bioRxiv preprint doi: https://doi.org/10.1101/348334; this version posted June 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion Michael J. Texada1, Anne F. Joergensen1,2, Christian F. Christensen1, Daniel K. Smith1, Dylan F.M. Marple1, E. Thomas Danielsen1, Sine K. Petersen1, Jakob L. Hansen2, Kenneth A. Halberg1, Kim F. Rewitz1,* 1Department of Biology, University of Copenhagen, Copenhagen, Denmark 2Cardiovascular Research, Department number 5377, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark *Correspondence:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/348334; this version posted June 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Organisms adapt their metabolism and growth to the availability of nutrients and oxygen, which are essential for normal development. This requires the ability to sense these environmental factors and respond by regulation of growth-controlling signals, yet the mechanisms by which this adaptation occurs are not fully understood. To identify novel growth-regulatory mechanisms, we conducted a global RNAi-based screen in Drosophila for size differences and identified 89 positive and negative regulators of growth.