Classification Kingdom of the Animal

Total Page:16

File Type:pdf, Size:1020Kb

Classification Kingdom of the Animal exapodsstand out among all other invertebratesfor being far and away the most diverse group of animals on Earth, the only inverte- bratesto fly, and the only terrestrial invertebratesto undergo indirect developmentor completemetamorphosis. The arthropod subphylum Hexapoda comprisesthe classInsecta and three other small, closelyrelated, wingless, insect-likegroups: Collembola, protura, and Diplura. The Hexapodaare united on the basisof a distinct body plan of a head,3-segmented thorax, and 11-segmentedabdomery 3 pairs of thoricic legs, a single pair of antennae,3 setsof "jaws" (mandibles,maxillae, and labium), an aerial gasexchange system composed of tracheaeand spiracles,Malpighian tubules formed as proctodeal (ectodermal)evaginations, and, among the Pterygota, wings (Box 22A). The presence of a tho- rax fixed at 3 segments, each with a pair of walking legs, is a unique slmapomorphy for the Hexapoda. Classificationof The Animal Other synapomorphies include the presence of a Kingdom(Metazoa) large fat body (mainly concentrated in the abdo- men), and fusion of the second maxillae to form a Non-Bilateria* Lophophorata' lowerlip (thelabium). (a.k.a.the diploblasts) PHYLUM PHORONIDA PHYLUM PORIFERA PHYLUM BRYOZOA Hexapods evolved on land; groups inhabit- pHYrDv pLAcozoA PHYLUM BRACHIOPODA ing aquatic environments today have secondarily PHYLUM CNIDARIA EcpysozoA invaded those habitats through behavioral adap- PHYLUM CTENOPHORA Nematoida tations and modifications of their aerial gas ex- PHYLUM Bilateria NEMATODA change systems. The earliest undisputed fossils of PHYLUM NEMATOMORPHA (a.k.a.the triploblasts) hexapods are early Devonian (412Ma). However, Scalidophora PHYLUM XENACOELOMORPHA PHYLUM KINORHYNCHr'. there are Silurian trace fossils that are very hexa- Protostomia PHYLUM PRIAPULA pod-like, and molecular clock data suggest an PHYLUM CHAETOGNATHA PHYLUM LOBICIFERA Early Ordovician origin for Hexapods at about Sptneura Panarthropoda 479 millionyears ago and PHYLUM PLATYHELMINTHES an early Silurian origin PHYLUM TARDIGRADA PHYLUM GASTROTRICHA about M7 million years ago for Insecta. PHYLUM ONYCHOPHORA PHYLUM RHOMBOZOA The most spectacular evolutionary PHYLUM ARTHROPODA radiation PHYLUM ORTHONECTIDA suBpHvLUMcRusrncen* among the Hexapoda (in fact among all eukary- PHYLUM NEMERTEA SUAPHYLUMH€XAPObA otic life) has, of course, been within the insects, PHYLUM MOLLUSCA SUBPHYLUM MYRIAPODA which inhabit nearly every PHYLUM ANNELIDA conceivable terrestrial SUBPHYLUM CHELICERATA PHYLUM ENTOPROCTA and freshwater habitat and, less commonly, even Deuterostomia PHYLUM CYCLIOPHORA the sea surface and the marine littoral iegion. PHYLUM ECHINODERMATA Gnathifera PHYLUM HEMICHORDATA lnsects are also found in such unlikely places as oil PHYLUM GNATHOSTOMULIDA PHYLUM CHORDATA swamps and seeps, sulfur springs, glacial streams, PHYLUM MICROGNATHOZOA and brine ponds. They often live where few other PHYLUM ROTIFERA "Paraphyletic group This chapterhas been revised by Wendy Moore. 844 Chapter Twenty-Two Insects are not only diverse, but also incredibly BOX22A Characteristicsof the abundant. For every human alive, there are an estimat- SubphylumHexapoda ed 200 million insects. Howard Ensign Evans estimat- ed that an acre of ordinary English pasture supports (plus 1. Body composed of 20 true somites acron) an astonishin g 248,375,000 springtails and 17,825,000 organized as a head (6 somites), thorax (3 somites) beetles. In tropical rain forests, insects can constitute and abdomerl (11 sopites). Due to fusion of (dry somites, these body segments are not always 40% of the total animal biomass weight), and the externallyobvious. biomass of the ants can be far greater than that of the 2. Head segments bear the following structures (from combined mammal fauna (up to 75"/" of the total ani- anterior to posterior):compound eyes and ocelli; mal biomass). A single colony of the African driver ant antennae; clypeolabrum; mandibles; maxillae,labi- Anomma wilaerthi may contain as many as 22 million um (fused second maxillae).Ocelli (and compound workers. Based on his research in the tropics, biodi- eyes) are secondarily lost in some groups. versitv sleuth Terrv Erwin has calculated that there 3. Legs uniramous; present on the three thoracic seg- are about 3.2 x 108individual arthropods per hectare, ments of adults; legs composed of 6 articles: coxa, representing more than 60,000 species, in the west- pretarsus; trochanter, femur, tibia, tarsus, tarsus ern Amazon. In Maryland, a single population of the often subdivided; pretarsus typically clawed mound-building ant Formicn exsectoidescomprised 73 4. Gas exchange by spiracles and tracheae nests covering an area of 10 acres and containing ap- 5. Gut with gastric (digestive)ceca proximately 12 million workers. Termites have colo- 6. With large fat body (mainlyconcentrated in nies of similar magnitudes. E. O. Wilson has calculated abdomen) that, at any given time, 101s(a million billion) ants are 7. Fused exoskeleton of head forms unique internal alive on Earth! tentorium In most parts of the world, insects are among the B. With ectodermally derived Malpighiantubules (proc- principal predators of other invertebrates. Insects are todeal evaginations) also key items in the diets of many terrestrial verte- 9. Gonopores open on the last abdominal segment, brates, and they play a major role as reducer-level or- or on abdominalsegment 7, B, or I ganisms (detritovores and decomposers) in food webs. 10. Gonochoristic; direct or indirect development Due to their sheer numbers, they constitute much of the matrix of terrestrial food webs. Their biomass and energy consumption exceed those of vertebrates in most terrestrial habitats. In deserts and in the tropics, animals or plants can exist. It is no exaggeration to say ants replace earthworms as the most abundant earth that insects rule the land. Their diversity and abun- movers (ants are nearly as important as earthworms dance defy imagination (Figures 22.1,-22.7). even in temperate regions). Termites are among the We do not know how many species of insects there chief decomposers of dead wood and leaf litter around are, or even how many have been described. Published the world, and without dung beetles African savan- estimates of the number of described species range nahs would be buried under the excrement of the tens from 890,000 to well over a million (we calculate of thousands of large grazingmammals. about926,990). An average of about 3,500 new species Without insects, life as we know it would ceaseto have been described annually since the publication exist. In fact,E. O. Wilson has stated, "so important of Linnaeus's SystemaNsturne in1758, although in re- are insects and other land-dwelling arthropods that if cent years the average has climbed to 7,000 new spe- all were to disappear, humanity probably could not cies annually. Estimates of the number of insect species last more than a few months." Eighty percent of the remaining to be described range from 3 million to 100 world's crop species, including food, medicine, and million. The Coleoptera (beetles), with an estimated fiber crops, rely on animal pollinators, nearly all of 380,000described species,is far and away the largest which are insects. Insects also play key roles in pol- insect order (more than a quarter of all animal species linating wild, native plants. Beekeeping began long are beetles). The beetle family Curculionidae (the wee- ago/ at least by 600 BC in the Nile Valley and prob- vils) contains about 65,000 described species (nearly ably well before that. The first migratory beekeep- 5% of all described animal species).The rich diversity ers were Egyptians who floated hives up and down of insects seems to have come about through a combi- the Nile to provide pollination services to floodplain nation of advantageous features, including the evolu- farmers while simultaneously producing a honey tionary exploitation of developmental genes working crop. Domestic honeybees (Apis mellifera),introduced on segmented and compartmen talize d bodies, coevo- to North America from Europe in the mid-1600s, are lution with plants (particularly the flowering plants), now the dominant pollinators of most food crops miniaturization, and the invention of flight. grown around the world, and they play some role PHYLUMARTHROPODA The Hexaooda:Insects and Their Kin 845 Figure 22.1 Representatives of the three orders of entognathous (noninsect) hexapods. (A) Anurida grana- na, a springtail (order Collembola). (B) Ptenothrix sp., a resulted in flowers with anatomy and scentsthat are springlail showing entognathous mouthparts. (C) A diplu- finely tuned to their insect partners. In exchangefor ran from New Zealand (order Diplura). (D) A proturan from pollination services,flowers provide insects with British Columbia (order Protura). food (nectar, pollen), shelter, and chemicals used by the insectsto produce such things as pheromones.In general,insect pollination is accomplishedcoinciden- in pollinatingS}% of the crop varieties grown in the tally, as the pollinators visit flowers for other reasons. United States(they are estimated to be directly re- But in a few cases,such as that of the yucca moths of sponsiblefor $10to $20billion in crops annually).l the American Southwesl (Tegiticulaspp.), the insects Interactions between insects and flowering plants actually gather up pollen and force it into the recep- have been going on for a very long time, beginning tive stigma of the flower, initiating pollination. The over 100 million years
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • Fat Body Development and Its Function in Energy Storage and Nutrient Sensing in Drosophila Melanogaster
    Scienc e e & su s E i n T g f i o n Journal of l e e a r n i r n u g Zhang, et al., J Tissue Sci Eng 2014, 6:1 o J DOI: 10.4172/2157-7552.1000141 ISSN: 2157-7552 Tissue Science & Engineering Review Article Open Access Fat Body Development and its Function in Energy Storage and Nutrient Sensing in Drosophila melanogaster Yafei Zhang and Yongmei Xi* Institute of Genetics, College of Life Sciences, Zhejiang University, China *Corresponding author: Yongmei Xi, Institute of Genetics, College of Life Sciences, Zhejiang University, China; Tel: +86-571-88206623; Fax: +86-571-88981371; E- mail: [email protected] Received date: May 04, 2014; Accepted date: Sep 29 2014; Published date: Oct 03, 2014 Copyright: © 2014 Zhang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The fat body of Drosophila has been considered as the equivalent to the vertebrate adipose tissue and liver in its storage and major metabolic functions. It is a dynamic and multifunctional tissue which functions in energy storage, immune response and as a nutritional sensor. As a major endocrine organ in Drosophila, the fat body can produce various proteins, lipids and carbohydrates, synthesize triglyceride, diacylglycerol, trehalose and glycogen in response to energetic demands. It also secretes significant proteins governing oocyte maturation or targeting nutritional signals in the regulation of the metabolism. At different developmental stages and under different environmental conditions the fat body can interplay with other tissues in monitoring and responding to the physiological needs of the body’s growth and to coordinate the metabolism of development.
    [Show full text]
  • A New Insect Trackway from the Upper Jurassic—Lower Cretaceous Eolian Sandstones of São Paulo State, Brazil: Implications for Reconstructing Desert Paleoecology
    A new insect trackway from the Upper Jurassic—Lower Cretaceous eolian sandstones of São Paulo State, Brazil: implications for reconstructing desert paleoecology Bernardo de C.P. e M. Peixoto1,2, M. Gabriela Mángano3, Nicholas J. Minter4, Luciana Bueno dos Reis Fernandes1 and Marcelo Adorna Fernandes1,2 1 Laboratório de Paleoicnologia e Paleoecologia, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 2 Programa de Pós Graduacão¸ em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 4 School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom ABSTRACT The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a gigantic eolian sand sea (erg), formed under an arid climate in the south-central part of Gondwana. This trackway is composed of two track rows, whose internal width is less than one-quarter of the external width, with alternating to staggered series, consisting of three elliptical tracks that can vary from slightly elongated to tapered or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the Araraquara municipality, São Paulo State. Comparisons with neoichnological studies and morphological inferences indicate that the producer of Paleohelcura araraquarensis isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the Submitted 6 November 2019 ecological roles that different species of this group are capable of performing in dune Accepted 10 March 2020 deserts.
    [Show full text]
  • Fat Body, Fat Pad and Adipose Tissues in Invertebrates and Vertebrates: the Nexus Odunayo Ibraheem Azeez1,2*, Roy Meintjes1 and Joseph Panashe Chamunorwa1
    Azeez et al. Lipids in Health and Disease 2014, 13:71 http://www.lipidworld.com/content/13/1/71 REVIEW Open Access Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus Odunayo Ibraheem Azeez1,2*, Roy Meintjes1 and Joseph Panashe Chamunorwa1 Abstract The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity. Keywords: Fat body, Adipose tissue, and Metabolic syndrome Introduction may survive lack of food for many years during estivation Living organisms, probably by virtue of limited resources [3]. According to Boetius and Boetius, [4] and Olivereau for survival, are intuitionally wired with the ability to and Olivereau [5], eels have been found to survive starva- conserve available resources. This feature is not limited tion of up to four years, surviving basically on oxidation of to any specific phyla, gender or any other status, but stored fats and even amino acid derived from body pro- common along the phylogenetic tree.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Invasive Insects (Adventive Pest Insects) in Florida1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. ENY-827 Invasive Insects (Adventive Pest Insects) in Florida1 J. H. Frank and M. C. Thomas2 What is an Invasive Insect? include some of the more obscure native species, which still are unrecorded; they do not include some The term 'invasive species' is defined as of the adventive species that have not yet been 'non-native species which threaten ecosystems, detected and/or identified; and they do not specify the habitats, or species' by the European Environment origin (native or adventive) of many species. Agency (2004). It is widely used by the news media and it has become a bureaucratese expression. This is How to Recognize a Pest the definition we accept here, except that for several reasons we prefer the word adventive (meaning they A value judgment must be made: among all arrived) to non-native. So, 'invasive insects' in adventive species in a defined area (Florida, for Florida are by definition a subset (those that are example), which ones are pests? We can classify the pests) of the species that have arrived from abroad more prominent examples, but cannot easily decide (adventive species = non-native species = whether the vast bulk of them are 'invasive' (= pests) nonindigenous species). We need to know which or not, for lack of evidence. To classify them all into insect species are adventive and, of those, which are pests and non-pests we must draw a line somewhere pests. in a continuum ranging from important pests through those that are uncommon and feed on nothing of How to Know That a Species is consequence to humans, to those that are beneficial.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • African Butterfly News Can Be Downloaded Here
    LATE SUMMER EDITION: JANUARY / AFRICAN FEBRUARY 2018 - 1 BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to the first newsletter of 2018! I trust you all have returned safely from your December break (assuming you had one!) and are getting into the swing of 2018? With few exceptions, 2017 was a very poor year butterfly-wise, at least in South Africa. The drought continues to have a very negative impact on our hobby, but here’s hoping that 2018 will be better! Braving the Great Karoo and Noorsveld (Mark Williams) In the first week of November 2017 Jeremy Dobson and I headed off south from Egoli, at the crack of dawn, for the ‘Harde Karoo’. (Is there a ‘Soft Karoo’?) We had a very flexible plan for the six-day trip, not even having booked any overnight accommodation. We figured that finding a place to commune with Uncle Morpheus every night would not be a problem because all the kids were at school. As it turned out we did not have to spend a night trying to kip in the Pajero – my snoring would have driven Jeremy nuts ... Friday 3 November The main purpose of the trip was to survey two quadrants for the Karoo BioGaps Project. One of these was on the farm Lushof, 10 km west of Loxton, and the other was Taaiboschkloof, about 50 km south-east of Loxton. The 1 000 km drive, via Kimberley, to Loxton was accompanied by hot and windy weather. The temperature hit 38 degrees and was 33 when the sun hit the horizon at 6 pm.
    [Show full text]
  • New Insects from the Earliest Permian of Carrizo Arroyo (New Mexico, USA) Bridging the Gap Between the Carboniferous and Permian Entomofaunas
    Insect Systematics & Evolution 48 (2017) 493–511 brill.com/ise New insects from the earliest Permian of Carrizo Arroyo (New Mexico, USA) bridging the gap between the Carboniferous and Permian entomofaunas Jakub Prokopa,* and Jarmila Kukalová-Peckb aDepartment of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Praha 2, Czech Republic bEntomology, Canadian Museum of Nature, Ottawa, ON, Canada K1P 6P4 *Corresponding author, e-mail: [email protected] Version of Record, published online 7 April 2017; published in print 1 November 2017 Abstract New insects are described from the early Asselian of the Bursum Formation in Carrizo Arroyo, NM, USA. Carrizoneura carpenteri gen. et sp. nov. (Syntonopteridae) demonstrates traits in hindwing venation to Lithoneura and Syntonoptera, both known from the Moscovian of Illinois. Carrizoneura represents the latest unambiguous record of Syntonopteridae. Martynovia insignis represents the earliest evidence of Mar- tynoviidae. Carrizodiaphanoptera permiana gen. et sp. nov. extends range of Diaphanopteridae previously restricted to Gzhelian. The re-examination of the type speciesDiaphanoptera munieri reveals basally coa- lesced vein MA with stem of R and RP resulting in family diagnosis emendation. Arroyohymen splendens gen. et sp. nov. (Protohymenidae) displays features in venation similar to taxa known from early and late Permian from the USA and Russia. A new palaeodictyopteran wing attributable to Carrizopteryx cf. arroyo (Calvertiellidae) provides data on fore wing venation previously unknown. Thus, all these new discoveries show close relationship between late Pennsylvanian and early Permian entomofaunas. Keywords Ephemeropterida; Diaphanopterodea; Megasecoptera; Palaeodictyoptera; gen. et sp. nov; early Asselian; wing venation Introduction The fossil record of insects from continental deposits near the Carboniferous-Permian boundary is important for correlating insect evolution with changes in climate and in plant ecosystems.
    [Show full text]
  • Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
    ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.
    [Show full text]
  • Annotated Checklist of the Diplura (Hexapoda: Entognatha) of California
    Zootaxa 3780 (2): 297–322 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3780.2.5 http://zoobank.org/urn:lsid:zoobank.org:pub:DEF59FEA-C1C1-4AC6-9BB0-66E2DE694DFA Annotated Checklist of the Diplura (Hexapoda: Entognatha) of California G.O. GRAENING1, YANA SHCHERBANYUK2 & MARYAM ARGHANDIWAL3 Department of Biological Sciences, California State University, Sacramento 6000 J Street, Sacramento, CA 95819-6077. E-mail: [email protected]; [email protected]; [email protected] Abstract The first checklist of California dipluran taxa is presented with annotations. New state and county records are reported, as well as new taxa in the process of being described. California has a remarkable dipluran fauna with about 8% of global richness. California hosts 63 species in 5 families, with 51 of those species endemic to the State, and half of these endemics limited to single locales. The genera Nanojapyx, Hecajapyx, and Holjapyx are all primarily restricted to California. Two species are understood to be exotic, and six dubious taxa are removed from the State checklist. Counties in the central Coastal Ranges have the highest diversity of diplurans; this may indicate sampling bias. Caves and mines harbor unique and endemic dipluran species, and subterranean habitats should be better inventoried. Only four California taxa exhibit obvious troglomorphy and may be true cave obligates. In general, the North American dipluran fauna is still under-inven- toried. Since many taxa are morphologically uniform but genetically diverse, genetic analyses should be incorporated into future taxonomic descriptions.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]