Scienc e e & su s E i n T g f i o n Journal of l e e a r n i r n u g Zhang, et al., J Tissue Sci Eng 2014, 6:1 o J DOI: 10.4172/2157-7552.1000141 ISSN: 2157-7552 Tissue Science & Engineering Review Article Open Access Fat Body Development and its Function in Energy Storage and Nutrient Sensing in Drosophila melanogaster Yafei Zhang and Yongmei Xi* Institute of Genetics, College of Life Sciences, Zhejiang University, China *Corresponding author: Yongmei Xi, Institute of Genetics, College of Life Sciences, Zhejiang University, China; Tel: +86-571-88206623; Fax: +86-571-88981371; E- mail:
[email protected] Received date: May 04, 2014; Accepted date: Sep 29 2014; Published date: Oct 03, 2014 Copyright: © 2014 Zhang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The fat body of Drosophila has been considered as the equivalent to the vertebrate adipose tissue and liver in its storage and major metabolic functions. It is a dynamic and multifunctional tissue which functions in energy storage, immune response and as a nutritional sensor. As a major endocrine organ in Drosophila, the fat body can produce various proteins, lipids and carbohydrates, synthesize triglyceride, diacylglycerol, trehalose and glycogen in response to energetic demands. It also secretes significant proteins governing oocyte maturation or targeting nutritional signals in the regulation of the metabolism. At different developmental stages and under different environmental conditions the fat body can interplay with other tissues in monitoring and responding to the physiological needs of the body’s growth and to coordinate the metabolism of development.