The Jumping Plant-Lice (Hemiptera: Psylloidea) of the Maltese Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes on Trioza Alacris Flor in New Jersey. by Harry B
1918] Weiss and Diclcerson--Notes on Trioza Alacris 59 :Fig. 6. Panorpa nebulosa, Westw. (M:ecoptera), ventral. :Fig. 7. Panorpodes of Fig. 19, ventral. Fig. 8. Nannochorista dipteroides, Tillyard (M:ecoptera), dorsal view, based on Fig. 11 of Plate XVII, by Tillyard, 1917 (Proc. Linn. Soc. N. S. W.). Fig. 9. Merope tuber, Newm. (M:ecoptera), ventral. Gono- pods cut off. Fig. 30. Philopotamus Sp. n.? (Trichoptera), lateral. NOTES ON TRIOZA ALACRIS FLOR IN NEW JERSEY. BY HARRY B. WEISS ND EDGAR L. DICKERSON. New Brunswick, N. J. This Psyllid, which was introduced into New Jersey from Bel- gium and which is well known and destructive in Europe, has al- ready been recorded as occuring in New Jersey (Weiss, Canadian Ent. Feb., 1917, pp. 73-75). D. L. Crawford in the Monthly Bulletin of the California State Commission of Horticulture Vol. I, No. 3, p. 86, gives an account of its presence in California together with suggestions for its control and also treats it in his M:onograph of the Psyllide of the New World, Bull. 85, U. S. N. 5/[. It occurs in New Jersey on bay trees which are kept either under glass all the year or out of doors during the summer and Under glass the remainder of the year. The following observations were made on trees kept outside during the summer months. Its presence on Bay (Laurus nobilis) can be readily detected by the curled, discolored, swollen, blistered leaves, usually at the tips of the branches, containing what appear to be whitish masses. Upon uncurling a leaf the nymphs are readily seen clothed in a white waxy secretion. -
Host Range Testing of Tamarixia Dryi
Biological Control 135 (2019) 110–116 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Host range testing of Tamarixia dryi (Hymenoptera: Eulophidae) sourced from South Africa for classical biological control of Trioza erytreae T (Hemiptera: Psyllidae) in Europe ⁎ Pablo Urbaneja-Bernata,b, , Jesica Pérez-Rodrígueza,c, Kerstin Krügerd, José Catalána, Rositta Rizzae, Estrella Hernández-Suáreze, Alberto Urbanejaa, Alejandro Tenaa a Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain b Grupo TRAGSA (Empresa de Transformació Agraria, S.A), Spain c Departament de Zoologia, Universitat de València, València, Spain d Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa e Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Tenerife, Spain GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: The African citrus psyllid, Trioza erytreae, vectors citrus greening or huanglongbing (HLB) disease. The psyllid Citrus has been reported from mainland Europe, where it is rapidly spreading from the northwest to the southwest of HLB the Iberian Peninsula. In order to reduce its spread and population levels, a classical biological control program Greening disease with the parasitoid Tamarixia dryi is under development in Spain. We evaluated the host specificity of T. dryi Host-specificity using 11 non-target psyllid (NTP) species, including five species of the genus Trioza. The psyllids were selected Non-reproductive effects based on phylogenetic and ecological criteria. Tamarixia dryi exhibited a high host specificity. Females did not Risk assessment parasitize any of the 11 NTPs tested, except for one nymph of a gall-forming Trioza species closely related to Trioza montanetana. -
Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘I
Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘i Action BoardApril 2019 Prepared for: Sustainable Resources Group Intn’l, Inc. Prepared by: Matthew J Medeiros, PhD [email protected] mattjmedeiros.comFor All photographs in this report are copyrighted by Matthew J Medeiros. TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................................ 1 1.1 Caltech Submillimeter Observatory Decommissioning ................................................................ 1 1.2 Physical Setting ............................................................................................................................. 1 2 METHODS ........................................................................................................................................... 3 2.1 Permit and Personnel .................................................................................................................... 3 2.2 Schedule ........................................................................................................................................ 3 2.3 Nomenclature ................................................................................................................................ 3 2.4 Methodology for Inventorying Plants, Lichens, Non-arthropod Animals, and Abiotic Features . 3 2.4.1 Transects: Floral and Abiotic Features ................................................................................ -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
An Introduction to Psyllids (Of Bedfordshire) Joe Botting
An introduction to Psyllids (of Bedfordshire) Joe Botting Cacopsylla fulguralis Basics • A group of Stenorrhyncha, most closely related to aphids • Small to very small (1-5 mm) • Worldwide ~3000 species, ~85 in UK (increasing due to introductions) • Poorly recorded in UK – no prior recording scheme, and status of many species unclear • Strongly host-specific • Some commercial pests, particularly of fruit trees (Cacopsylla mali, C. pyricola) • Often regarded as “difficult” – which may be unfair. But probably isn't. Finding psyllids Easily found by sweeping or beating selected plants: In summer, herbaceous or arborescent dicots (almost exclusively) – especially native deciduous trees. All are host-specific. In winter, evergreen shelter plants – especially conifers or yew. Some species on evergreen hosts (e.g. box – below) Most species are host-specific, so you need to know which plants to target. Once you find them, watch out for them going ‘ping’ (nearly as bad as leafhoppers…). Spanioneura fonscolombii (on box, all year) Identification • Two major families: Psyllidae & Triozidae (other families represented by introductions) • Many species superficially similar, and need microscopic examination • Dissection rarely needed, so high-resolution macrophotographs are quite often sufficient if showing the right features • Some species very difficult to confirm from single specimens; male and female often critical to a reliable ID Chamaepsylla hartigi Colouring Body Colouring Varies seasonally: usually palest (green/yellow/orange) when teneral, then darkens steadily over several months, particularly on dorsal surface: Wing Colouring Trioza alacris Usually very distinctive for species with patterned or coloured wings, although some are still difficult. Various species (especially certain Cacopsylla spp.) with very pale colouring that must be seen against a white background – this is also unreliable. -
Lists of Names of Prokaryotic Candidatus Taxa
NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code. -
Invasive Alien Species in Switzerland
> Environmental studies > Organisms 29 > Invasive alien species 06 in Switzerland An inventory of alien species and their threat to biodiversity and economy in Switzerland > Environmental studies > Organisms > Invasive alien species in Switzerland An inventory of alien species and their threat to biodiversity and economy in Switzerland Mit deutscher Zusammenfassung – Avec résumé en français Published by the Federal Office for the Environment FOEN Bern, 2006 Impressum Editor Federal Office for the Environment (FOEN) FOEN is an office of the Federal Department of Environment, Transport, Energy and Communications (DETEC). Authors Rüdiger Wittenberg, CABI Bioscience Switzerland Centre, CH–2800 Delémont Marc Kenis, CABI Bioscience Switzerland Centre, CH–2800 Delémont Theo Blick, D–95503 Hummeltal Ambros Hänggi, Naturhistorisches Museum, CH–4001 Basel André Gassmann, CABI Bioscience Switzerland Centre, CH–2800 Delémont Ewald Weber, Geobotanical Institute, Swiss Federal Institute of Technology, CH–8044 Zürich FOEN consultant Hans Hosbach, Head of Section, Section Biotechnology Suggested form of citation Wittenberg, R. (ed.) (2005) An inventory of alien species and their threat to biodiversity and economy in Switzerland. CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape. The environment in practice no. 0629. Federal Office for the Environment, Bern. 155 pp. Design Ursula Nöthiger-Koch, 4813 Uerkheim Fact sheets The fact sheets are available at www.environment-switzerland.ch/uw-0629-e Pictures Cover picture: Harmonia axyridis Photo Marc Kenis, CABI Bioscience, Delémont. Orders FOEN Documentation CH-3003 Bern Fax +41 (0)31 324 02 16 [email protected] www.environment-switzerland.ch/uw-0629-e Order number and price: UW-0629-E / CHF 20.– (incl. -
Red Bay Psyllid, Trioza Magnoliae (Ashmead) (Insecta: Hemiptera: Sternorrhyncha: Psyllidae)1 Donald W
EENY-438 Red Bay Psyllid, Trioza magnoliae (Ashmead) (Insecta: Hemiptera: Sternorrhyncha: Psyllidae)1 Donald W. Hall2 The Featured Creatures collection provides in-depth profiles of insects, nematodes, arachnids, and other organisms relevant to Florida. These profiles are intended for the use of interested laypersons with some knowledge of biology as well as academic audiences. Introduction The red bay psyllid, Trioza magnoliae (Ashmead), was originally called the bay magnolia psyllid (Ashmead 1881) because the host plant from which it was originally described was believed to be the plant that is now known as sweet bay (Magnolia virginiana L.) which is in the family Magnoliaceae. However, there are no known verifiable records of this insect on plant species other than native Figure 1. Sweet bay, Magnolia virginiana L., twig showing stipular species of Persea bay trees (Mead 1967) in the family scars. Lauraceae. This almost certain error is because of the Credits: Donald W. Hall, University of Florida similarity in general appearance of these plants, which are all called bays. Sweet bay and the Persea bays are commonly confused by those who are not familiar with the diagnostic characters for separating them. Although there are a variety of characteristics to separate species belonging to the genus Magnolia from Persea species, one that is always observable is the presence on Magnolia species of a stipular scar that forms a ring around the stem at the node. This scar is not present in Persea species. Figure 2. Silk bay, Persea borbonia (L.) Spreng, twig showing lack of stipular scar. Credits: Donald W. Hall, University of Florida 1. -
Index to Cecidology up to Vol. 31 (2016)
Index to Cecidology Up to Vol. 31 (2016) This index has been based on the contents of the papers rather than on their actual titles in order to facilitate the finding of papers on particular subjects. The figures following each entry are the year of publication, the volume and, in brackets, the number of the relevant issue. Aberbargoed Grasslands: report of 2011 field meeting 2012 27 (1) Aberrant Plantains 99 14(2) Acacia species galled by Fungi in India 2014 29(2) Acer gall mites (with illustrations) 2013 28(1) Acer galls: felt galls re-visited 2005 20(2) Acer saccharinum – possibly galled by Dasineura aceris new to Britain 2017 32(1) Acer seed midge 2009 24(1) Aceria anceps new to Ireland 2005 20 (1) Aceria geranii from North Wales 1999 14(2) Aceria heteronyx galling twigs of Norway Maple 2014 29(1) Aceria ilicis (gall mite) galling holm oak flowers in Brittany 1997 12(1) In Ireland 2010 25(1) Aceria mites on sycamore 2005 20(2) Aceria populi galling aspen in Scotland 2000 15(2) Aceria pterocaryae new to the British mite fauna 2008 23(2) Aceria rhodiolae galling roseroot 2013 28(1): 2016 31(1) Aceria rhodiolae in West Sutherland 2014 29(1) Aceria tristriata on Walnut 2007 22(2) Acericecis campestre sp. nov. on Field Maple 2004 19(2) Achillea ptarmica (sneezewort) galled by Macrosiphoniella millefolii 1993 8(2) Acorn galls on red oak 2014 29(1) Acorn stalks: peculiar elongation 2002 17(2) Aculops fuchsiae – a fuchsia-galling mite new to Britain 2008 23 (1) Aculus magnirostris new to Ireland 2005 20 (1) Acumyia acericola – the Acer seed -
Sampling and Distribution Pattern of Trioza Erytreae Del Guercio, 1918 (Hemiptera: Triozidae) in Citrus Orchard
Received: 24 November 2020 | Revised: 15 January 2021 | Accepted: 25 January 2021 DOI: 10.1111/jen.12870 ORIGINAL CONTRIBUTION Sampling and distribution pattern of Trioza erytreae Del Guercio, 1918 (Hemiptera: Triozidae) in citrus orchard Jacinto Benhadi- Marín1 | Luís F. Pereira1 | Isabel Rodrigues1 | Alberto Fereres2 | José Alberto Pereira1 1Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Abstract Bragança, Portugal Developing efficient sampling protocols is essential to monitor crop pests. One vec- 2 Instituto de Ciencias Agrarias, Consejo tor of the citrus disease HLB, the African citrus psyllid Trioza erytreae Del Guercio, Superior de Investigaciones Científicas, ICA- CSIC, Madrid, Spain 1918 (Hemiptera: Triozidae), currently threatens the lemon industry throughout the Mediterranean region. In this work, a pool of sampling methods devoted to monitor- Correspondence José Alberto Pereira, Centro de Investigação ing the population of T. erytreae was compared, its spatial distribution in the orchard de Montanha (CIMO), Instituto Politécnico was assessed, and the minimum sampling effort for the best sampling method was de Bragança, Campus de Santa Apolónia, 5300- 253 Bragança, Portugal. estimated. Three lemon orchards in North- western Portugal were sampled for one year using two types of yellow sticky traps (standard yellow and fluorescent Saturn Funding information Fundação para a Ciência e a Tecnologia, yellow), B- vac sampling and sweep net sampling. The method that best performed, Grant/Award Number: UIDB/00690/2020; in terms of cost- efficiency, was the yellow sticky traps. The two colours of the sticky project PRE-HLB- Preventing HLB epidemics for ensuring citrus survival in Europe, Grant/ traps tested did not yield a significantly different number of catches. -
(De Lotto) (Hemiptera: Pseudococcidae) and Trioza Erytreae
Departamento de Zoología Facultad de Ciencias Biológicas Reducing the impact of the two invasive pests, Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) and Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), by strengthening sustainability and biological control in Mediterranean citrus International PhD Thesis Programa de Doctorado en Biodiversidad y Biología Evolutiva JESICA PÉREZ RODRÍGUEZ SUPERVISED BY: DR. ALEJANDRO TENA BARREDA DR. ALBERTO URBANEJA GARCÍA DR. JESÚS SELFA ARLANDIS Valencia, February 2020 Departamento de Zoología Facultad de Ciencias Biológicas Reducing the impact of the two invasive pests, Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) and Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), by strengthening sustainability and biological control in Mediterranean citrus International PhD Thesis Programa de Doctorado en Biodiversidad y Biología Evolutiva JESICA PÉREZ RODRÍGUEZ SUPERVISED BY: DR. ALEJANDRO TENA BARREDA DR. ALBERTO URBANEJA GARCÍA DR. JESÚS SELFA ARLANDIS Valencia, February 2020 International PhD Thesis Programa de Doctorado en Biodiversidad y Biología Evolutiva “Reducing the impact of the two invasive pests, Delottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) and Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), by strengthening sustainability and biological control in Mediterranean citrus”. Disertación presentada en la Escuela de Postgrado de la Universitat de València por: Jesica Pérez Rodríguez Como requerimiento para optar al grado de doctora por la Universitat de València La doctoranda, Los Directores de tesis, Jésica Pérez Rodríguez Dr. Alejandro Tena Barreda Dr. Alberto Urbaneja García Dr. Jesús Selfa València, February 2020 ACKNOWLEDGEMENTS En primer lugar, me gustaría agradecerles a mis directores de tesis Alberto, Alejandro y Jesús la confianza depositada en mí a lo largo de estos años. Gràcies Alberto per tots els teus suggeriments, aportacions, noves idees i consells que sempre ho han millorat tot. -
Varijabilnost Sadržaja Eteričnog Ulja U Listovima Lovora Laurus Nobilis L
Glasnik zaštite bilja 6/2009 Slavica Dudaš1, Lucia Venier1 Znanstveni rad Varijabilnost sadržaja eteričnog ulja u listovima lovora Laurus nobilis L. Sažetak Slika 1: Lovor pred cvatnju (Dudaš, 2009.) Slika 2: Muški cvjetovi lovora (Venier, 2007.) Lovor je aromatična, začinska i ljekovita drvenasta kultura koju u prirodnim populacijama nalazimo u primorskom području Hrvatske i u zemljama oko Sredozemnog mora. Osušeni listovi lovora su omiljeni začin, a eterična ulja iz listova se primjenjuju u aromaterapiji, kozmetici i u prehrambenoj industriji. Cilj istraživanja je ispitati sadržaj eteričnih ulja u listovima muških i ženskih biljaka lovora i varijabil- nost sadržaja eteričnog ulja tijekom godine, zasebno kod muških i ženskih biljaka lovora. Utvrđene su značajne razlike u sadržaju eteričnih ulja u listovima muških i ženskih biljaka lovora. Ana- lize sadržaja eteričnih ulja u listovima muških biljaka pokazale su da muške biljke lovora sadrže manju količinu eteričnih ulja u odnosu na ženske biljke. Za razliku od ženskih biljaka, u listovima muške biljke oscilacije u sadržaju eteričnih ulja manjeg su intenziteta tijekom godine. Ključne riječi: varijabilnost, eterična ulja, godina Slika 4: Plodovi lovora, (Venier, 2007.) Uvod Slika 3: Ženski cvjetovi lovora (Venier, 2007.) Lovor je drvenasta mediteranska kultura s prirodnim populacijama u primorskom Lovor je multifunkcionalna biljka. Koristi se za začin, u medicini i kao ornamentalna području Hrvatske i zemljama oko Sredozemnog mora. Podrijetlo lovora je Mala Azija, biljka, a novija istraživanja ukazuju na mogućnost primjene eteričnih ulja u non food obla- a raste i u južnoj Americi (Pahlow, 1999.). U Hrvatskoj lovor raste s ostalim zimzelenim sti zbog fungicidnog i baktericidnog djelovanja. grmljem ili pojedinačno.