ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects

Total Page:16

File Type:pdf, Size:1020Kb

ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). Though fewer in numbers of species than the beetles, Collembola (springtails) are perhaps the most abundant arthropods on earth, especially in soil litter. Found in the same environment, Protura are very small pale arthropods that are rarely encountered; Diplura include a few Celatoblatta vulgaris. families of larger pale arthropods. The vast majority of hexapod species are Alastair Robertson and Maria Minor, Massey University insects, classified among 26–30 orders (some gene-sequencing studies suggest the amalgamation of some orders). The earliest known hexapods in the fossil record are a Collembolon and an insect, both terrestrial, from the Early Devonian Rhynie Chert in Scotland (Engel & Grimaldi 2004). Both have relatively advanced features, showing that insects must have originated earlier, in the Silurian. �Traditionally, springtails, Protura, and Diplura were united in a group called Entognatha, so named because members of these classes all have the base of the mouthparts internalised, so that the 233 NEW ZEALAND INVENTORY OF BIODIVERSITY Summary of New Zealand hexapod taxonomic diversity Taxon Described Known Estimated Adventive Endemic Endemic living undescribed/ unknown species+ species+ genera species+ unrecorded species subspecies subspecies named subspecies species+ +new subspecies Protura 17 1 0–10 2 10 0 Collembola 346+34 0 650 44+3 266+29 20 Diplura 8+1 2 0–5 4? 6 0 Archaeognatha 2 0 0–2 0 2 0 Thysanura 3 8 >8 2 8 0+2 Ephemeroptera 48 3 10 0 51 20 Odonata 17 0 0 3 10 3 Plecoptera 99 21 20 0 120 19 Blattodea 35 9 2–5 13 31 5+1 Isoptera 9 0 0 5 3 0 Mantodea 2 0 0 1 1 0 Dermaptera 21 1 0–3 9? 13? 0 Orthoptera 116 69 <5 7? 173 27+1 Phasmatodea 22 7 7 1? 29 10 Hemiptera 1,079+15 78 235–440 280? 826?+14 119+1 Thysanoptera 122 1 >10 55 65? 11 Psocoptera 62 7 30 5 31 3 Phthiraptera 340+8 10 20* 90 29 1 Megaloptera 1 0 0 0 1 0 Neuroptera 14 0 0 7 7 0 Coleoptera 5,062+29 417–420+1 3,000 418+29 5,002–5,005+30 533+2 Mecoptera 1 0 0 0 1 0 Siphonaptera 28+6 0 0–5 11 17 0 Diptera 2,483+9 736–785 130–1,640 195 3,030–3,026+9 192+17 Strepsiptera 2 1 2? 0 4 0 Hymenoptera 721 820–934 >500 259? 740–742 55+21 Trichoptera 228 26 10–50 0 241 33+2 Lepidoptera 1,686+8 14 >100 139+1 1,389+9 140 Totals 12,573+110 2,231–2,397 4,735–6,525 ~1,585+33 12,105–12,091+91 1,188+48 * Not including possible species on vagrant birds mandible and maxilla are partly contained within the head capsule. In addition to this similarity in mouth structure, these three classes share reduced Mal pighian tubules. The precise relationships of these groups to one another and to Insecta are still uncertain, however; analyses of morphological and developmental characters and gene sequencing give conflicting results (Cook et al. 2001; Giribet et al. 2004; Regier et al. 2005; Carapelli et al. 2007; Dell’Ampio et al. 2008; Timmermans et al. 2008). The majority of studies support the monophyly of Hexapoda. All hexapods undergo several moults as they develop and grow in size, necessitated by the fact that the exoskeleton, particularly in insects, is inelastic and cannot expand. The newly moulted insect has a soft, flexible, lightly pig- mented cuticle; it swallows air or water and so increases its volume before the cuticle hardens and darkens and increases in thickness. Life-cycles vary. In some groups the young are called nymphs, which are similar in form to the adult except that the wings are not developed until the adult stage. This is called incomplete metamorphosis and insects showing this are termed hemi- metab olous. Representative orders include Ephemeroptera (mayflies), Odonata (damselflies and dragonflies), Plecoptera (stoneflies), Orthoptera (crickets and kin), Dermaptera (earwigs), Hemiptera (true bugs, cicadas, and kin), and Thysan- Dorsal and ventral views of Amphientulus optera (thrips) among others. Holometabolous insects pass through a complex zelandicus. metamorphosis always accompanied by a pupal stage. The wings develop R. Nielsen, from Tuxen 1986 internally and the larvae are usually specialised. Representative orders include 234 PHYLUM ARTHROPODA HEXAPODA the Coleoptera (beetles), Hymenoptera (ants, wasps, and kin), Diptera (true flies), Trichoptera (caddis), and Lepidoptera (moths and butterflies) among others. Living hexapods range in size from tiny hymenopteran parasites less than a fifth of a millimetre to a slender 56 cm-long stick insect that lives on the island of Borneo. While the overall largest insects today are Goliath beetles, the heaviest documented species is the Little Barrier giant weta (Deinacrida heteracantha), which used to live on the northern North Island mainland; one specimen weighed more than 70 grams. Although many hexapods are major pests, parasitising humans and livestock, causing damage to crops and stored products, or transmitting diseases, others are profoundly beneficial, as pollinators of economic crops or sources of products ranging from honey to silk. Scavenging hexapods help recycle dead animals and fallen trees; in fact insects of soil litter are responsible for much of the process by which topsoil is made. About 1200 species are used as human food. Geographically, hexapods range from polar zones to the equator and can be found even in hot springs and deserts. Not only soils, but fresh waters support their own extensive insect faunas, and a number of species are adapted to life in the sea shore and, as larvae, in the shallow subtidal. There is not a single species of seed plant that does not provide food for one or more species of insect. Hexapods are so ubiquitous and important that our terrestrial planetary ecosystems could not survive without them. Class Protura Sometimes referred to as coneheads, Protura are possibly the simplest of all living hexapods. The name means ‘first tail’, first in this context implying original, alluding to the primitive form of the abdomen lacking specialised structures at the rear end. These small white to transparent creatures, only 0.6–1.5 millimetres long in New Zealand, are quite distinct because they lack antennae, eyes, and wings. In consequence of lacking antennae, the front legs, which are somewhat hairy, are raised in front of the body to act as sensory detectors. The abdomen is tubular with up to 12 segments and the legs are simple with five segments. Protura are unique among hexapods in that eggs hatch into larvae with only a few abdominal segments, with the number increasing with subsequent moults to the full adult complement. Proturan sperm is unique too, differing from any other hexapod sperm and also very different in the two proturan orders. Protura live only in humid places, mainly in acid soils, sometimes in rotten wood, as part of the community of decomposers that help break down and recycle organic nutrients. They are frequently associated with leaf litter and moss under trees where they may feed on fungi. The first Protura were not discovered until 1907, in NewY ork State. About 500 species have been named so far, arranged in two orders – Eosentomoida and Acerentomoida – segregated not only on sperm characters but the presence or absence of spiracular openings to a tracheal respiratory system. Tuxen (1986) described seven new species out of the 18 species currently known from New Zealand. Eosentomon is the most diverse genus, with seven species. Protura cannot disperse widely owing to their vulnerability to desic- cation and saline water and their habitat restriction to soil or rotting wood. It is therefore not surprising that ~56% of the species are endemic and 30% are indigenous with Gondwanan distributions. Two species are accidental introductions from Europe. Within New Zealand, distributional records are very limited for 14 of the species, with only one to six locality records for each. Collection and identification involve extraction of specimens from soil or logs and careful preparation for mounting on microscope slides.
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • A New Leaf-Mining Moth from New Zealand, Sabulopteryx Botanica Sp
    A peer-reviewed open-access journal ZooKeys 865: 39–65A new (2019) leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. 39 doi: 10.3897/zookeys.865.34265 MONOGRAPH http://zookeys.pensoft.net Launched to accelerate biodiversity research A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae Robert J.B. Hoare1, Brian H. Patrick2, Thomas R. Buckley1,3 1 New Zealand Arthropod Collection (NZAC), Manaaki Whenua–Landcare Research, Private Bag 92170, Auc- kland, New Zealand 2 Wildlands Consultants Ltd, PO Box 9276, Tower Junction, Christchurch 8149, New Ze- aland 3 School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand Corresponding author: Robert J.B. Hoare ([email protected]) Academic editor: E. van Nieukerken | Received 4 March 2019 | Accepted 3 May 2019 | Published 22 Jul 2019 http://zoobank.org/C1E51F7F-B5DF-4808-9C80-73A10D5746CD Citation: Hoare RJB, Patrick BH, Buckley TR (2019) A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae. ZooKeys 965: 39–65. https://doi.org/10.3897/ zookeys.865.34265 Abstract Sabulopteryx botanica Hoare & Patrick, sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae) is described as a new species from New Zealand. It is regarded as endemic, and represents the first record of its genus from the southern hemisphere. Though diverging in some morphological features from previously de- scribed species, it is placed in genus Sabulopteryx Triberti, based on wing venation, abdominal characters, male and female genitalia and hostplant choice; this placement is supported by phylogenetic analysis based on the COI mitochondrial gene.
    [Show full text]
  • Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
    ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.
    [Show full text]
  • Doh Multi-Page Template
    Medical Entomology 2016/2017 Annual Report Environmental Health Hazards Unit Environmental Health Directorate Public Health Division Department of Health, Western Australia PO Box 8172, Perth Business Centre Perth, 6849 Acknowledgements The extensive and diverse work program undertaken by the Department of Health’s Medical Entomology team outlined in this Annual Report could not have been completed without significant assistance and collaboration from many partners and stakeholders. In particular, the Medical Entomology team wishes to thank the Department of Health for its ongoing support in regards to this important public health program including: o the Environmental Health Directorate; o the Communicable Disease Control Directorate; o Population Health Units/Area Health Services o PathWest; and o Communications Directorate. The Pathwest laboratory continued to have a significant involvement in the program through provision of laboratory services for key components of the surveillance program for detection of arboviruses of public health significance to the State. We also acknowledge and thank the Population Health Units and the Western Australian Country Health Service for their role in reporting and follow-up of human cases of disease, and especially the role of Local Governments in the management of mosquitoes and the diseases they transmit. These organisations play an active role in the provision of data, case follow up investigations, care and bleeding of chickens for the sentinel chicken program, trapping of mosquitoes, mosquito control treatments and advice to the Western Australian community about disease risk through the media. In particular we thank Environmental Health Officers from the 139 Local Governments across WA, especially those within Contiguous Local Authority Groups (CLAGs), who respond to public complaints, undertake larval and adult mosquito surveys, and undertake mosquito control activities as part of their complex, integrated programs to manage the risks to public health and amenity within their regions.
    [Show full text]
  • Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘I
    Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘i Action BoardApril 2019 Prepared for: Sustainable Resources Group Intn’l, Inc. Prepared by: Matthew J Medeiros, PhD [email protected] mattjmedeiros.comFor All photographs in this report are copyrighted by Matthew J Medeiros. TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................................ 1 1.1 Caltech Submillimeter Observatory Decommissioning ................................................................ 1 1.2 Physical Setting ............................................................................................................................. 1 2 METHODS ........................................................................................................................................... 3 2.1 Permit and Personnel .................................................................................................................... 3 2.2 Schedule ........................................................................................................................................ 3 2.3 Nomenclature ................................................................................................................................ 3 2.4 Methodology for Inventorying Plants, Lichens, Non-arthropod Animals, and Abiotic Features . 3 2.4.1 Transects: Floral and Abiotic Features ................................................................................
    [Show full text]
  • The Jumping Plant-Lice (Hemiptera: Psylloidea) of the Maltese Islands
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2020) Vol. 11 : 103–117 DOI: 10.17387/BULLENTSOCMALTA.2020.18 The jumping plant-lice (Hemiptera: Psylloidea) of the Maltese Islands David MIFSUD* ABSTRACT. Twenty-one species of jumping plant-lice accommodated in five different families are here recorded from the Maltese Islands in an annotated checklist. The Aphalaridae is represented by four species (Agonoscena targionii (Lichtenstein), Blastopsylla occidentalis Taylor, Colposcenia aliena (Löw) and Glycaspis brimblecombei Moore), of which two (B. occidentalis and G. brimblecombei) are alien species originating from Australia. The Homotomidae is represented by Homotoma ficus (Linnaeus) and Macrohomotoma gladiata Kuwayama, the latter being an alien species originating from the Far East. The Liviidae is represented by Euphyllura olivina (Costa), Diaphorina lycii Loginova and Psyllopsis fraxinicola (Foerster). The Psyllidae is represented by Acizzia uncatoides (Ferris & Klyver), Cacopsylla myrthi (Puton) and C. pyri (Linnaeus), of which Acizzia uncatoides is an alien species originating from Australia. Finally, the most species-rich family is the Triozidae, represented by nine species (Bactericera albiventris (Foerster), B. crithmi (Löw), B. trigonica Hodkinson, Heterotrioza chenopodii (Reuter), Lauritrioza alacris (Flor), Trioza centranthi (Vallot), T. galii Foerster, T. kiefferi Giard and T. urticae (Linnaeus)). For each of the above species, collection data, distribution, host- plant data and other relevant information is provided. Lycium intricatum Boiss. is a new host-plant record for Diaphorina lycii, and Rhamnus lycioides subsp. oleoides (L.) Jahand. & Maire is a new host-plant record for Cacopsylla myrthi. A host- plant shift is documented for Bactericera crithmi, which alternates between Ferula melitensis Brullo et al. in winter and Crithmum maritimum L.
    [Show full text]
  • Forest Health News No
    forest health news No. 181, February 2008 ISSN 1175-9755 BUDDLEIA LEAF WEEVIL UPDATE indicate weevils become inactive and hide at high temperatures. However, large numbers of very small larvae and eggs were found As reported in an earlier FH News (FH News 169, January 2007) in mid-February at all sites. the buddleia leaf weevil, Cleopus japonicus, was released by Scion staff at five sites in North Island plantations from October 2006 to The weevil can be considered established at all sites as more than January 2007. Release sites were established in Whakarewarewa, two generations have been recorded, weevils were found after Kinleith, Lake Taupo, Esk, and Rawhiti Forests. These forests winter, and numbers have increased. Buddleia leaf weevil feeding were selected because they represent a range of different climatic has been found 145 m from the release plants at Kinleith and conditions. The sites have since been monitored closely for weevil 200 m from them at Lake Taupo. It is only early days, but feeding establishment, dispersal, and feeding damage to buddleia. Despite damage to some plants is impressive. Very heavy defoliation will many years of research in quarantine, how well the weevil would be needed, however, to reduce the vigorous growth of buddleia. do in New Zealand forests was uncertain. Further releases have been made in the Kaikoura area, Whanganui, In particular, we were interested to see if cleopus would survive Masterton, and Bay of Plenty between November 2007 and winter as adult weevils and/or pupae, and would larvae be found February 2008. in the cooler months.
    [Show full text]
  • E.Quadrangulata
    Durable Eucalypt Leaflet Series Eucalyptus quadrangulata Ian Nicholas and Paul Millen December 2012 Why grow durable eucalypts? New Zealand’s agricultural landscapes need sustainable land use options adapted to droughts and floods which complement pastoral farming while reducing soil erosion, improving water quality and habitat for native biodiversity. Eucalypts are renowned for their adaptability to droughty and eroding landscapes. They also provide excellent habitat for nectar-feeding birds and insects. With over 400 eucalypt species to select from there is a great opportunity to select appropriate species for the planting objective. With CCA (copper chrome arsenic)-treated wood now banned for many uses by the USA and several European countries, there are significant international and domestic markets for naturally-durable hardwoods. The wood properties of New Zealand grown durable eucalypts ensure they can replace CCA treated material for many uses and are also ideal for a wide range of agricultural and land-based industrial applications, particularly for posts, poles and utility cross-arms as well as heavy structural timbers. NZDFI (New Zealand Dryland Forests Initiative) has selected eucalypt species which can be sawn to produce durable hardwood. Using these species, NZDFI is committed to developing viable best-practice forest management systems to complement livestock farming. NZDFI wants to encourage planting durable hardwood forests and woodlots to protect steeplands and waterways, for shade and shelter, and to generate income from carbon credits and sustainable timber harvesting. Why NZDFI have selected E. quadrangulata? NZDFI have selected species that: • Produce highly durable timber (Class 1 and 2 Australian Standard, AS5606-2005) • Are drought tolerant • Coppice vigorously after fire and harvesting • Do not appear to spread as wildings • Have the potential to sequester carbon faster than pine on drylands • Provide nectar/pollen for native biodiversity.
    [Show full text]
  • Analysis of the Stick Insect (Clitarchus Hookeri) Genome Reveals a High Repeat Content and Sex- Biased Genes Associated with Reproduction Chen Wu1,2,3* , Victoria G
    Wu et al. BMC Genomics (2017) 18:884 DOI 10.1186/s12864-017-4245-x RESEARCH ARTICLE Open Access Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex- biased genes associated with reproduction Chen Wu1,2,3* , Victoria G. Twort1,2,4, Ross N. Crowhurst3, Richard D. Newcomb1,3 and Thomas R. Buckley1,2 Abstract Background: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only thegenomeofTimema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. Results: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria,the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly.
    [Show full text]
  • 2021.08.30.458191.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458191; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Intrinsic variation in the vertically transmitted insect-specific core virome of Aedes aegypti 2 Author names: Coatsworth, H.1,2.3, Bozic, J3,4,5, Carrillo, J.3,6,8, Buckner, E. A.3,4,6, Rivers, A. 3 R.3,7, Dinglasan, R. R.1,2,3, and Mathias, D. K.3,4 4 Author affiliations: 5 1Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA 6 2Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University 7 of Florida, Gainesville, Florida, USA 8 3CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA 9 4Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of 10 Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA 11 5Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck 12 Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA. 13 6Manatee County Mosquito Control District, Palmetto, Florida, USA 14 7Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States 15 Department of Agriculture, Gainesville, Florida, USA 16 8Lacerta Therapeutics, Production and Development, Alachua Florida, USA 17 Corresponding Author: D. K. Mathias, University of Florida, [email protected] 18 19 Abstract 20 Since 2009, local outbreaks of dengue (serotypes 1-3) mediated by Aedes aegypti mosquitoes have 21 occurred in the United States, particularly in Florida (FL).
    [Show full text]
  • Insects, Extatosoma Tiaratum (Macleay, 1826) by David S
    The Phasmid Study Group JUNE 2013 NEWSLETTER No 130 ISSN 0268-3806 Extatosoma tiaratum © Paul Brock See Page 11. INDEX Page Content Page Content 2. The Colour Page 9. Phasmid Books – Gray 1833 3. Editorial 10. My Little Friends 3. PSG Membership Details 11. PSG Winter Meeting 19.1.13 3. The PSG Committee 12. Sticks go to School 4. PSG Website Update 13. Development of Phasmid Species List Part 5 4. Contributions to the Newsletter 15. A New Leaf Insect Rearer’s Book 4. Diary Dates 16. X-Bugs 5. PSG Summer Meeting Agenda 16. Dad! It’s Raining Stick Insects 6. PSG Summer Meeting 17. BIAZA Big Bug Bonanza 6. Livestock Report 17. Stick Talk 7. PSG Merchandise Update 18. Holiday to Colombia 7. Newsletter Survey Results 19. Questions 8. National Insect Week @ Bristol Zoo Gardens 20. Macleay’s Spectre It is to be directly understood that all views, opinions or theories, expressed in the pages of "The Newsletter“ are those of the author(s) concerned. All announcements of meetings, and requests for help or information, are accepted as bona fide. Neither the Editor, nor Officers of "The Phasmid Study Group", can be held responsible for any loss, embarrassment or injury that might be sustained by reliance thereon. THE COLOUR PAGE! Acrophylla titan female. Picture on left, becomes picture on right. Unknown species. See page 18. See page 9. Ctenomorpha Acanthoxyla spp, brown version. See page 8. Acanthoxyla spp, green version. See page 8. marginipennis. See page 10. Pictures on the left are from when Sir David Attenborough went to Bristol Zoo Gardens on 21st May 2013 to film for his “Natural Curiosities” series, where he focused on butterflies (regarding metamorphosis) with a short piece on parthenogenesis – hence the Phyllium giganteum he is holding in the photo.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]