Jaws That Snap: Control of Mandible Movements in the Ant Mystrium ¨ Wulfila Gronenberg A,*, Bert Holldobler A, Gary D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Insect Physiology 81 (2015) 21–27
Journal of Insect Physiology 81 (2015) 21–27 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Revisiting macronutrient regulation in the polyphagous herbivore Helicoverpa zea (Lepidoptera: Noctuidae): New insights via nutritional geometry ⇑ Carrie A. Deans a, , Gregory A. Sword a,b, Spencer T. Behmer a,b a Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA b Ecology and Evolutionary Biology Program, Texas A&M University, TAMU 2475, College Station, TX 77843, USA article info abstract Article history: Insect herbivores that ingest protein and carbohydrates in physiologically-optimal proportions and con- Received 7 April 2015 centrations show superior performance and fitness. The first-ever study of protein–carbohydrate regula- Received in revised form 27 June 2015 tion in an insect herbivore was performed using the polyphagous agricultural pest Helicoverpa zea. In that Accepted 29 June 2015 study, experimental final instar caterpillars were presented two diets – one containing protein but no car- Available online 30 June 2015 bohydrates, the other containing carbohydrates but no protein – and allowed to self-select their protein– carbohydrate intake. The results showed that H. zea selected a diet with a protein-to-carbohydrate (p:c) Keywords: ratio of 4:1. At about this same time, the geometric framework (GF) for the study of nutrition was intro- Nutrition duced. The GF is now established as the most rigorous means to study nutrient regulation (in any animal). Protein Carbohydrates It has been used to study protein–carbohydrate regulation in several lepidopteran species, which exhibit Physiology a range of self-selected p:c ratios between 0.8 and 1.5. -
Phenotypic Impacts of PBAN RNA Interference in an Ant, Solenopsis Invicta, and a Moth, Helicoverpa Zea ⇑ ⇑ Man-Yeon Choi A, , Robert K
Journal of Insect Physiology 58 (2012) 1159–1165 Contents lists available at SciVerse ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea ⇑ ⇑ Man-Yeon Choi a, , Robert K. Vander Meer a, , Monique Coy b, Michael E. Scharf b,c a U. S. Department of Agriculture, Agricultural Research Service, Center of Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW, 23rd Drive, Gainesville, FL 32608, USA b Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA c Department of Entomology, Purdue University, West Lafayette, IN 47907, USA article info abstract Article history: Insect neuropeptide hormones represent more than 90% of all insect hormones. The PBAN/pyrokinin fam- Received 30 January 2012 ily is a major group of insect neuropeptides, and they are expected to be found from all insect groups. Received in revised form 1 June 2012 These species-specific neuropeptides have been shown to have a variety of functions from embryo to Accepted 5 June 2012 adult. PBAN is well understood in moth species relative to sex pheromone biosynthesis, but other poten- Available online 13 June 2012 tial functions are yet to be determined. Recently, we focused on defining the PBAN gene and peptides in fire ants in preparation for an investigation of their function(s). RNA interference (RNAi) technology is a Keywords: convenient tool to investigate unknown physiological functions in insects, and it is now an emerging PBAN method for development of novel biologically-based control agents as alternatives to insecticides. -
Hymenoptera: Formicidae)
Myrmecological News 20 25-36 Online Earlier, for print 2014 The evolution and functional morphology of trap-jaw ants (Hymenoptera: Formicidae) Fredrick J. LARABEE & Andrew V. SUAREZ Abstract We review the biology of trap-jaw ants whose highly specialized mandibles generate extreme speeds and forces for predation and defense. Trap-jaw ants are characterized by elongated, power-amplified mandibles and use a combination of latches and springs to generate some of the fastest animal movements ever recorded. Remarkably, trap jaws have evolved at least four times in three subfamilies of ants. In this review, we discuss what is currently known about the evolution, morphology, kinematics, and behavior of trap-jaw ants, with special attention to the similarities and key dif- ferences among the independent lineages. We also highlight gaps in our knowledge and provide suggestions for future research on this notable group of ants. Key words: Review, trap-jaw ants, functional morphology, biomechanics, Odontomachus, Anochetus, Myrmoteras, Dacetini. Myrmecol. News 20: 25-36 (online xxx 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 2 September 2013; revision received 17 December 2013; accepted 22 January 2014 Subject Editor: Herbert Zettel Fredrick J. Larabee (contact author), Department of Entomology, University of Illinois, Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. E-mail: [email protected] Andrew V. Suarez, Department of Entomology and Program in Ecology, Evolution and Conservation Biology, Univer- sity of Illinois, Urbana-Champaign, 320 Morrill Hall, 505 S. -
Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea
- - -- Aust. J. Zool., 1975, 23, 71-89 Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea P. M. Room Department of Agriculture, Stock and Fisheries, Papua New Guinea; present address: Cotton Research Unit, CSIRO, P.M.B. Myallvale Mail Run, Narrabri, N.S.W. 2390. Abstract Thirty samples of ants were taken in each of seven habitats: primary forest, rubber plantation, coffee plantation, oilpalm plantation, kunai grassland, eucalypt savannah and urban grassland. Sixty samples were taken in cocoa plantations. A total of 156 species was taken, and the frequency of occurrence of each in each habitat is given. Eight stenoecious species are suggested as habitat indicators. Habitats fell into a series according to the similarity of their ant faunas: forest, rubber and coffee, cocoa and oilpalm, kunai and savannah, urban. This series represents an artificial, discontinuous succession from a complex stable ecosystem to a simple unstable one. Availability of species suitably preadapted to occupy habitats did not appear to limit species richness. Habitat heterogeneity and stability as affected by human interference did seem to account for inter-habitat variability in species richness. Species diversity was compared between habitats using four indices: Fisher et al.; Margalef; Shannon; Brillouin. Correlation of diversity index with habitat hetero- geneity plus stability was good for the first two, moderate for Shannon, and poor for Brillouin. Greatest diversity was found in rubber, the penultimate in the series of habitats according to hetero- geneity plus stability ('maturity'). Equitability exceeded the presumed maximum in rubber, and was close to the maximum in all habitats. -
Download PDF File
Myrmecological News 19 31-41 Vienna, January 2014 Trophic ecology of tropical leaf litter ants (Hymenoptera: Formicidae) – a stable isotope * study in four types of Bornean rain forest Martin PFEIFFER, Dirk MEZGER & Jens DYCKMANS Abstract We measured δ 15N values and inferred the trophic positions of 151 ground ant species from four types of rain forests (alluvial, limestone, dipterocarp forest, and Kerangas) in Gunung Mulu National Park, in Sarawak, Malaysia. Four hypo- theses were tested: 1) Ground-foraging ants occur in all trophic levels; 2) ant subfamilies differ in their trophic status; 3) δ 15N values differ among species within genera and among genera within subfamilies; and 4) ant assemblages in differ- ent forest types differ in their trophic structure. Base-line corrected mean δ 15N values for different ant species ranged from -0.67‰ to 10.56‰ thus confirming that forest ants occupy a variety of trophic levels. Based on stable isotopes we distinguished three major trophic groups: a) species mostly feeding on hemipteran exudates and other plant-derived food resources; b) omnivorous species with mixed diet of plant and animal prey; and c) truly predacious species, in- cluding arthropod specialists. Ant subfamilies differed significantly in their trophic positions, as did many ant genera with- in subfamilies and ant species within ant genera. Several ant species exhibited dietary flexibility and differed significantly in trophic positions across forest types. Key words: Trophic position, stable isotopes, food webs, functional groups, leaf litter ants. Myrmecol. News 19: 31-41 (online 9 July 2013) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 11 September 2012; revision received 9 April 2013; accepted 10 April 2013 Subject Editor: Nicholas J. -
Formicidae, Ponerinae), a Predominantly Nocturnal, Canopy-Dwelling
Behavioural Processes 109 (2014) 48–57 Contents lists available at ScienceDirect Behavioural Processes jo urnal homepage: www.elsevier.com/locate/behavproc Visual navigation in the Neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest a,1 b,∗ Pedro A.P. Rodrigues , Paulo S. Oliveira a Graduate Program in Ecology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil b Departamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil a r t a b i s c l e i n f o t r a c t Article history: The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest Available online 24 June 2014 at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8 m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. Keywords: We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Arboreal ants Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial Atlantic forest canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. has- Canopy orientation tatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical Ponerinae marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other Trap-jaw ants diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting Visual cues silhouettes from the canopy and surrounding vegetation, thus providing orientation cues. -
Nest Site Selection During Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera Villosa (Hymenoptera: Formicidae)
insects Article Nest Site Selection during Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera villosa (Hymenoptera: Formicidae) Franklin H. Rocha 1, Jean-Paul Lachaud 1,2, Yann Hénaut 1, Carmen Pozo 1 and Gabriela Pérez-Lachaud 1,* 1 El Colegio de la Frontera Sur, Conservación de la Biodiversidad, Avenida Centenario km 5.5, Chetumal 77014, Quintana Roo, Mexico; [email protected] (F.H.R.); [email protected] (J.-P.L.); [email protected] (Y.H.); [email protected] (C.P.) 2 Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 31062 Toulouse, France * Correspondence: [email protected]; Tel.: +52-98-3835-0440 Received: 15 January 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: In the Yucatan Peninsula, the ponerine ant Neoponera villosa nests almost exclusively in tank bromeliads, Aechmea bracteata. In this study, we aimed to determine the factors influencing nest site selection during nest relocation which is regularly promoted by hurricanes in this area. Using ants with and without previous experience of Ae. bracteata, we tested their preference for refuges consisting of Ae. bracteata leaves over two other bromeliads, Ae. bromeliifolia and Ananas comosus. We further evaluated bromeliad-associated traits that could influence nest site selection (form and size). Workers with and without previous contact with Ae. bracteata significantly preferred this species over others, suggesting the existence of an innate attraction to this bromeliad. However, preference was not influenced by previous contact with Ae. bracteata. Workers easily discriminated between shelters of Ae. bracteata and A. -
Herrera, H.W., Baert, L., Dekoninck, W., Causton, C.E., Sevilla
Belgian Journal of Entomology 93: 1–60 ISSN: 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:2612CE09-F7FF-45CD-B52E-99F04DC2AA56 Belgian Journal of Entomology Distribution and habitat preferences of Galápagos ants (Hymenoptera: Formicidae) Henri W. HERRERA, Léon BAERT, Wouter DEKONINCK, Charlotte E. CAUSTON, Christian R. SEVILLA, Paola POZO & Frederik HENDRICKX Royal Belgian Institute of Natural Sciences, Entomology Department, Vautierstraat 29, B-1000 Brussels, Belgium. E-mail: [email protected] (corresponding author) Published: Brussels, May 5, 2020 HERRERA H.W. et al. Distribution and habitat preferences of Galápagos ants Citation: HERRERA H.W., BAERT L., DEKONINCK W., CAUSTON C.E., SEVILLA C.R., POZO P. & HENDRICKX F., 2020. - Distribution and habitat preferences of Galápagos ants (Hymenoptera: Formicidae). Belgian Journal of Entomology, 93: 1–60. ISSN: 1374-5514 (Print Edition) ISSN: 2295-0214 (Online Edition) The Belgian Journal of Entomology is published by the Royal Belgian Society of Entomology, a non-profit association established on April 9, 1855. Head office: Vautier street 29, B-1000 Brussels. The publications of the Society are partly sponsored by the University Foundation of Belgium. In compliance with Article 8.6 of the ICZN, printed versions of all papers are deposited in the following libraries: - Royal Library of Belgium, Boulevard de l’Empereur 4, B-1000 Brussels. - Library of the Royal Belgian Institute of Natural Sciences, Vautier street 29, B-1000 Brussels. - American Museum of Natural History Library, Central Park West at 79th street, New York, NY 10024-5192, USA. - Central library of the Museum national d’Histoire naturelle, rue Geoffroy SaintHilaire 38, F- 75005 Paris, France. -
Taxonomic Classification of Ants (Formicidae)
bioRxiv preprint doi: https://doi.org/10.1101/407452; this version posted September 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Taxonomic Classification of Ants (Formicidae) from Images using Deep Learning Marijn J. A. Boer1 and Rutger A. Vos1;∗ 1 Endless Forms, Naturalis Biodiversity Center, Leiden, 2333 BA, Netherlands *[email protected] Abstract 1 The well-documented, species-rich, and diverse group of ants (Formicidae) are important 2 ecological bioindicators for species richness, ecosystem health, and biodiversity, but ant 3 species identification is complex and requires specific knowledge. In the past few years, 4 insect identification from images has seen increasing interest and success, with processing 5 speed improving and costs lowering. Here we propose deep learning (in the form of a 6 convolutional neural network (CNN)) to classify ants at species level using AntWeb 7 images. We used an Inception-ResNet-V2-based CNN to classify ant images, and three 8 shot types with 10,204 images for 97 species, in addition to a multi-view approach, for 9 training and testing the CNN while also testing a worker-only set and an AntWeb 10 protocol-deviant test set. Top 1 accuracy reached 62% - 81%, top 3 accuracy 80% - 92%, 11 and genus accuracy 79% - 95% on species classification for different shot type approaches. 12 The head shot type outperformed other shot type approaches. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Serotonergic Control in Initiating Defensive Response to Unexpected Tactile Stimulus
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065466; this version posted April 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Serotonergic control in initiating defensive response to unexpected tactile stimulus 2 in the trap-jaw ant Odontomachus kuroiwae 3 4 Hitoshi Aonuma 5 6 Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 7 060-0812, Japan 8 9 10 Running title: Serotonergic control of defensive behavior 11 12 Keywords: biogenic amines, serotonin, dopamine, defensive behavior, avoidance 13 behavior. 14 15 16 *Correspondence to be sent to: Hitoshi Aonuma, Research Institute for Electronic 17 Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan 18 e-mail: [email protected] 19 tel/fax: +81-11-706-3832 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065466; this version posted April 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 ABSTRACT 22 Decision to express defensive response or escape response to a potential threat is crucial 23 for insects to survive. This study investigated an aminergic mechanism underlying 24 defensive response to unexpected touch in the ant that has powerful mandible so-called 25 trap-jaw as a weapon that moves extremely fast when hunting. -
Permanent Loss of Wings in Queens of the Ant Odontomachus Coquereli from Madagascar
Insect. Soc. 54 (2007) 183 – 188 0020-1812/07/020183-6 Insectes Sociaux DOI 10.1007/s00040-007-0930-0 Birkhäuser Verlag, Basel, 2007 Research article Permanent loss of wings in queens of the ant Odontomachus coquereli from Madagascar M. Molet1, C. Peeters1 and B.L. Fisher2 1 Laboratoire dEcologie CNRS UMR 7625, UniversitØ Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France; e-mail: [email protected], [email protected] 2 Department of Entomology, California Academy of Sciences, 875 Howard Street, San Francisco, California 94103, USA; e-mail: [email protected] Received 15 December 2006; revised 26 February 2007; accepted 1 March 2007. Published Online First 20 March 2007 Abstract. Winged queens are the most common repro- Keywords: Ergatoid queen, morphometry, colony fission, ductives in ants. They are morphologically specialized for intermorph, caste. independent colony foundation, with wings for long- range dispersal and metabolic reserves to raise the first brood. However independent foundation can sometimes be selected against and replaced by fission, featuring Introduction short-range dispersal on the ground and reproductives that are dependent on the wingless workers for all non- Colonial reproduction has a major impact on the mor- reproductive tasks. We investigated the evolutionary phology of reproductives in ants. Independent colony consequences of this transition on the morphology of foundation is performed by winged queens that disperse the reproductives by collecting 30 colonies of Odonto- by flight, mate and found their colony alone (Hçlldobler machus coquereli from Madagascar, the only species in and Wilson, 1990). High mortality of foundresses can the genus where winged queens have never been found.