New Insects from the Earliest Permian of Carrizo Arroyo (New Mexico, USA) Bridging the Gap Between the Carboniferous and Permian Entomofaunas

Total Page:16

File Type:pdf, Size:1020Kb

New Insects from the Earliest Permian of Carrizo Arroyo (New Mexico, USA) Bridging the Gap Between the Carboniferous and Permian Entomofaunas Insect Systematics & Evolution 48 (2017) 493–511 brill.com/ise New insects from the earliest Permian of Carrizo Arroyo (New Mexico, USA) bridging the gap between the Carboniferous and Permian entomofaunas Jakub Prokopa,* and Jarmila Kukalová-Peckb aDepartment of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Praha 2, Czech Republic bEntomology, Canadian Museum of Nature, Ottawa, ON, Canada K1P 6P4 *Corresponding author, e-mail: [email protected] Version of Record, published online 7 April 2017; published in print 1 November 2017 Abstract New insects are described from the early Asselian of the Bursum Formation in Carrizo Arroyo, NM, USA. Carrizoneura carpenteri gen. et sp. nov. (Syntonopteridae) demonstrates traits in hindwing venation to Lithoneura and Syntonoptera, both known from the Moscovian of Illinois. Carrizoneura represents the latest unambiguous record of Syntonopteridae. Martynovia insignis represents the earliest evidence of Mar- tynoviidae. Carrizodiaphanoptera permiana gen. et sp. nov. extends range of Diaphanopteridae previously restricted to Gzhelian. The re-examination of the type speciesDiaphanoptera munieri reveals basally coa- lesced vein MA with stem of R and RP resulting in family diagnosis emendation. Arroyohymen splendens gen. et sp. nov. (Protohymenidae) displays features in venation similar to taxa known from early and late Permian from the USA and Russia. A new palaeodictyopteran wing attributable to Carrizopteryx cf. arroyo (Calvertiellidae) provides data on fore wing venation previously unknown. Thus, all these new discoveries show close relationship between late Pennsylvanian and early Permian entomofaunas. Keywords Ephemeropterida; Diaphanopterodea; Megasecoptera; Palaeodictyoptera; gen. et sp. nov; early Asselian; wing venation Introduction The fossil record of insects from continental deposits near the Carboniferous-Permian boundary is important for correlating insect evolution with changes in climate and in plant ecosystems. One of the most prolific localities is Carrizo Arroyo situated in central New Mexico, USA, with an approximately 100-m-thick section of the latest Pennsylvanian (late Gzelian) to Early Permian (early Asselian or equivalent Wolfcam- pian) fauna and flora (Lucas et al. 2016, Schneider et al. 2016). Other well-known © Koninklijke Brill NV, Leiden, 2017 DOI 10.1163/1876312X-48022160 Downloaded from Brill.com09/25/2021 01:28:06PM via free access <UN> <UN> 494 J. Prokop and J. Kukalová-Peck / Insect Systematics & Evolution 48 (2017) 493–511 insect localities slightly older than Carrizo Arroyo come from Europe as Wettin in Germany and Commentry in France (both Gzhelian) or somewhat younger as Obora in the Czech Republic (Sakmarian–Artinskian). Insects occur in two freshwater lay- ers inter-bedded by marine deposits of the Bursum Formation (Red Tanks Member) of early Asselian age. The entomofauna was first collected almost forty years ago by Kukalová-Peck & Peck (1976) and later extended by Lucas and Krainer (2004), Ras- nitsyn et al. (2004) and by Schneider et al. (2004). However, a number of specimens housed in private and institutional collections are still awaiting description. The fol- lowing insect groups, almost entirely represented by wings, were described in pre- ceding studies: Archaeognatha, Odonatoptera, Diaphanopterodea, Palaeodictyoptera, Megasecoptera, Orthoptera, Caloneurodea, “Grylloblattida”, Blattodea, “Hypoper- lida”, Psocodea, Hemiptera, “Miomoptera”, Mecopterida (Kukalová-Peck and Peck 1976; Shear et al. 1992; Rowland 1997; Rasnitsyn et al. 2004; Schneider et al. 2004; Nel et al. 2012). The material described here was collected by the second author (JKP) in 1976 with the assistance of legendary Czech collectors Mr. Karel Havlata and Mrs. Anna Havlatová (both sampled for decades together with JKP famous Early Permian Moravian localities in the Boskovice furrow). In this contribution, we describe new taxa of Hydropalaeoptera (Ephemeropterida: Syntonopteroidea) and of †Rostropalae- optera (Diaphanopterodea, Megasecoptera, Palaeodictyoptera). Material and methods The fossil specimens preserved in fine grained greenish grey sediment were observed under a stereomicroscope WILD M5A in a dry state. The venation pattern line draw- ings were made directly through a stereomicroscope with a coupled camera lucida. Photographs were taken by digital camera Canon D550 with lenses MP-E 65 mm and EF 50 mm. Original photographs were processed using the image-editing software Adobe Photoshop CS and for some images were used stacking software Helicon Focus Pro 6.2.2. Type material is housed in the Kukalová-Peck collection, awaiting deposition in the Canadian Museum of Nature, Ottawa, ON, Canada. Specimen No. 2927/20639 is deposited in the collection of The Natural History Museum in San Diego, CA, USA. We follow the wing venation nomenclature in general of Kukalová-Peck (1991). The venational symbols used here specified as follows: symbols in capitals denote the longi- tudinal veins (ScA/ScP, subcostal anterior/posterior; RA/RP, radial anterior/posterior; MA/MP, medial anterior/posterior; CuA/CuP, cubital anterior/posterior; AA/AP, anal anterior/posterior); ‘IN-’, concave vein between AA1+2 and AA3+4. Other symbols used for morphological structures: ng, nygma. Systematics and higher divisions follow the concept of Ephemeropterida: Syntonopteroidea sensu Prokop et al. (2010), Pal- aeodictyopteroida sensu Bechly (1996, 2014), Riek (1976), and Sinitshenkova (2002). Systematic Palaeontology Order Syntopterida Kukalová-Peck, Peters & Soldán, 2009 Downloaded from Brill.com09/25/2021 01:28:06PM via free access <UN> <UN> J. Prokop and J. Kukalová-Peck / Insect Systematics & Evolution 48 (2017) 493–511 495 Superfamily Syntonopteroidea Handlirsch, 1911 Family Syntonopteridae Handlirsch, 1911 Included genera after Prokop et al. (2010): Anglolithoneura Prokop et al., 2010, Carri- zoneura gen. nov. (present study), Gallolithoneura Garrouste et al., 2009, Syntonoptera Handlirsch, 1911 (type genus); Lithoneura Carpenter, 1938. Carrizoneura gen. nov. Diagnosis Based on wing venation, costal area relatively narrow, venation with numerous triads along the posterior wing margin; RA and RP are basally separate and placed at the same level as the stem of M (MA and MP); RP pectinate having three main branches, first two secondary bifurcated, all separated by long intercalary veins; MA strongly bowed partially adjacent at length to RP, bearing a long broad fork and intercalary vein IMA; MP forks at the same level as divergence of MA and RP bearing one intercalary vein IMP; CuA basally close to stem of M, CuA anteriorly pectinate ending with five main branches and intercalary veins, first branch on the level of division of MP; CuP simple; groove IN- appears to start at the wing base, forming a constriction of the anal area between AA1+2 and convex AA3+4, AA1+2 touching CuP in one point near wing base; a constriction of the area between AA3+4 and first branch of concave AP at the same point. Etymology Composite name after Carrizo (name of locality) and suffixneura (meaning veins); feminine in gender. Carrizoneura carpenteri gen. nov. et sp. nov. (Figs 1–3) Description Wing venation (?hindwing) originally with dark smoky coloration and rather thick membrane; pattern of sparse transversal cross-veins with partial dense network of small cells present; venation having prominent corrugation of main longitudinal veins to- gether with number of intercalary veins emerging between the terminal branches; main longitudinal veins basally covered by prominent dense setae (Fig. 2); concave ScP ba- sally adjacent to RA nearly parallel to anterior wing margin ending 3.9 mm from wing apex; area between ScP and costal margin with several simple cross-veins; simple RA di- verges from ScP in about 1/3 of the wing length ending close to wing apex; RP diverges from RA about 10 mm from wing base running towards wing apex, distally pectinate with three main branches, first and second secondarily terminally bifurcated; branches of RP interlay with intercalary veins forming prominent corrugation along posterior wing margin; field between RA and RP bears numerous simple straight cross-veins; con- vex MA emerging from M-stem nearly at the same level as that of RA and RP, directed towards RP and touching it for a short distance of 4.1 mm; MA deeply branched ending Downloaded from Brill.com09/25/2021 01:28:06PM via free access <UN> <UN> 496 J. Prokop and J. Kukalová-Peck / Insect Systematics & Evolution 48 (2017) 493–511 Fig. 1. Carrizoneura carpenteri gen. nov. et sp. nov., holotype No. 1/2014, Kukalová–Peck coll., Canadian Museum of Nature, Ottawa, Ontario, Canada. Line drawing of hindwing venation. Scale bar represents 5 mm. with two curved branches and concave intercalary vein IMA between them; concave MP deeply bifurcated nearly at same level as division that of MA and RP, ending with two main branches and intercalary convex vein IMP between them; convex CuA run- ning basally very close to stem of M, anteriorly pectinate with five branches and four intercalary veins ICuA between the them, first branch emerges on the level of division of MP; CuP simple, strongly concave and weakly distally curved; anal area with convex AA1+2 touching CuP in one point near wing base (see detail photograph Fig. 3); a con- striction of the area between AA1+2 and convex AA3+4, and a constriction of the area between AA3+4 and first branch of concave AP at the same point; a strongly concave longitudinal vein between
Recommended publications
  • Precise Age and Biostratigraphic Significance of the Kinney Brick Quarry Lagerstätte, Pennsylvanian of New Mexico, USA
    Precise age and biostratigraphic significance of the Kinney Brick Quarry Lagerstätte, Pennsylvanian of New Mexico, USA Spencer G. Lucas1, Bruce D. Allen2, Karl Krainer3, James Barrick4, Daniel Vachard5, Joerg W. Schneider6, William A. DiMichele7 and Arden R. Bashforth8 1New Mexico Museum of Natural History, 1801 Mountain Road N.W., Albuquerque, New Mexico, 87104, USA email: [email protected] 2New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, New Mexico, 87801, USA email: [email protected] 3Institute of Geology and Paleontology, University of Innsbruck, Innsbruck, A-6020, Austria email: [email protected] 4Department of Geosciences, Texas Tech University, Box 41053, Lubbock, Texas, 79409, USA email: [email protected] 5Université des Sciences et Technologies de Lille, UFR des Sciences de la Terre, UPRESA 8014 du CNRS, Laboratoire LP3, Bâtiment SN 5, F-59655 Villeneuve d’Ascq, Cédex, France email: [email protected] 6TU Bergakademie Freiberg, Cottastasse 2, D-09596 Freiberg, Germany email:[email protected] 7Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560 email: [email protected] 8Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark email: [email protected] ABSTRACT: The Kinney Brick Quarry is a world famous Late Pennsylvanian fossil Lagerstätte in central New Mexico, USA. The age assigned to the Kinney Brick Quarry (early-middle Virgilian) has long been based more on its inferred lithostratigraphic position than on biostratigraphic indicators at the quarry. We have developed three datasets —-stratigraphic position, fusulinids and conodonts— that in- dicate the Kinney Brick Quarry is older, of middle Missourian (Kasimovian) age.
    [Show full text]
  • Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
    ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.
    [Show full text]
  • 1 General Introduction
    1 General Introduction If the karate-ka (student) shall walk the true path, first he will cast aside all preference. Tatsuo Shimabuku, Grand Master of Isshin-ryu Karate 1.1 The Importance of Insects ~30% of the plants we grow for food and materials. Because of their great numbers and diversity, insects Insects transmit some of these pathogens. While have a considerable impact on human life and indus- weeds can often reduce pest attack, they can also try, particularly away from cities and in the tropics. harbour the pest’s enemies or provide alternative On the positive side they form a large and irreplace- resources for the pest itself. Then in storage, insects, able part of the ecosystem, especially as pollinators mites, rodents and fungi cause a further 30% loss. of fruit and vegetable crops and, of course, many Apart from such biotic damage, severe physical con- wild plants (Section 8.2.1). They also have a place ditions such as drought, storms and flooding cause in soil formation (Section 8.2.4) and are being used additional losses. For example, under ideal field increasingly in ‘greener’ methods of pest control. conditions new wheat varieties (e.g. Agnote and Biological control using insects as predators and Humber) would give yields of ~16 tonnes/ha, but parasites of pest insects has been developed in the produce typically about half this under good hus- West for over a century, and much longer in China. bandry. Pre-harvest destruction due only to insects More recently integrated pest management (IPM) is 10–13% (Pimentel et al., 1984; Thacker, 2002).
    [Show full text]
  • Frank Morton Carpenter (1902-1994): Academic Biography and List of Publications
    FRANK MORTON CARPENTER (1902-1994): ACADEMIC BIOGRAPHY AND LIST OF PUBLICATIONS BY DAVID G. FURTH 18 Hamilton Rd., Arlington, MA 02174 The present paper is meant to accompany the preceding one by Elizabeth Brosius, Assistant Editor at the University of Kansas, Paleontological Institute, who was extremely instrumental in aid- ing Prof. Frank Carpenter to finish his Treatise on Invertebrate Paleontology volumes on fossil insects. The Brosius paper is a brief profile taken from her personal interaction with Prof. Carpen- ter as well as numerous interviews about him with his friends, stu- dents, and colleagues. The present paper is intended to be more of an account of Prof. Carpenter's academic background and accom- plishments with the addition of some personal and academic accounts of the author's interaction with Frank Carpenter. Frank Morton Carpenter was born in Boston on 6 September 1902. When he was three years old his family (father Edwin A. and mother Maude Wall) moved from Boston to Revere and at age six his family moved to Melrose where he began to attend Lincoln School the following year. His father worked for the American Express Company but had a strong interest in natural history and taught his elder son (Edwin, four years older than Frank) about the constellations. Edwin later graduated from Harvard, studied astronomy, and became Director of the Astronomical Laboratory at the University of Arizona in Tucson. When Frank Carpenter was a sixth grader at Lincoln School his father encouraged his interest in butterflies and moths. In ninth grade Frank Carpenter began taking out books about insects from the Melrose Public Library.
    [Show full text]
  • Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America
    Acta Geologica Polonica, Vol. 49 (J 999), No.3, pp. 215-266 406 IU S UNES 0 I Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America GARY D. JOHNSON Department of Earth Sciences and Physics, University of South Dakota; 414 East Clark Street, Vermillion, SD 57069-2390, USA. E-mail: [email protected] ABSTRACT: JOHNSON, G.D. 1999. Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America. Acta Geologica Polonica, 49 (3),215-266. Warszawa. Orthacanthus lateral teeth have paired, variably divergent, smooth, usually carinated labio-lingually compressed principal cusps separated by a central foramen; one or more intermediate cusps; and an api­ cal button on the base isolated from the cusps. Several thousand isolated teeth from Texas Artinskian bulk samples are used to define the heterodont dentitions of O. texensis and O. platypternus. The O. tex­ ensis tooth base has a labio-Iingual width greater than the anteromedial-posterolateral length, the basal tubercle is restricted to the thick labial margin, the principal cusps are serrated to varying degrees, and the posterior cusp is larger. The O. platypternus tooth base is longer than wide, its basal tubercle extends to the center, the labial margin is thin, serrations are absent on the principal cusps, the anterior cusp is larger, and a single intermediate cusp is present. More than two hundred isolated teeth from Nebraska (Gzhelian) and Pennsylvania (Asselian) provide a preliminary description of the heterodont dentition of O. compress us . The principal cusps are similar to O.
    [Show full text]
  • By JB Gillespie and GD Hargadine
    GEOHYDROLOGY AND SALINE GROUND-WATER DISCHARGE TO THE SOUTH FORK NINNESCAH RIVER IN PRATT AND KINGMAN COUNTIES, SOUTH-CENTRAL KANSAS By J.B. Gillespie and G.D. Hargadine U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4177 Prepared in cooperation with the CITY OF WICHITA, SEDGWICK COUNTY, and the KANSAS WATER OFFICE Lawrence, Kansas 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For additional information write to: Copies of this report can be purchased from: U.S. Geological Survey District Chief Earth Science Information Center U.S. Geological Survey Open-File Reports Section Water Resources Division Box 25286, MS 517 4821 Quail Crest Place Denver Federal Center Lawrence, Kansas 66049-3839 Denver, Colorado 80225 CONTENTS Page Definition of terms.......................................................................................................................... vii Abstract............................................................................................................................................. 1 Introduction....................................................................................................................................... 1 Purpose and scope................................................................................................................2 Previous studies................................................................................................................... 4 Acknowledgments ................................................................................................................4
    [Show full text]
  • THE ORIGIN and EVOLUTION of HYMENOPTEROUS INSECTS [P
    THE ORIGIN AND EVOLUTION OF HYMENOPTEROUS INSECTS [p. 24] Chapter 3 EVOLUTION OF THE INFRACLASS SCARABAEONES A. P. Rasnitzyn* Dragonflies [order Odonata] and mayflies [order Ephemeroptera], which have retained a primitive thorax structure (absence of a cryptosternum) but are specialized in other respects, occupy the most isolated position in the infraclass. They are similar to each other in a number of characters, but the nature of the latter does not allow drawing a conclusion about any close relationship of the two orders. Indeed, the primitiveness of the structure of the thorax common to both of them, like any symplesiomorphy, is not evidence of a common origin. The adaptations of the larvae of mayflies and dragonflies to an aquatic way of life are different, and they show, rather, an independent transition to development in water. The loss of the ability to fold the wings as well is connected with different processes in them: in mayflies, with the ephemerality of the imago, the function of which is essentially limited to nuptial flight and oviposition; and in dragonflies, with the metamorphosis of the adult insect to an active aerial predator. It is highly probable that mayflies and dragonflies are independent evolutionary branches. The belonging of dragonflies and mayflies to a common trunk of Scarabaeones, that is, the isolation of them from Protoptera as part of a single trunk with the remaining members of the infraclass (except Protoptera), is confirmed by the metamorphosis of the style of the ninth segment in mayfly males into part of the copulatory organ [endophallus], and in dragonfly females into a sheath of the ovipositor.
    [Show full text]
  • Download Download
    Novitates Paleoentomologicae No. 21, pp. 1–7 14 December 2018 First North American species of the European genus Archaemegaptilus from the Upper Carboniferous Potsville Formation of northern Alabama (Palaeodictyoptera: Archaemegaptilidae) Roy J. Beckemeyer1,2 & Michael S. Engel2,3,4 Abstract. A new palaeodictyopteran (Palaeodictyopterida: Palaeodictyoptera) taxon is de- scribed based on a nearly complete hind wing found in the Potsville Formation (Upper Car- boniferous) of Bibb County, Alabama. Archaemegaptilus blakelyi Beckemeyer & Engel, new species, is the sixth insect genus and species described from the Potsville of Alabama and the second palaeodictyopteran from those deposits. It is the third valid species assigned to the family Archaemegaptilidae. Previously known species are A. kieferi Meunier, from the Com- mentry of France and A. schloesseri Brauckmann et al., from the Hagen-Vorhalle of Germany. INTRODUCTION The Carboniferous insect fauna of Alabama is small, comprised of fve species (Beckemeyer & Engel, 2011). Another specimen has recently been discovered and de- posited in the collection of The University of Alabama Museum of Natural History. Like the earlier taxa, it is a well preserved wing of a large palaeopterous insect that we place here in the family Archaemegaptilidae. Carpenter (1992) characterized Ar- 1 957 Perry Avenue, Wichita, Kansas 67203-3141, USA ([email protected]). 2 Division of Entomology, Natural History Museum, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66045-4415, USA ([email protected]). 3 Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA. 4 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192, USA.
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Frontmatter More information EVOLUTION OF THE INSECTS Insects are the most diverse group of organisms to appear in the 3-billion-year history of life on Earth, and the most ecologically dominant animals on land. This book chronicles, for the first time, the complete evolutionary history of insects: their living diversity, relationships, and 400 million years of fossils. Whereas other volumes have focused on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Current estimates of phylogeny are used to interpret the 400-million-year fossil record of insects, their extinctions, and radiations. Introductory sections include the living species, diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections cover the relationships and evolution of each order of hexapod. The book also chronicles major episodes in the evolutionary history of insects: their modest beginnings in the Devonian, the origin of wings hundreds of millions of years before pterosaurs and birds, the impact that mass extinctions and the explosive radiation of angiosperms had on insects, and how insects evolved the most complex societies in nature. Evolution of the Insects is beautifully illustrated with more than 900 photo- and electron micrographs, drawings, diagrams, and field photographs, many in full color and virtually all original. The book will appeal to anyone engaged with insect diversity: professional ento- mologists and students, insect and fossil collectors, and naturalists. David Grimaldi has traveled in 40 countries on 6 continents collecting and studying recent species of insects and conducting fossil excavations.
    [Show full text]
  • Rasnitsynala Sigambrorum Gen. Et Sp. N., a Small Odonatopterid
    A peer-reviewed open-access journal ZooKeys 130: 57–66 (2011)Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid... 57 doi: 10.3897/zookeys.130.1458 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid (“Eomeganisoptera”, “Erasipteridae”) from the early Late Carboniferous of Hagen-Vorhalle (Germany) Wolfgang Zessin1,†, Carsten Brauckmann2,‡, Elke Gröning2,§ 1 Lange Straße 9, 19230 Jasnitz, Germany 2 Clausthal University of Technology, Institute of Geology and Paleontology, Leibnizstraße 10, 38678 Clausthal-Zellerfeld, Germany † urn:lsid:zoobank.org:author:EE854837-A2FB-457C-82F1-60406627EC58 ‡ urn:lsid:zoobank.org:author:A9B536B4-6DEF-48C4-980A-9EB8A9467F8B § urn:lsid:zoobank.org:author:6D085012-9A15-4937-B408-FEFDF39B4907 Corresponding author: Wolfgang Zessin ([email protected]) Academic editor: D. Shcherbakov | Received 2 May 2011 | Accepted 26 August 2011 | Published 24 September 2011 urn:lsid:zoobank.org:pub:708DBB4C-244E-4606-992B-D10129016158 Citation: Zessin W, Brauckmann C, Gröning E (2011) Rasnitsynala sigambrorum gen. et sp. n., a small odonatopterid (“Eomeganisoptera”, “Erasipteridae”) from the early Late Carboniferous of Hagen-Vorhalle (Germany). In: Shcherbakov DE, Engel MS, Sharkey MJ (Eds) Advances in the Systematics of Fossil and Modern Insects: Honouring Alexandr Rasnitsyn. ZooKeys 130: 57–66. doi: 10.3897/zookeys.130.1458 Abstract Besides Erasipteroides valentini (Brauckmann in Brauckmann, Koch & Kemper, 1985), Zessinella siope Brauckmann, 1988, and Namurotypus sippeli Brauckmann & Zessin, 1989, Rasnitsynala sigambrorum gen. et sp. n. is the fourth species of the Odonatoptera from the early Late Carboniferous (Early Penn- sylvanian: Namurian B, Marsdenian) deposits of the important Hagen-Vorhalle Konservat-Lagerstätte in Germany.
    [Show full text]
  • Changes to the Fossil Record of Insects Through Fifteen Years of Discovery
    This is a repository copy of Changes to the Fossil Record of Insects through Fifteen Years of Discovery. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88391/ Version: Published Version Article: Nicholson, David Blair, Mayhew, Peter John orcid.org/0000-0002-7346-6560 and Ross, Andrew J (2015) Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLosOne. e0128554. https://doi.org/10.1371/journal.pone.0128554 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE Changes to the Fossil Record of Insects through Fifteen Years of Discovery David B. Nicholson1,2¤*, Peter J. Mayhew1, Andrew J. Ross2 1 Department of Biology, University of York, York, United Kingdom, 2 Department of Natural Sciences, National Museum of Scotland, Edinburgh, United Kingdom ¤ Current address: Department of Earth Sciences, The Natural History Museum, London, United Kingdom * [email protected] Abstract The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009.
    [Show full text]
  • Transformative Paleobotany
    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
    [Show full text]