The Pennsylvania State University
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School ADVENTURES IN HIGH DIMENSIONS: UNDERSTANDING GLASS FOR THE 21ST CENTURY A Dissertation in Material Science and Engineering by Collin James Wilkinson © 2021 Collin James Wilkinson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2021 ii The dissertation of Collin Wilkinson was reviewed and approved by the following: John Mauro Professor of Materials Science and Engineering Chair, Intercollege Graduate Degree Program Associate Head for Graduate Education, Materials Science and Engineering Dissertation Advisor Chair of Committee Seong Kim Professor of Chemical Engineering Professor of Materials Science and Engineering Ismaila Dabo Associate Professor of Materials Science and Engineering Susan Sinnott Professor of Materials Science and Engineering Professor of Chemistry Head of the Department of Materials Science and Engineering iii Abstract Glass is infinitely variable. This complexity stands as a promising technology for the 21st century since the need for environmentally friendly materials has reached a critical point due to climate change. However, such a wide range of variability makes new glass compositions difficult to design. The difficulty is only exaggerated when considering that not only is there an infinite variability in the compositional space, but also an infinite variability thermal history of a glass and in the crystallinity of glass-cearmics. This means that even for a simple binary glass there are at least 3 dimensions that have to be optimized. To resolve this difficulty, it is shown that energy landscapes can capture all three sets of complexity (composition, thermal history, and crystallinity). The explicit energy landscape optimization, however, has a large computational cost. To circumvent the cost of the energy landscape mapping, we present new research that allows for physical predictions of key properties. These methods are divided into two categories: compositional models and thermal history models. Both models for composition and thermal history are derived from energy landscapes. Software for each method is presented. As a conclusion, applications of the newly created models are discussed. iv Table of Contents List of Figures .......................................................................................................................... vi List of Tables ........................................................................................................................... xi Acknowledgments.................................................................................................................... xii Chapter 1 The Difficulty of Optimizing Glass ......................................................................... 1 1.1 Energy Landscapes .................................................................................................... 6 1.2 Fictive Temperature ................................................................................................... 8 1.3 Topological Constraint Theory .................................................................................. 15 1.4 Machine Learning ...................................................................................................... 19 1.5 Goals of this Dissertation ........................................................................................... 20 Chapter 2 Software for Enabling the Study of Glass .............................................................. 22 2.1 ExplorerPy ................................................................................................................. 22 2.2 RelaxPy ...................................................................................................................... 28 Chapter 3 Understanding Nucleation in Liquids ...................................................................... 30 3.1 Crystallization Methods ............................................................................................. 33 3.1.A Mapping and Classifying the Landscape ........................................................ 35 3.1.B Kinetic Term for CNT .................................................................................... 38 3.1.C Degeneracy calculations ................................................................................. 41 3.1.D Free Energy Difference .................................................................................. 42 3.1.E Interfacial Energy ........................................................................................... 44 3.2 Results & Discussion ................................................................................................. 46 3.3 Conclusions ................................................................................................................ 51 Chapter 4 Expanding the Current State of Relaxation ............................................................. 52 4.1 A thought experiment to expand our understanding of ergodic phenomenon: The Relativistic Glass Transition .................................................................................... 52 4.1.A Relativistic Liquid .......................................................................................... 56 4.1.B Relativistic Observer ...................................................................................... 60 4.2 Temperature and Compositional Dependence of the Stretching Exponent ............... 64 4.2.A Deriving a Model ............................................................................................ 67 4.2.B Experimental Validation ................................................................................. 73 4.3 Conclusion ................................................................................................................. 81 Chapter 5 Glass Kinetics Without Fictive Temperature .......................................................... 82 5.1 Background of the Adam Gibbs Relationship............................................................ 82 v 5.2 Methods ...................................................................................................................... 84 5.3 Results ........................................................................................................................ 86 5.3.A Adam-Gibbs Validation ................................................................................. 86 5.3.B MYEGA Validation ........................................................................................ 87 5.3.C Adam-Gibbs and Structural Relaxation .......................................................... 89 5.3.D Landscape Features ........................................................................................ 91 5.4 Topography-Property Relations ................................................................................. 94 5.5 Barrier Free Description of Thermodynamics ........................................................... 99 5.7 Toy Landscapes for the Design of Glasses and Glass Ceramics ................................ 102 5.7 Discussion .................................................................................................................. 107 Chapter 6 Enabling the Prediction of Glass Properties ............................................................ 109 6.1 Controlling Surface Reactivity ................................................................................... 109 6.2 Elastic Modulus Prediction ........................................................................................ 125 6.3 Ionic Conductivity ...................................................................................................... 135 6.4 Machine Learning Expansion .................................................................................... 145 Chapter 7 Designing Green Glasses for the 21st Century ....................................................... 152 7.1 Glass Electrolytes ....................................................................................................... 152 7.2 Hydrogen Fuel Cell Glasses ....................................................................................... 158 Chapter 8 Conclusions ............................................................................................................ 167 References ................................................................................................................................ 169 vi List of Figures Figure 1. The Volume-Temperature (VT) diagram: at the highest temperature there exists the equilibrium liquid which as it is quenched can either become a super cooled liquid or crystallize. Crystallization causes a discontinuity in the volume. The super- cooled liquid upon further quenching departs from equilibrium and transitions into the glassy state. Reproduced from Fundamentals of Inorganic Glass Science with permission from the author1. ............................................................................................ 5 Figure 2. The schematic for the flow of the program. Beginning in the top right corner and running until the condition in the pink box is satisfied. Yellow diamonds represent checks and blue operations. .............................................................................. 25 Figure 3. The enthalpy landscape for SiO2. This was explored using the command above and then plotted using PyConnect. The plot is a disconnectivity graph where each terminating