinoscorplus 01017070720101?0?0?2 0710071011 0070711700 000-07017?

00???000?1 !????????!1777777771 --?30001?0--73000170 710300710300 --7700-210 0-00-7-000

002 -0070--70--00?0--?0- 0-0 -0-0 ?-- 07-0-700-- 00000700000?

-00--01010-00--01010 0070077?7? 0101 --0?--0 7 0000 7077171100?0??1?1100 10011 0101000100

10000-0-00 007730000? 01110000000111000000 000?00???00007007770 000070077- 0o 0000

00077000000007700000 100000-000 0020027010 0007?????0007?????

Buthidae 010070707?010070707? 07100710110710071011 0010711700 010-00017?

--77010010 0-00-7-001 107700101110??001011 1017100001 --71--0000 7-0310 ?-- 000007 102 --0013--70-0013 -- 70- 0-0 -0 ?-- 07-0-700--

0101 --0?- - 0? 00 7077071100 10011 1001111000 -00--01010-00--01010 0077?

01010001-0 0007007771 111101077- 0 0000 10000-0-00 0077300000

0000000700 100000-000 0020027010 000777700

00707117100070711710 010-00017?010-000177 Mygalomorphae 0100707072 1710071011

- --77010010-- 010 010 0-01-7-000 107770101110???01011 17177777711?1??????1 --71--0000--71--0000 : 7-1310 7 7

002 -H-3--00--11-3--00- 0-0 -0 ?-- 07-0-700-- 00000?00000?

0077? 01 I--1 0001211010 -00--01100 0077? 0?O •o o00o 7077071100?0??0?1100 10011

0077301110 01000001-0 0117007770 000111077- 0 0000 00000-0-00

000??0????0007707777 100000--01 11100070101110007010 00000007700000007?

Mastigoproctus ???????0??,999999099 1?100?10111710071011 00?0?11?100070711710 010-0001??010-00017?

-- 0-01-7-000 17770010711???0010?1 1010100071 --71--0070 7-1310 --770100107 7010010

002 -H-3--70--11-3--70- 0-0o-o -0 ?-- 07-0-700-- 00000700000?

-00--01100 0077? 01 --0? 00 7077071100 1001110011 0001211010

0077301120 01000001-0 0117007770 000111077- 0 0000 00000-0-00

0007700700000??00?00 100000--01 1110007010 000??????000999999

Phalangiidae 070070707? 7710071011 0070711700 000-070177

17770000111???000011 1010100001 --70 0-- 310 --7710-010-- 7710 - 010 0-00-7-001

102102- -0013--70- 0-0 -0 ?-- 07-0-700--07-0- 700-- 000007

- 01 --0?- 0? 00 70770711007077071100 10011 1000--1000 -00--01000 0077?00777 01

017730002? 01010001-0 00070177720007017772 111101077- 5 0000 00000-0-10

0007702000??02 -0-0 10 0--0007710 0109999990107?????

Nipponopsalis ???????£)??9999999099 ??100?10117710071011 00?0?11?000070711700 000-o?oi??000-07017?

1????000?1 !????????! ---?0- 70 0-- 310 --??10-010--7710-010 0-00-7-00?0-00-7-007

102 -0073--70- 0-0 -0 ?-- 07-0-700-- 00700?

0077? 0101 --0?--0? 00 70770711007077071100 10011 1000--1000 -00--01000-00--01000 0077?

01010001-0 00070177720007017772 171101077- 5 0000 00000-0-10 017730002?

000???????0 n n 7 7 9 9 9 9 9 ?????????? 9999009990????00???0 010??????010999999

000-0?01??000-07017? Equitius ???????0??9999999099 ??100?10117710071011 00?0?11?000070711700

1????000?11777700071 !????????! —?0- - 7 0 0--0 310 --7710-010 0-00-7-001

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 246 G. D. Edgecombe - Myriapod stem-group

Table / - Continued.

102 -00?3--?0--0073--70- 0-0 -0 ?-- 07-0-700-- 00700700700?

0077? .-0?- - 0? 00 7077071100 10011 0000--1000 -00--01000 0077? 01

01010001-0 0007017772 111101077- 5 0000 00000-0-10 017730002?

0007702000??02 -0-0 10 1--0007770 010??????m 0999999

Scutigeridae ??01?0?{l/2}?7770170?{1/2}7? -700001011 0071711201 0010000100

007770101200???01012 007777777719 9 9999991 0072--0010 -7777000-- --0000-010 0007-0010-

-01000100- 0 22--710- - 710 110--10100 -10000100- 0001-7000- 0110000

7-00000001 0000101100 00100 -0-0 0-0 -00--00-00 0107100001

0101000020 0770177707 7-7177110- 400-0-0000 0000010-00 000000000000 0

000999999 0000010000 210000-101 0000000770 000??????

Lithobius ???????{???????{1/2}7?l/2}?? -700001011 0171711201 0010000101

0???0010120777001012 0017000011 0102--0000 7-00--7 - 00-- --0000-010 0007-0010-

-01000000- 0 2--710 110--10100 -10010100- 0001-7000- 0110100

7-01000001 1000101100 00100 -0-0 0-0 -00--00-00 0100100001

0000010-00 000000 7 0101000020 07701777070??01???0? 7-7177110- 10000-0000 0000010-00 000000

0010011-00 210000-101 0000000001 000000100

Craterostigmus ???????{l/2}?????????{1/2}7? -700071011-?000?101X 01???110010177711001 001007011000100?0110

0????0?0?20777707072 09999999910????????1 0102--00??0102--007? ???????0-- --0000-010 0007-0010-

-010000007 0 2--7102 - - 710 110--10100 -10010100- 0001-7000- 0170100

7-02110111 1011111100 -----0070000700 -0-0 0-0 -00--00-00 1107101001

0101000020 07701777070??01???0? 7-7077110- 10000-0000 00010-0-00 000000 7

1017071-00 7100777101 0077000771 0007?????nnn999999

00?0?110000070711000 CrvvtopsCryptops ???????{l/2}?????????{1/2}7? -?100?1011-710071011 00100701??001007017?

0999999991 0????0?0120777707012 0????????1 0100 0-0--- 0-o--- --0000-010 0007-0010-

-01000000- 0 2--?102--710 110--11100 -10010100- 0001-7000- 0110110

7-12111101 1011111100 00700 -0-0-0-0---0-00-0 -00--00-01 2100111001

0101000020 0770177707 7-7077110-?-?0??110- 11001-0000 00011-0-00 000000 7

1017111-00 210000-101 0000001771 000??????nnn999999

Scolopendridae 0100007200 -010071011-010071011 0017711000 0010000110

000??010120007701012 0011000011 0102--0000 7-00--7 - 00-- --0000-010 0007-0010-

-01000000- 0 22--710- - 710 110--11100 -10010100--10010100- 0001-7000- 0110110

7-12111111 1011111100 00100 -0-0 0-0 -00--00-01 1100111001

0101000020 07701777070??01???0? 7-7177110-?-?l??110- 11001-0000 00011-0-00 000000 0

nnr»999999 1010111-00 210000-101 0000001001 0007?????

Mecistocephalus ???????(???????(1/2}7?1/2 }?? -710001011 0077711000 001007017?001007017?

0????010?2 0????????10999999991 0100 00-- 0O-- - --0000-010 0007-0000-

-01001000- 0 22--?10- - 710 010--00100 -10000000- 0001-7000- 0170100

7-12110101 1011111100 00100 -0-0 0-0 -00--00-01 2000111101

0101000020 077717770?0???l???Q? 7-7077110- 11107-0000 0001100-00 000000 7

1019999999101??????? ?????????? ????00???19999009991 000999999000??????

Chilenophilidae ?????????? -710001011 0070711000 0010070110

0????010?20777701072 0????????10999999991 0100 0-- 0--o - - --0000-010 0007-0000-

-01001000- 0 2--?102--710 070--00100 -10000000- 0001-7000- 0110100

7-12110101 1011111100 00100 -0-0 0-0 -00--00-01 2000111101

0101000020 0???1???0? ?-?0??110- 11100-0000 0002100-00 000000 ?7

1017001-00 210000-101 0000000??!0000000771 000??????000999999

HanseniellaHansenlella 0001007113 -700001011 0070711101 001007017?

00???000?20077700072 0????????10999999991 0000 00-- 0 - - --00011010 0007-1010-

-01000000- 0 2--7112 - - 711 100--00110 -10017000- 01-1-71-0- 01010710--

--00-00000 0077171100 00100 -0-0 0-0 -00--00-00 0021000001

0101000021 1770077707 7-7077100- 3 7-0000 01100-0-00 000040000040 1

0007??????nnn9999999 ??????????9999999999 7777107200 0007?????000999999

Scutigerella ???????{l/2}?????????{1/2}7? -?00?01011-700701011 00?0?111010070711101 00100701??001007017?

0999999991 0????000?20777700072 0????????1 0000 00-- 00- - --00011010 0007-1010-

-01000000- 0 2--7112 - - 711 100--00110 -10010000- 01-1-71-0- 01010710--

--00-00000 0000101100 00100 -0-0-0-0 0-0 -00--00-001 o o 1.o' o o o 00210-0-01

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 247

Table I - Continued.

0101000021 1??00???0? ?-?0??100- 3 P-00007-0000 01100-0-00 000040 ?7

0000011-01 200000-000 000010P2000000107200 000??????nnn999999

Pauropodinae 0001007113 -?001?1011 00?0?111010070711101 00100700-700100700-?

00???0?0?2 0????????10999997991 00?00070 0--0 0--- --00011010 0007-1010-

-01000002--01000002- 0 2--7102 - - ?10 000--00100 -10011070- 01-1-71-0- 13-0

- 00700 0-0 -00--00-00 00610-0-01 -00--0700000 -- 070 00 00001711000000121100 00700 -0-0 -00--00-00 00610-0-01

0101000000 0??00???0? ?-?l??110- 0 7-0000 00000-0-00 100040 1

0007702000??02 200000-100 0000007200 0007?????000999999

0071711101 Polyxenidae ???????{l/2}?3 -700101011 00?1?11101 001007017?00100701?? 0007-7010- 0????000?20777700072 07777777710999999991 0002--0010 -0777-00-- --00011010

-010100077-0101000?? 0 2-2--711-?11 110--00100 -10011000- 01-1-7000- 13-0

-00--07700-00--0??00 0000171100 00100 -0-0 0-0 -00--10-00 0071700001

0101000100 07700777070??00???0? ?-?l??110-7-7177110- 2 0-0000 00000-0-00 100040 1

0000001-00 3--3 - - 0 10 0--0000--000020002 00 0007?????

Sphaerotheriidae 00017071130001?0?113 -700101111 0077711101 001007017?

007770007200???000?2 07777777710999999991 0002--0000 --777-70--? ? ? — ? o — --0000-110 0007-7010-

--- - 01-1-71-0- 23-0 -01010000- 0022 Oil 110--00100 -10017000-

-00--0??00-00--07700 000???11000007771100 00100 -0-0 0-0 -00--10-00 0001700001

0101000020 077707770?0???0???0? 7-7077110-?-?0??110- 2 7-0000 00000-0-00 000040 1

0007701-00000??01-00 ???07770 10 0--00073000- -0007300 0007?????000999999

Proteroiulus ???????{l/2}?????????{1/2 } ?? -700101111 00???111000077711100 001000017?00100001??

— --0000-010 000?-?010-0007-7010- 0???00?0?20???00?0?2 09999999910????????1 0002--0000 --???-?0--???-?0 --0000-010

01-l-?l-0- -0101000?? 0 2--?2--711ll 110--00100 -10011000- 01-1-71-0- 23-0

- - -00--10-00 0001?000110001700011 -10--0??0010- 0??00 000???1100000???1100 00?0000700 -0-0 0-0 -00--10-00

100040 ? 0101000020 0???0???0?0???0???0? ?-?0??110- 2 ?-00007-0000 00000-0-01 100040 7

999999 000??01-01 3--03 - - 0 10 0--000?3?0 DD1001??????

Narceus ??01???{l/2}????01??? { 1/2}?? -700101111 007711110000??111100 001000017?00100001??

9 9 0???00?012 0????????10999999991 0002--0000 --???-?0--9-90 --0000-010 0007-7010-

-0101000?? 0 2--?112--711 110--00100 -10011000- 01-1-71-0- 23-0

-10--0??00 000???1100 00700 -0-0 0-0 -00--10-00 0001700011

100040 7 0101000020 0???0???0?077707770? 7-7077110-?-?0??110- 2 7-0000 00000-0-01

0007701-01000??01-01 ???07770 10 0--10073700--100?3?0 001777700

Spirostreptoidea ,,,,,,,???????{l/2}7?11/2}?? -?00?01111-700701111 007771110000???11100 001000017?00100001?? 07777070720????0?0?2 0000000001 0002--0000 --777-70--?99-90 --0000-010 0007-7010-

-0101000??-01010007? 0 22--711- - ? 11 110--00100 -10011000- 01-1-71-0- 23-0

0001700011 -10--07700-10--0??00 0007771100000???1100 0070000700 -0-0 0-0 -00--10-00 0001700011

0101000020 077707770?0???0???0? 7-7077110-?-?0??110- 2 7-0000 00000-0-01 100040 7

- 0007701-01000??01-01 3--03 - 0 10 0--70073700--?00?3?0 001777700

Protura ?????????? -700701011 0077711001 0021070170

07777101720????101?2 07777777710999999991 0000 0-- 0--0- - --0000-010 100711100-

017107010? -0 2--7102--710 0000-0-100 -200071000-200071000 0011-70010

0-00-00000 007777110000????1100 00000 -0-0-0-0 0-0 -10--00-00 0032100001

0101000032 077007001?0??00?001? 7-7077110-?-?0??110- 00 730000 00000-0-00 001000 7

0007701-0?000??01-0? 717000-010?1?000-010 0-700071000-?000?100 nnn9999990007?????

Arthropleona 0001107203 -710001011 0077711101 000-000171

07110101720?110101?2 0111000001 0003000011 1077700100 --7700-710 100711100-

-01000002- 0 2--110 0000-0-100 -100071000 0011-70010 0101070170

0-00-00000 0017171100001?1?1100 00100 -0-0 0-0 -10--00-00 0012100001

0101000042 077007001?0??00?001? 7-7077110-?-?0??110- 0 700000 00000-0-00 000000 2

0000000000 200100--10 0-00007000 nnn9999990007?????

Campodeidae 0101107203 -710001011 1077711100 0021070171 110701100- 0????000?207 77700072 077?7?77710999999991 0000 0-- 7.0-- --0000-010

0011-70011 0101070071 -01000000- 00 2--2--710710 0010-0-100 -0 70000

0032100001 0-00-00700o-oo-oo?oo 00-717110000-?l?1100 01100 -0-0 0-0 -10--00-00

7 0101000021 177007111?1??00?111? 7-70771000?-?0??1000 1002710100 00000-0-00 000090 7

0000000700ooooooo?oo 7071020000?0?1020000 0070007100 0007?????nnn999999

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 248 - G.D. Edgecombe Myriapod stem-group

Table I - Continued.

JapygidaeJapyqidae ???????{l/2}?????????{l/2}?7 -?10?01011-710701011 10???111001077711100 000-0?01?l000-070171

0????100?20????100?2 0????????!0999999991 00000000 00-- ?0--70 — --0000-010--0000-010 110701100-

-01000000- 0 2--7102 - - 710 0010-0-100 -0 70000 0011-70011 0171070071

0-00-00700 0077171100 07100 -0-0 0-0 -10--00-00-10--00-00 0032100001

01010000210101000021 177007111? 7-70771000 1000710100 00000-0-00 000090000090 7

nnn999999 00077007000007700700 707102000? 00000171000000017100 0007?????

Meinertellidae ???????{l/2}?7???????{l/2}7? -710001011 1077711100 002007017?002007017?

0????1?0?20777717072 07777777710999999991 00031000110003100011 1777777200 --7700-110 000701100-

- 0171000017017100001? -010001110-010001110 0 2--7102- 710 0000-0-101 0111070000 0021-70110

0-00-00700 0007171110 21100 -0-0 0-0 -10--00-10 0002200001

01010000110101000011 177107001? 7-71771010 1001721100 00000-1000 000101 7

01007?????01007????? ??????????9999999999 77770171007777017100 0007?????nnn999999

Machilidae 0011107204 -710001011-710001011 1071711700 0020000171

000701100- 0777717072 07777777710999999991 0003100011 1000000200 --0000-110

-010001110 0 2--710 0000-0-101 0111070000 0021-70110 0101000010

0-00-00700 0007171110 2110021100 -0-0-0-0 0-0 -10--00-10 0002200001

0101000011 177107001? 7-71771010 1001721100 00000-1000 002101 7

0100000710 2111021000 0000017100 0007?????nnn999999

Tricholepidion ?????????? -770701011-??0?01011 107771170010???11?00 00200701??002007017?

0????1?0?2 0999999991o????????l 0013000011 10???102001077710200 --0000-110 000700000-

-01000117?-010001177 00 2--710 000100-101 01120700010112070001 0021-70010 017100000?017100000?

1-00-00700 0007171100 77100 -0-0-0-0 0-0 -10--00-10 0002100001

0101000011 177107001? 7-71771010?-?1? ?1010 1100721100 00000-1700 002101002101 7

0101000770 2111021000 0001017100 00(19999990007?????

Lepismatidae 0121107204 -110001011 1071711100 0020000171

0111011072 0111000001 0013000011 10770102001077010200 --0000-110 000700000-

0101000000 -010001110 0 2--1102 - -110 000100-101 0112070111 0021-70010 0101000000

1-00-00700 0007171101 7777721100 -0-0 0-0 -10--00-10 0042100001

0101000010 177107001?1??10?001? 7-71771010?-?l??1010 1100721100 00000-1100 002101002101 2

0101000710 2111021000 0001017100 00011117?

Callibaetis 012????2??012777727? -710001011-710001011 1071711000 0020000170

0????1?0?2 09999999910????????1 0013000011 10???202001077720200 --0000-110 000701000-

- - 0101000007 -01000111- 0 2--?102 710 000100-101 11120701111112070111 0021-70010

0003300001 0-00-00700 0007771101 7777721100?????21100 -0-0 0-0 -110-00-10-110-00-10

0101000010 177107001? 7-71771010 11007211001100721100 00000-0-00 007101 7

010-707700 2001720000 0020017100 nnn9999990007?????

Periplaneta ??2????2?? -710011011 1011711000 0020000170

0???0110120777011012 01110111X10111011111 0003000011 107772030010???20300 --0000-110--0000-110 000200000-000700000-

- 01010000020101000007 -010001111 0 22--?10- 710 000110-101 111207Q11111120?gill 0021-200100021-70010 J 0-00-002000-00-00700 00022211010007771101 77777211002222221100 -o-o---\o-o-0-0-- O-0 -111-00-10 0003300001

0101000010 1221020012177107001? 7-717710112-21221011 11007201001100220100 00000-1100 003101 27

010--02210010--07710 71011210002101121000 00000121000000017100 000999999000222222

Locusta 012?10?2040127107204 -710011011 1011111000 0020000170

0111011012 0111011111 0013000011 1077020200 --0000-110 000700000-

- 0101000000 -010001111 0 2--1102 -110 000110-101 1112070111 0021-70010

0-00-00700 0007771101 7777721100?????21100 -0-0 0-0 -111-00-10 0003300001

0101000010 077107001? 7-71771011 1100720100 00000-1100 003101 2

010--00010 7101121000 0000017100 000777710

Drosophila 0120?0?20?012070720? -110011011 1011711000 0020000170

0111011012 0111011111 0013000011 107702020010??020200 --0000-110--0000-110 000700000-

-010001111 0 22--10--- 10- 1 111207-1-1 0021-70010 0101000000

0053300001 0-00-00700 0007771100 01100 -0-0-0-0 0-0 -111-00-10

2 0101000010 077107001? 7-71771010 1100720000 00000-0-00 003101 2

010--01-70 7101027000 0000017100 000111111

Hutchinsoniella ???????0?? -?0?0?1011-707071011 00???121000077712100 000-07017?000-0701??

07770070110???00?011 0???0000?10777000071 00?00070 00-- o-0--- --0000-211--0000-211 001?-?-00-0017-7-00-

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 249

Table I - Continued,

-0100000?? 0 100710 000--0-200 -0 0??-077- 07-100000- 0070070

?-0?--?-00?- 0 ? — ?-00 ?0??1?1100 20700 -0-0 0-1 000--00-10 0077? 01

9-9999999- 0111110000 077777????0????????? ?-???????- 0 0010 00000-0-00 007710 7

000??000000007700000 33--0- - 0 10 7--0007100?--000?100 0007?????nnn999999

Remipedia ?????????? _?????io?i-777771071 0077712100 000-07017?

07777070710????0?0?1 07777777710999999991 0070 0--0 — 0--0 - - --7700-211 0017-7-00-

-01000007?-0100000?? 0 10771010??10 000--0-(1/2}00000--0-{l/2}00 -0 077-0??- 07-110000- 0170070

-0-0 0-0 000--00-10 01 •o7-0?--7-001 0 •o 1 1 •o 1 o o ?0??1?11007077171100 10700 -0-0 0-0 000--00-10 0077? 01

0111100000 0?????????0999999999 ?-???????-9-9999999- 0o 0010 00000-0-00 0077A3 7

0007700000000??00000 3-0000-000 7000007770?00000???0 000777710

Anostraca 0000700071 -101071011 0070712100 000-11017?

0????000110777700011 07777777710999999991 0073010011 0007000201 000000-211 0017-7-00-

-1100000??-11000007? 0 1-1010 000--0-200 -0 007- 07-10-1-0- 0200070

7-07--7-00?-0?--?-00 7077171100?0??1?1100 20100 -0-0 0-1 000--00-10 0077? 01

0111111000 0?????????0999999999 ?-???????-9-9999999- 0 0010 00000-0-00 007760 00

0007702000??02 20-0 10 0--0007000 000777111

Triops ???????0?? -?010?1011-701071011 00?0?121000070712100 000-1101??000-11017?

011??0?011 0????????10999999991 0073001011 0007007101 000100-211 0717-7-00-

-11000007?-1100000?? 0 1-1710 000--0-200 -0 007- 07-10-1-0- 0270070

7-07--7-00?-0?--?-00 7077171100?0??1?1100 20100 -0-0 0-1 000--00-10 0077? 01

0111111000 0?????????0999999999 ?-???????-9-9999999- 0 0010 0000000000-0-00-0- 00 00??70007770 ?7

0007702000??02 20-0 10 0--0007100 0007?????nnn999999

LimnadiaLimnadla ???????0??9999999099 -?010?1011-701071011 00?0?121000070712100 000-1101??000-11017?

0????0?0?1 0????????10999999991 0073001011 02??00?1010277007101 000100-211 0?l?-?-00-

-1100000?? 0 101710101?10 000--0-200 -0 00?-007- 07-10-1-0- 0200070

?-0?--?-00 ?0??1?1100 2010020100 -0-0 0-0 000--00-10 00??? 0101

0111111000 0?????????0999999999 ?-???????- 0 0010 00000-0-00 00??7000? ?70 ??

000??02 20-0 10 0--0007100 000??????nnn999999

Daphnia 00007000??OOOOPOOO?? -701001011 007071210000?0?12100 000-1101??000-11017? 00- 01???0?0?1 0????????10999999991 00?30010110073001011 02??00?1010277007101 000000-211 0?l?-?-00-0?1?-?-

-1100000?? 0 101?10101710 000--0-200 -0 007-00?- 07-10-1-0- 02000?00200070

?-0?--?-00 ?0??1?1100 20100 -0-0-0-0---0-10-1 000--00-10 00??? 0101

0111111000 0?????????0999999999 ?-???????- 0 0010 00000-0-00 00777000???0 0

000??02 20-0 10 0--00077000--000??00 000????11000777711

Calanoida 0000??00?10000770071 -?01011011-701011011 001??12?000017712700 000-1101??000-11017?

0????0?011 0????????10999999991 00?00070 00-- 201 010000-211 0017-7-00-

-0100000?? 0 100710 000--0-000 -0 0??-077- 07-110000- 0100070

?-0?--?-00 ?0??1?1100 00700 -0-0 0-1 000--00-10 00??? 01

0111100000 09999999990????????? ?-???????-9-9999999- 0 0010 00000-0-00 00??20007720 ?7

0--0007100 nnn999999 000??0???? 3--03 - - 0 10 0--0007100 000??????

Balanidae 0000700071 -701001011 0????121000777712100 000-0100-?000-0100-7

0????0?011 0????????10999999991 0070 0?-07- 201 010000-711 0???-?-00-0777-7-00-

-o-0 0?10 000--0-200 -0 0??-077- 07-1--1-0- 0100070---0100070

?-0?--?-00 ?0????1100 20100 -0-0 0-1 000--00--0 00???0077? 01

0111700000 0?????????0999999999 ?-???????-?_???????_ 0 - 0000 00000-0-00 007722 0

000??0??00 700000-000 0000007700 000??????nnn999999

NebaliaNehalia 0100?110?10100711071 -?010?1011-701071011 00?1?121000071712100 000-l?01?0000-170170

0????0?0?1 0????????10999999991 1073010011 00000100-- --0000-211 0717-7-00-0?l?-?-00-

-01100000- 0 1--?101--710 000--0-000 -0 00?-007- 07-101000- 01000700100070---

7-07--7-00•O 1 0 •o 1 1 •o o o ?0??1?11017077171101 0100000700 -0-0 0-1 100-000-10 0077? 01

0111110000 09999999990????????? ?-???????-9-9999999- 0 0010 00000-0-00 007751 0

0007702000??02 20-0 10 0--00077000- -0007700 0007?????nnn999999

Stomatopoda 0100711071 -701001711 0071712100 000-10017?

07777000120????00012 07777777710999999991 1073010011 0000020201 101000-211 0717-7-00-0?l?-?-00-

-01100007?-0110000?? 1 10-710 000--0-000 -0 007- 07-101000- 0100070

7-07--7-00?-0?--?-00 7077171101?0??1?1101 1011120100 -0-0 0-1 100-100-10 0077? 01

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 250 G.D. - Edgecombe Myriapod stem-group

Table I - Continued.

9-9999999- 0111100000 09999999990????????? ?-???????- 0 0001 00000-0-00 00??51007751 0

000??00000 4?-047-0 10 0--000??000--0007700 000??????000999999

AnaspidesAnaspldes 000071X0010000711001 -701071011 0071712100 000-170170

0???00?0?2 01770000-101??0000-1 0073010011 0111120401 101000-211 0017-7-00-

-01100000--01100000- 1 11-710 000--0-000 -0 007- 07-101000- 0100070

?-7-07--7-000?--?- 00 7077171101 1110020700 -0-0 0-1 100-100-10 0007? 01

0111110000 0?????????0????????? 7-7777077-?-????0??- 0 0001 00000-0-00 007751 0

00077001000007900100 77-0 10 0--0007770 000??????nnn999999

Oniscidea 010071007? -100001011 0071112100 000-000170

0110000012 01110001-1 00930000110073000011 01110200-- --0000-211 0019-9-00-0017-7-00-

-01000000- 0 1-1--010-010 000--0-100 -0 0??- 0?-10?l-0-07-1071-0- 02000900200070

•o9-09--9-000 •o 1 •o 1 o o 70771711019099191101 1011120000 -0-0 0-1 100-100-10 009990077? 01

0111100000 0999999999 9-9999999-9-9999999- 0 0001 00000-0-00 007751009951 0

00099001000007700100 40-0 10 0--00091000--0007100 00010117?000101199

Reptantia 00009110010000711001 -101001111 00711120000091112000 000-100190000-100170

01190090120117007012 01110000-1 00930100110073010011 00001209010000120701 101000-211 0919-9-00-0717-7-00-

-01100000- 1 11-010 000--0-000 -0 099-077- 09-101000-07-101000- 01000900100070

•O9-09--9-001 0 •o 1 1 •o 1 o o 70771711019099191101 11111201001111120100 -0-0 0-1 100-100-70100-100-90 009990077? 01

0111100000 0999999999 9-9999099-9-9999099- 0 0001 00000-0-00 009951007751 0

00077000000009900000 40-0 1010 0--00077000--0009900 000999111000777111

Appendix 2. Characters optimised on cladogram in Fig. 2

Characters are numbered as in Appendix 1 and Table 1. Character state changes are optimised as delayed transfor- mations, shown double-lined Changes as arrows are unambiguous, single-lined arrows are ambiguous. Nodes 5, 13, 28 and 48 in all shortest Nodes 13 and 28 lack character arc not cladograms. apomorphic support.

Node 1 (Onychophora): 26 (0—>1), 31 (0==>1), 37 (0==>1), 45 (0—>1), 64 (0==>4), 103 (0—>3), 115 (0—>4), 172 (0=>1), 188 (0==>1), 221 (0==>1), 251 (0==>6), 296 (0==>1), 311 (0==>1)

Node 2 (): 25 (0—>1), 49 (0—>1), 177 (0==>1), 178 (0==>1), 222 (0==> 1)

Node 3 (Euarthropoda): 17 (0==>1), 19 (0—>1), 20 (0==>1), 50 (0==>l), 60 (0==>1), 103 (0—>2)

Node 4 (Pantopoda): 13 (1—>0), 78 (0==>1), 85 (0==>1), 115(0—>3), 141 (0==>1), 186(0—>1), 189(0—>1), 193 (0—>1), 275 (0==>8) i

Node 5: 191 (0—>1)

Node 6: 23 (0—>1), 26 (0—>1), 27 (0—>1), 53 (0—>1), 89 (0==>1), 99 (1==>0), 220 (0==>1), 224 (0==>1)

Node 7 (Chclicerata: Eucheliccrata): 2 (0—>1), 10 (0—>2), 51 (0==>1), 55 (0 —>1), 78 (0==>3), 186 (0—>1), 189 (0—>1), 190 (0==> 1), 194 (0==>1), 207 (0==>1), 275 (0=>3), 291 (2==>I)

Node 8 (Xiphosura): 4 (0—>1), 64 (0—>3), 68 (0==>1), 76 (0—>1), 88 (0=>2), 175 (0—>1), 192 (0==>1), 198

(0=> 1), 209 (0==>1), 223 (0==>1), 244 (1==>0), 261 (0==>1), 306 (0==>2)

Node 9 (Arachnida): 41 (0==>1), 79 (0=> 1), 115 (0—>3), 196 (0—>1), 197 (0==> 1), 228 (0=>1), 246 (0==>1)

Node 10 (): 11 (0==>1), 29 (0==> 1), 32 (0—>1), 47 (0—>1), 64 (0—>1), 77 (0==>1), 86 (0—>1),

94 (()==>!), 112 (()==> 1), 113 (0==>1), 195 (0—>2), 199 (0==>1), 208 (0=>1), 224 (1==>0), 232 (0==>1), 233

(0==>1), 245 (0—>1), 277 (0=>1), 278 (0==>1), 300 (0=>1), 301 (0==> 1), 302 (0==>1), 303 (0—>1)

Downloaded from Brill.com10/09/2021 01:58:52PM via free access Contributions to Zoology, 73 (3) - 2004 251

Node 11 (Dromopoda): 100 (0=>1), 101 (0==>1), 114 (0—>1), 191 (0—>1), 241 (0==>1), 242 (0==>1), 243

(0==>1)

Node 12 (Opiliones): 85 (0==> 1), 194 (1==>0), 236 (0=>1), 240 (0—>2), 251 (0==>5), 269 (0==>1), 272 (0=>1),

279 (0—>2), 287 (0=>2), 299 (0=>1), 312 (0==>I)

Node 14 (Mandibulata): 103 (2==>1), 115 (0 =>2), 119 (0 =>1), 128 (0 =>1), 144 (0 =>1), 152 (0 =>1), 175

(0 —>1), 188 (0 =>1), 309 (I ==>0), 317 (0 —>1)

Node 15 (Myriapoda): 13 (1 —>0), 30 (0=>1), 33 (0=>1), 50 (I —>2), 98 (0==>1), 121 (0—>1), 132 (0—>1), 247 (0—>1)

Node 16 (Chilopoda): 8 (0—>2), 28 (1=>2), 47 (0==>1), 64 (0==>2), 96 (1==>0), 122 (0==>1), 126 (0==>1), 137

(0=>1), 153 (0==>1), 170 (0—>1), 212 (0=>1), 229 (0—>2), 235 (0=>1), 286 (0—>1), 292 (0==>1), 298 (0— >1), 300 (0==>1)

Node 17 (Pleurostigmophora): 59 (0—>1), 62 (0==>1), 135 (0—>1), 155 (0=>1), 164 (0==>1), 171 (0==>1), 251

(0—>1), 283 (0==>1), 287 (0—>1), 310 (0==> 1)

Node 18 (Epimorpha s.l.): 28 (2=>0), 39 (0==>1), 164 (1=>2), 165 (0==> 1), 166 (0==>1), 168 (0=>1), 173

(0==>1), 174 (0==> 1), 176 (0==> 1), 211 (0==> 1), 217 (0=>1), 244 (1==>0), 264 (0=>1), 281 (0==>1)

Node 19 (Epimorpha s.str.): 13 (0==>1), 30 (1=>0), 163 (0=>1), 210 (0==>1), 216 (0==>1), 252 (0==>1), 265 (0==> 1 )

Node 20 (Scolopendromorpha): 127 (0 ==>1), 156 (0==>1), 167 (0==>1), 255 (0==>1), 285 (0==>1), 307 (0==>1)

Node 21 (Geophilomorpha): 64 (2—>0), 98 (1==>0), 106 (0==>1), 121 (1==>0), 126 (1=>0), 135 (1==>0), 137

(1 =>0), 211 (1—>2), 212 (1==>0), 218 (0==>1), 253 (0==>1), 266 (1—>0)

Node 22 (Progoneata): 4 (0—>1), 8 (0—>1), 9 (0==>I), 10 (0—>3), 86 (0==>1), 87 (0—->1), 135 (0—>1), 142 (0==>1), 147 (0=> 1), 214 (0—>1), 215 (1==>0), 275 (0==>4), 280 (0==>1), 287 (0—>1), 308 (0=>2)

Node 23 (Symphyla): 120(0—>1), 129 (0==>1), 154 (0==> 1), 157 (0—>1), 213 (0==>2), 229 (0—>2), 230 (0=>1), 231 (0==>1), 244 (1 =>0), 248 (1=>0), 251 (0=>3), 262 (0==>1), 263 (0=>1), 305 (()==>!)

Node 24 (Dignatha): 15 (0==>1), 136 (0==>1), 151 (0==>I), 152 (1==>3), 271 (0==>1)

Node 25 (Diplopoda): 64 (0==>2), 105 (0==>1), 120 (0—>1), 122 (0==>1), 206 (0==>1), 251 (0==>2),291 (2=>3), 299 (0==>1)

Node 26 (Chilognatha): 18 (0=>1), 86 (1==>0), 151 (1=>2), 229 (0—>2), 244 (1==>0), 308 (2==>3)

Node 27 (Heminthomorpha: Eugnatha: Juliformia): 30 (1==>0), 162 (0==>1), 219 (0==> 1), 270 (0=>1), 290 (0==>1), 313 (0==> 1)

Node 29 (Tetraconata): 12 (0==>1), 42 (0==>1), 43 (0—>1), 52 (0=>1), 54 (0—>1), 69 (0—>1), 70 0==>1), 308

(0==>1), 314 (0==>1), 316 (0==>I), 318 (0==>1)

Node 30 (Hexapoda): 4 (0—>1), 5 (0—>1), 8 (0—>2), 10 (0—>3), 44 (0—>1), 46 (0=>1), 50 (I—>2), 71 (0—>1), 97 (0—>1), 118 (0=>1), 143 (0—>1), 149 (0==>1), 154 (0=>1), 202 (0==>1), 214 (0—>2), 239 (0—>1), 247 (0—

>1), 280 (0—>2)

Node 31 (Ellipura): 30 (0==>1), 48 (0=>1), 91 (0—>1), 95 (0—>1), 137 (0==>1), 158 (0=>I), 230 (0—>2), 244

(l—>0), 299 (0==>1)

Node 32 (Insecta): 21 (0==>1), 40 (0—>1), 187 (0==>1), 230 (0—>1), 231 (0==> 1), 248 (1==>0), 251 (0==>1), 258 (0==> 1), 294 (0—>1), 296 (0=>2)

Downloaded from Brill.com10/09/2021 01:58:52PM via free access 252 - G.D. Edgecombe Myriapod stem-group

Node 33 (Diplura): 91 (0—>1), 92 (0==>1), 123 (0==>1), 150 (0==>1), 160 (0==> 1), 213 (0—>3), 229 (0—>2), 237 (()==> 1), 238 (0==>1), 244 (1—>0), 256 (0—>1), 275 (0==>9)

Node 34 (Ectognatha): 3 (0=>I), 10 (3=>4), 24 (0—>1), 33 (0—>2), 64 (0==>3), 78 (0==>2), 88 (0==>1), 107 (0=> 1), 108 (0=>1), 109 (0==> 1), 130 (0==>1), 132(0—>1), 133(0—>1), 134(0—>1), 143 (1==>2), 186(0=>2),

209 (()==>!), 229 (0—>1), 234 (0==>1), 249 (0=>1), 256 (0—>2), 257 (0=>1), 267 (0==>1), 274 (0==>1), 276

(0=> 1), 282 (0==>1), 289 (0==>1), 292 (0==>1), 293 (0—>1), 297 (0—>1), 306 (0—>1)

Node 35 (Archaeognatha): 65 (0=>1), 148 (0==>1), 159 (0==>1), 179 (0==>1), 215 (1 ==>2), 254 (0==>1)

Node 36 (): 63 (0=>1), 76 (0=>1), 96 (1 ==>0), 97 (1=>0), 124 (0==>1), 134 (1=>2), 140 (0==>1), 252 (0==>1), 273 (0—>2), 284 (0=>1)

Node 37: I (0—>1), 3 (1—>2), 47 (0—>1), 138 (0==>1), 139 (0==>1), 180 (0==>1), 230 (1==>0), 268 (0—>1), 315 (0—>1)

Node 38 (Ptcrygota): 28 (1==>0), 40 (1==>0), 76 (1==>2), 131 (0==>1), 203 (0=>1), 214 (2=>3), 215 (1==>3) 293 (1==>0)

Node 39 (Mctaptcrygota: Ncoptcra): 16 (0==>1), 56 (0—>1), 57 (0—>1), 58 (0—>1), 59 (0—>1), 110 (0—>1), 204

(0—>1), 257 (I=>0), 273 (2—>3)

Node 40 (Orthopteroidea): 125 (0—>1), 250 (0==> 1), 295 (0==>1)

Node 41 (Crustacea): 27 (1==>2), 88 (0==>2), 90 (0==>1), 93 (0=>1), 115 (2=>1), 209 (0==>1), 223 (0=>1), 225 (0==>1), 259 (0=> 1), 291 (2=>3)

Node 42 (Eucrustacea): 10 (0—>1), 13 (1—>0), 14 (0—>1), 80 (0—>1), 128 (1—>2), 200 (0==>1)

Node 43 (Maxillopoda): 36 (0—>1), 78 (0==>2), 82 (0—>1), 275 (0—>2)

Node 44 (Thoracopoda); 145 (1==>0), 186 (0—>2), 226 (0==>1), 299 (0—>1)

Node 45 (Phyllopodomorpha): 35 (0==> 1), 64 (0==>3), 291 (3=>2), 319 (0—>1)

Node 46 (Branchiopoda): 36 (0—>1), 102 (0=>1), 117 (0—>1), 147 (0==>1), 152 (1==>2), 227 (0==>1), 287 (0—

>2)

Node 47 (Phyllopoda): 67 (0=>1), 78 (0—>1), 275 (0—>7)

Node 48 (Diplostraca): 72 (0==>2)

Node 49 (Malacostraca): 6 (0==>1), 7 (0==>1), 24 (0—>1), 66 (0—>1), 76 (0==>1), 104 (0==>1), 128 (2==>0), 146

(0—>1), 180 (0==>1), 201 (0==>1), 275 (0—>5), 276 (0==> 1)

Node 50 (Eumalacostraca): 50 (1=>2), 76 (1==>2), 81 (0—>1), 83 (0==>1), 111 (0==>1), 181 (0—>1), 183 (0— >1), 184 (0—>1), 185 (0—>1), 205 (0—>1), 226 (1==>0), 259 (1==>0), 260 (0==>1), 291 (2==>4)

Node 51 (Caridoida): 116 (0==>1)

Node 52 (Xenommacarida): 72 (0==> 1), 73 (0==>1), 74 (0==>1), 288 (0=>1)

Downloaded from Brill.com10/09/2021 01:58:52PM via free access