Gonopod Mechanics in Centrobolus Cook (Spirobolida: Trigoniulidae) II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Millipedes Along the Northern Western Ghats
Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1. -
Oncept Was Used to Describe Birds Allowing Ants to Climb on Their Body Or the Behavior of Capturing and Rubbing the Ants Against the Plumage
(2019) 30: 69–71 USE OF MILLIPEDES AS FOOD AND FOR SELF-ANOINTING BY THE PUERTO RICAN GRACKLE (QUISCALUS NIGER BRACHYPTERUS) Raúl A. Pérez-Rivera Department of Biology, University of Puerto Rico-Humacao, Puerto Rico. E-mail: [email protected] Abstract · Although rarely observed in nature, anting is widespread and has been reported in more than 200 species of birds. The concept was used to describe birds allowing ants to climb on their body or the behavior of capturing and rubbing the ants against the plumage. However, the nomenclature of this behavior has been broadened and now is called self-anointing, and includes the use of other animals, such as millipedes (Diplopoda), and even liquids. Here, I describe the Antillean Grackle (Quiscalus niger brachypterus) using millipedes (Trigoniulus coralinus and Anadenobolus monilicornis) for self-anointing and as food. The genus Anadenobolus is reported for self-anointing for the first time. I also observed five grackles, feeding upon the millipede Asiomorpha coarctata, after washing it in water. Possibly, grackles rub the millipedes on their plumage because their secretions may work as ectoparasite repellent or may decrease irritation during molting. The birds ingest these myriapods when food is scarce or because these may help against intestinal parasites. Resumen · Uso de milpiés como alimento y para “auto-unción” por el Mozambique de Puerto Rico (Quiscalus niger brachy- pterus) Aunque raras veces observado, el “hormigarse” ha sido reportado para más de 200 especies de aves. El concepto fue utilizado para explicar la conducta de aves que dejan que hormigas se suban sobre estas o las capturan, para restregárselas en su plu- maje. -
Production and Efficiency of Organic Compost Generated by Millipede Activity
Ciência Rural, Santa Maria, v.46,Production n.5, p.815-819, and efficiency mai, 2016 of organic compost generated by http://dx.doi.org/10.1590/0103-8478cr20150714millipede activity. 815 ISSN 1678-4596 SOIL SCIENCE Production and efficiency of organic compost generated by millipede activity Produção e eficiência de composto orgânico gerado pela atividade de gongolos Luiz Fernando de Sousa AntunesI Rafael Nogueira ScorizaI* Dione Galvão da SilvaII Maria Elizabeth Fernandes CorreiaII ABSTRACT características físicas e químicas; (3) sua eficiência, quando utilizado para a produção de mudas de alface. O primeiro The putrefactive activity of organisms such as experimento durou 90 dias, utilizando 6,5 litros de gliricídea, 6,5 diplopods in the edaphic macrof auna can be leveraged to promote litros de flemingea, 13,5 litros de aparas de grama, 4,5 litros de the transformation of agricultural and urban waste into a low- papelão, 4,5 litros de casca de coco e 4,5 litros de sabugo de cost substrate for the production of vegetable seedlings. This milho. Os volumes de gongolos utilizados como tratamento foram research aimed to evaluate: (1) the quantity of Gervais millipedes 0, 0,10, 0,30, 0,50 e 0,90 litros. Após 23 dias, foram avaliados (Trigoniulus corallinus) needed to produce an acceptable os pesos da massa fresca e seca da parte aérea e das raízes e quantity of organic compost; (2) the main physical and chemical altura. O volume de 0,1 litros de gongolos mostrou-se suficiente characteristics of different compost types; and (3) compost para a produção de um volume aceitável de composto orgânico. -
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results .............................................................................................................. -
Order CALLIPODIDA Manual Versión Española
Revista IDE@ - SEA, nº 25B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Diplopoda Order CALLIPODIDA Manual Versión española CLASS DIPLOPODA Order Callipodida Jörg Spelda Bavarian State Collection of Zoology Münchhausenstraße 21, 81247 Munich, Germany [email protected] 1. Brief characterization of the group and main diagnostic characters 1.1. Morphology The members of the order Callipodida are best recognized by their putative apomorphies: a divided hypoproct, divided anal valves, long extrusible tubular vulvae, and, as in all other helminthomorph milli- pede orders, a characteristic conformation of the male gonopods. As in Polydesmida, only the first leg pair of the 7th body ring is transformed into gonopods, which are retracted inside the body. Body rings are open ventrally and are not fused with the sternites, leaving the coxae of the legs free. Legs in the anterior half of the body carry coxal pouches. The small collum does not overlap the head. Callipodida are of uniformly cylindrical external appearance. The number of body rings is only sometimes fixed in species and usually exceeds 40. There are nine antennomeres, as the 2nd antennomere of other Diplopoda is subdivided (= antennomere 2 and 3 in Callipodida). The general struc- ture of the gnathochilarium is shared with the Chordeumatida and Polydesmida. Callipodida are said to be characterised by longitudinal crests, which gives the order the common name “crested millipedes”. Although crest are present in most species, some genera (e.g. Schizopetalum) lack a crest, while some Spirostreptida ( e.g. in Cambalopsidae, ‘Trachystreptini’) and some Julida (e.g. -
Diplopoda, Sphaerotheriida, Arthrosphaeridae)
European Journal of Taxonomy 758: 1–48 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.758.1423 www.europeanjournaloftaxonomy.eu 2021 · Wesener T. & Sagorny C. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:01BBC12C-E715-4393-A9F6-6EA85CB1289F Seven new giant pill-millipede species and numerous new records of the genus Zoosphaerium from Madagascar (Diplopoda, Sphaerotheriida, Arthrosphaeridae) Thomas WESENER 1,* & Christina SAGORNY 2 1,2 Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for Animal Biodiversity, Section Myriapoda, Adenauerallee 160, D-53113 Bonn, Germany. 2 University of Bonn, Institute of Evolutionary Biology and Ecology, D-53121 Bonn, Germany. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:86DEA7CD-988C-43EC-B9D6-C51000595B47 2 urn:lsid:zoobank.org:author:9C89C1B7-897A-426E-8FD4-C747DF004C85 Abstract. Seven new species of the giant pill-millipede genus Zoosphaerium Pocock, 1895 are described from Madagascar: Z. nigrum sp. nov., Z. silens sp. nov., Z. ambatovaky sp. nov., Z. beanka sp. nov., Z. voahangy sp. nov., Z. masoala sp. nov. and Z. spinopiligerum sp. nov. All species are described based on drawings and scanning electron microscopy, while genetic barcoding of the COI gene was successful for six of the seven new species. Additional COI barcode information is provided for the fi rst time for Z. album Wesener, 2009 and Z. libidinosum (de Saussure & Zehntner, 1897). Zoosphaerium nigrum sp. nov. and Z. silens sp. nov. belong to the Z. libidinosum species-group, Z. -
University of Copenhagen
Myriapods (Myriapoda). Chapter 7.2 Stoev, Pavel; Zapparoli, Marzio; Golovatch, Sergei; Enghoff, Henrik; Akkari, Nasrine; Barber, Anthony Published in: BioRisk DOI: 10.3897/biorisk.4.51 Publication date: 2010 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Stoev, P., Zapparoli, M., Golovatch, S., Enghoff, H., Akkari, N., & Barber, A. (2010). Myriapods (Myriapoda). Chapter 7.2. BioRisk, 4(1), 97-130. https://doi.org/10.3897/biorisk.4.51 Download date: 07. apr.. 2020 A peer-reviewed open-access journal BioRisk 4(1): 97–130 (2010) Myriapods (Myriapoda). Chapter 7.2 97 doi: 10.3897/biorisk.4.51 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Myriapods (Myriapoda) Chapter 7.2 Pavel Stoev1, Marzio Zapparoli2, Sergei Golovatch3, Henrik Enghoff 4, Nesrine Akkari5, Anthony Barber6 1 National Museum of Natural History, Tsar Osvoboditel Blvd. 1, 1000 Sofi a, Bulgaria 2 Università degli Studi della Tuscia, Dipartimento di Protezione delle Piante, via S. Camillo de Lellis s.n.c., I-01100 Viterbo, Italy 3 Institute for Problems of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospekt 33, Moscow 119071 Russia 4 Natural History Museum of Denmark (Zoological Museum), University of Copen- hagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark 5 Research Unit of Biodiversity and Biology of Populations, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, 9 Avenue Dr. Zouheir Essafi , La Rabta, 1007 Tunis, Tunisia 6 Rathgar, Exeter Road, Ivybridge, Devon, PL21 0BD, UK Corresponding author: Pavel Stoev ([email protected]) Academic editor: Alain Roques | Received 19 January 2010 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Stoev P et al. -
Sexual Behaviour and Morphological Variation in the Millipede Megaphyllum Bosniense (Verhoeff, 1897)
Contributions to Zoology, 87 (3) 133-148 (2018) Sexual behaviour and morphological variation in the millipede Megaphyllum bosniense (Verhoeff, 1897) Vukica Vujić1, 2, Bojan Ilić1, Zvezdana Jovanović1, Sofija Pavković-Lučić1, Sara Selaković1, Vladimir Tomić1, Luka Lučić1 1 University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia 2 E-mail: [email protected] Keywords: copulation duration, Diplopoda, mating success, morphological traits, sexual behaviour, traditional and geometric morphometrics Abstract Analyses of morphological traits in M. bosniense ..........137 Discussion .............................................................................138 Sexual selection can be a major driving force that favours Morphological variation of antennae and legs morphological evolution at the intraspecific level. According between sexes with different mating status ......................143 to the sexual selection theory, morphological variation may Morphological variation of the head between sexes accompany non-random mating or fertilization. Here both with different mating status .............................................144 variation of linear measurements and variation in the shape Morphological variation of gonopods (promeres of certain structures can significantly influence mate choice in and opisthomeres) between males with different different organisms. In the present work, we quantified sexual mating status ....................................................................144 behaviour of the -
Downloaded from Brill.Com10/04/2021 01:10:16AM Via Free Access 16 T
Revision of the genus Aphistogoniulus 15 International Journal of Myriapodology 1 (2009) 15-52 Sofi a–Moscow Revision of the endemic giant fi re millipedes of Madagascar, genus Aphistogoniulus (Diplopoda: Spirobolida: Pachybolidae) Th omas Wesener*1,4, Henrik Enghoff 2, Richard L. Hoff man3, J. Wolfgang Wägele1 & Petra Sierwald 4 1 Zoologisches Forschungsmuseum Alexander Koenig, Museumsmeile Bonn, Adenauerallee 160, D-53113 Bonn, Germany. 2 Natural History Museum of Denmark, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. 3 Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, VA 24112, U.S.A. 4 Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, U.S.A. * Corresponding author. E-mail: [email protected] Abstract Th e Malagasy fi re millipede genus Aphistogoniulus (Silvestri, 1897) is revised. All previously described species, A. cowani (Butler, 1882), A. erythrocephalus (Pocock, 1893), A. hova (de Saussure & Zehntner, 1897), A. corallipes (de Saussure & Zehntner, 1902), A. sakalava (de Saussure & Zehntner, 1897), are redescribed. Four new synonyms are confi rmed: Aphistogoniulus sanguinemaculatus (Silvestri, 1897) new synonym of A. cowani, A. quadridentatus (Attems, 1910) new synonym of A. erythrocephalus, A. polleni Jeekel, 1971 and A. brolemanni Jeekel, 1971 new synonyms of A. hova. Scanning electron microscopy is utilized to investigate the sexual diff erences on the antenna, mandible and gnathochilarium in A. cowani. Th e intraspecifi c variation of the taxonomic characters within and between diff erent populations of A. erythrocephalus (Pocock, 1893) is examined. Five new species (A. sanguineus Wesener, n. sp., A. infernalis Wesener, n. sp., A. diabolicus Wesener, n. sp., A. -
Morphological Data, Extant Myriapoda, and the Myriapod Stem-Group
Contributions to Zoology, 73 (3) 207-252 (2004) SPB Academic Publishing bv, The Hague Morphological data, extant Myriapoda, and the myriapod stem-group Gregory+D. Edgecombe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia, e-mail: [email protected] Keywords: Myriapoda, phylogeny, stem-group, fossils Abstract Tagmosis; long-bodied fossils 222 Fossil candidates for the stem-group? 222 Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant arthropods provides a basis for defending myriapod Fig. 2 251 monophyly and identifying those morphological characters that are to taxon to The necessary assign a fossil the Myriapoda. the most of the allianceofhexapods and crustaceans need notrelegate myriapods “Perhaps perplexing arthropod taxa 1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136). modates Myriapoda and Tetraconata as sister taxa. No known pre-Silurianfossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible and tentorial endoskeleton,exceptional fossil preservation seems confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that Cambrian Lagerstdtten like the Burgess Shale and Chengjiang have contributed to knowledge of basal Contents arthropod inter-relationships, they are notably si- lent on the matter of myriapod origins and affini- Introduction 207 ties. -
Redalyc.Production and Efficiency of Organic Compost Generated By
Ciência Rural ISSN: 0103-8478 [email protected] Universidade Federal de Santa Maria Brasil de Sousa Antunes, Luiz Fernando; Nogueira Scoriza, Rafael; Galvão da Silva, Dione; Fernandes Correia, Maria Elizabeth Production and efficiency of organic compost generated by millipede activity Ciência Rural, vol. 46, núm. 5, mayo, 2016, pp. 815-819 Universidade Federal de Santa Maria Santa Maria, Brasil Available in: http://www.redalyc.org/articulo.oa?id=33144653009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência Rural, Santa Maria, v.46,Production n.5, p.815-819, and efficiency mai, 2016 of organic compost generated by http://dx.doi.org/10.1590/0103-8478cr20150714millipede activity. 815 ISSN 1678-4596 SOIL SCIENCE Production and efficiency of organic compost generated by millipede activity Produção e eficiência de composto orgânico gerado pela atividade de gongolos Luiz Fernando de Sousa AntunesI Rafael Nogueira ScorizaI* Dione Galvão da SilvaII Maria Elizabeth Fernandes CorreiaII ABSTRACT características físicas e químicas; (3) sua eficiência, quando utilizado para a produção de mudas de alface. O primeiro The putrefactive activity of organisms such as experimento durou 90 dias, utilizando 6,5 litros de gliricídea, 6,5 diplopods in the edaphic macrof auna can be leveraged to promote litros de flemingea, 13,5 litros de aparas de grama, 4,5 litros de the transformation of agricultural and urban waste into a low- papelão, 4,5 litros de casca de coco e 4,5 litros de sabugo de cost substrate for the production of vegetable seedlings. -
Dichromatobolus, a New Genus of Spirobolidan Millipedes from Madagascar (Spirobolida, Pachybolidae)
European Journal of Taxonomy 720: 107–120 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.720.1119 www.europeanjournaloftaxonomy.eu 2020 · Wesener T. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:A32297C8-00D2-4A71-837A-CE49107C1F27 Dichromatobolus, a new genus of spirobolidan millipedes from Madagascar (Spirobolida, Pachybolidae) Thomas WESENER Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for Animal Biodiversity, Adenauerallee 160, D-53113, Bonn, Germany. E-mail: [email protected] urn:lsid:zoobank.org:author:86DEA7CD-988C-43EC-B9D6-C51000595B47 Abstract. A new genus, Dichromatobolus gen. nov., belonging to the genus-rich mainly southern hemisphere family Pachybolidae of the order Spirobolida, is described based on D. elephantulus gen. et sp. nov., illustrated with color pictures, line drawings, and scanning electron micrographs. The species is recorded from the spiny bush of southwestern Madagascar. Dichromatobolus elephantulus gen. et sp. nov. shows an unusual color pattern, sexual dichromatism with males being red with black legs and females being grey. Males seem to be more surface active, as mainly males were collected with pitfall traps. Females mainly come from the pet trade. The body of this species is short and very wide, being only 8 times longer than wide in the males. Live observations show the species is a very slow mover, digging in loose soil almost as fast as walking on the surface. The posterior gonopods of Dichromatobolus gen. nov. are unusually simple and well-rounded, displaying some similarities to the genera Corallobolus Wesener, 2009 and Granitobolus Wesener, 2009, from which the new genus diff ers in numerous other characters, e.g., size, anterior gonopods and habitus.