A Bright Future for Glass-Ceramics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal Behaviour and Excess Entropy of Bioactive Glasses and Zn-Doped Glasses
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Rennes 1 Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. Eric Wers, Hassane Oudadesse To cite this version: Eric Wers, Hassane Oudadesse. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses.. Journal of Thermal Analysis and Calorimetry, Springer Verlag (Germany), 2013, pp.1-8. <10.1007/s10973-013-3280-3>. <hal-00914284> HAL Id: hal-00914284 https://hal.archives-ouvertes.fr/hal-00914284 Submitted on 5 Dec 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. J Therm Anal Calorim (2013) p: 1–8 DOI 10.1007/s10973-013-3280-3 Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses E. Wers, H. Oudadesse ( ✉) Received: 22 March 2013 / Accepted: 4 June 2013 E. Wers, H. Oudadesse ( ✉) SCR, UMR CNRS 6226, University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes Cedex, France Abstract Bioactive glasses prepared in SiO 2–CaO–Na 2O and P 2O5 system are used as biomaterials in orthopaedic and maxillofacial surgery. -
Evaluation of the Energy Performance of Glazing Systems and Fenestration Retrofit Solutions
The Pennsylvania State University The Graduate School College of Engineering EVALUATION OF THE ENERGY PERFORMANCE OF GLAZING SYSTEMS AND FENESTRATION RETROFIT SOLUTIONS A Thesis in Architectural Engineering by Timothy M. Ariosto ©2013 Timothy M. Ariosto Submittal in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2013 The thesis of Timothy M. Ariosto was reviewed and approved* by the following: Ali M. Memari Professor of Architectural Engineering and Civil and Environmental Engineering Thesis Advisor M. Kevin Parfitt Associate Professor of Architectural Engineering Stephen Treado Associate Professor of Architectural Engineering Chimay Anumba Professor of Architectural Engineering Head of the Department of Architectural Engineering *Signatures are on file in the Graduate School ii ABSTRACT The 2011 Building Energy Databook (DOE, 2011) reported that buildings use approximately 40% of the nation’s total energy use. Residential buildings use 54% of this energy while commercial buildings use 46%. By improving the performance of building envelope components, building owners can substantially reduce their energy use. Since fenestration systems are thermally the weakest link in the building envelope, they are a logical place to seek improvements. Building owners, therefore, have two primary methods of reducing energy use. The first is by replacing inefficient single glazed window units with their newer, energy efficient counterparts. The second is to utilize window retrofit solutions, such as blinds, shutters, and curtains, in order to improve the performance of their existing systems. This thesis describes two studies conducted with the goal of aiding residential and small- scale-commercial building owners select appropriate glazing systems and window retrofit solutions. -
Journal of Orthodontics and Craniofacial Research
Journal of Orthodontics and Craniofacial Research Masood H. J Orthod Craniofac Res 2: 109. Research Article DOI: 10.29011/JOCR-109.100109 The Effect of Bioactive Glasses in Air Abrasion Procedures Masood H, Gillam D*, Hill RG Oral Bioengineering, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University, London, UK *Corresponding author: David Gillam, Oral Bioengineering, Institute of Dentistry, Bart’s and the London School of Medicine and Dentistry, Queen Mary University, London, UK Citation: Masood H, Gillam D, Hill RG. (2020) The Effect of Bioactive Glasses in Air Abrasion Procedures. J Orthod Craniofac Res 2: 109. DOI: 10.29011/JOCR-109.100109 Received Date: 14 July 2020; Accepted Date: 24 July 2020; Published Date: 31 July 2020 Abstract Objective: To analyse the effect of particle size and shape of a new bioactive glass BioMinF on air abrasion compared to an air polishing powder (Sylc) using an enamel substitute material (Macor®). Method: The materials used in the study were: 1) Macor, (Precision Ceramics UK) 2) BioMinF: 500gm of glass frit (Cera Dynamics Ltd, UK) and 3) Sylc: Sylc 45S5 glass (Velopex International, UK). An AquaCare Air Abrasion & Polishing System (Velopex) with a hand piece with a 0.8 mm diameter tip was used with a 2mm thick Macor sheet with a feed rate of 1 and an air pressure of 2 bar. The BioMinF glass was milled for 45 seconds in five batches each containing 100 gm of BioMinF frit using a milling machine (Gy-Ro Mill, Glen Creston, and London). The angular particles produced were separated using different sieves to produce <38 micron, 38-63 microns, 63-80 microns, 80-125 microns and 125-250 microns particle size(s) respectively. -
Surface Free Energy Determination of APEX Photosensitive Glass
micromachines Article Surface Free Energy Determination of APEX Photosensitive Glass William R. Gaillard 1, Emanuel Waddell 2 and John D. Williams 1,* 1 Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-256-616-2535 Academic Editor: Rolf Wuthrich Received: 7 January 2016; Accepted: 14 February 2016; Published: 23 February 2016 Abstract: Surface free energy (SFE) plays an important role in microfluidic device operation. Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique. While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the polar component is lower, which is likely attributable to composition. The SFE was modified at each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be approximately the same at a value of 51 mJ¨ m´2. APEX exhibited inconsistent wetting behavior attributable to an inhomogeneous surface chemical composition. Means to produce more consistent wetting of photosensitive glass for microfluidic applications are discussed. Keywords: surface free energy; surface tension; contact angle; photosensitive glass; microfluidics 1. Introduction The thermal, electrical, and chemical properties of photosenstive glass make it well suited for radio frequency (RF) and integrated circuit (IC) packaging, optoelectronics, micro-optics, microfluidics, and optofluidics. -
Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive
Biomed. Glasses 2019; 5:1–12 Research Article Roland Wetzel, Leena Hupa, and Delia S. Brauer* Glass ionomer bone cements based on magnesium-containing bioactive glasses https://doi.org/10.1515/bglass-2019-0001 Received Sep 25, 2018; revised Dec 16, 2018; accepted Jan 14, 2019 1 Introduction Abstract: Glass ionomer cements (GIC) are used in restora- Cements for prosthetic stabilisation or spinal corrective tive dentistry and their properties (low heat during setting, surgeries (vertebroplasty, kyphoplasty) typically consist adhesion to mineralised tissue and surgical metals) make of polymethylmethacrylate [1, 2]. They exhibit a number them of great interest for bone applications. However, den- of drawbacks which include high curing temperatures tal GIC are based on aluminium-containing glasses, and or the presence of unreacted and toxic methacrylic acid the resulting release of aluminium ions from the cements monomers. They also do not bind to bone and are held in needs to be avoided for applications as bone cements. Re- place by mechanical interlocking only [2–6]. As a result, placing aluminium ions in glasses for use in glass ionomer there is a demand for alternative non-toxic cements with cements is challenging, as aluminium ions play a critical bone bonding capability. role in the required glass degradation by acid attack as Glass ionomer cements (GIC) have been used in well as in GIC mechanical stability. Magnesium ions have restorative dentistry as filler or luting materials for been used as an alternative for aluminium in the glass decades [7, 8]. They are formed by an acid-base reaction component, but so far no systematic study has looked into between a polymeric acid and an acid-degradable fluoro- the actual role of magnesium ions. -
Nanomaterials How to Analyze Nanomaterials Using Powder Diffraction and the Powder Diffraction File™
Nanomaterials How to analyze nanomaterials using powder diffraction and the Powder Diffraction File™ Cerium Oxide CeO2 PDF 00-064-0737 7,000 6,000 5,000 4,000 Intensity 3,000 2,000 1,000 20 30 40 50 60 70 80 90 100 110 120 Nanomaterials Table of Contents Materials with new and incredible properties are being produced around the world by controlled design at the atomic and molecular level. These nanomaterials are typically About the Powder Diffraction File ......... 1 produced in the 1-100 nm size scale, and with this small size they have tremendous About Powder Diffraction ...................... 1 surface area and corresponding relative percent levels of surface atoms. Both the size and available (reactive) surface area can contribute to unique physical properties, Analysis Tools for Nanomaterials .......... 1 such as optical transparency, high dissolution rate, and enormous strength. Crystallite Size and Particle Size ������������ 2 In this Technical Bulletin, we are primarily focused on the use of structural simulations XRPD Pattern for NaCI – An Example .... 2 in order to examine the approximate crystallite size and molecular orientation in nanomaterials. The emphasis will be on X-ray analysis of nanomaterials. However, Total Pattern Analysis and the �������������� 3 Powder Diffraction File electrons and neutrons can have similar wavelengths as X-rays, and all of the X-ray methods described have analogs with neutron and electron diffraction. The use of Pair Distribution Function Analysis ........ 3 simulations allows one to study any nanomaterials that have a known atomic and Amorphous Materials ............................ 4 molecular structure or one can use a characteristic and reproducible experimental diffraction pattern. -
The American Ceramic Society 25Th International Congress On
The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings. -
Celebrating 100 Years
AMERICANa CERAMICting SOCIETY ars Celebr 100 ye bullemerginge ceramicstin & glass technology SEPTEMBER 2021 Laser-driven chemical vapor deposition for high-performance fibers and powders New issue inside: SEPTEMBER 2021 • VOLUME 2 • ISSUE 3 www.ceramics.org/ceramicandglassmanufacturing THE VALUE OF COLLABORATION: PARTNERSHIPS ARE A PATH TO SUCCESS ABET ENSURES QUALITY IN UNIVERSITY ENGINEERING EDUCATION ACerS Awards of 2021 | Coe College glass research | Big science in aerospace When it Comes to Heat, We Sweat the Details! Your firing needs are unique. Our laboratory can run tests to So why use an “off the shelf” help identify your process kiln in your process? boundaries. Through our toll firing facility, we can At Harrop, we get it. help to further define That’s why, for over a the equipment/ century, we’ve been processing putting in the hard work combination that to design and service works best for your custom kilns. Is it harder material. And if you to do things this way? are not ready for a Yes. Is the extra effort new kiln, we can toll worth it? You bet! fire your material to help meet your At Harrop, we don’t production needs. stop there. If you aren’t sure what you Does your current need, we can help. kiln company sweat the details? www.harropusa.com 1.614.231.3621 Harrop Ad Sweat the Details ACerS Full Size w 100 logo.indd 1 5/21/20 9:33 AM contents September 2021 • Vol. 100 No.7 feature articles department Announcing ACerS Awards of 2021 News & Trends . 3 29 The Society will honor members and corporations at the Spotlight . -
Glossary of Terms Abrisa Technologies Your Single Source Optics Partner!
Glossary of Terms Abrisa Technologies Your Single Source Optics Partner! December 2015 200 South Hallock Drive, Santa Paula, CA 93060 • (877) 622-7472 • FAX (805) 525-8604 • www.abrisatechnologies.com Glossary of Terms - 12/15 2 of 13 Acid Etching This process for the decoration of glass involves the application of hydrofluoric acid to the glass surface. Hydrofluoric acid vapors or baths of hydrofluoric acid salts may be used to give glass a matte, frosted appearance (similar to that obtained by surface sandblasting), as found in lighting glass. Glass designs can be produced by coating the glass with wax and then inscribing the desired pattern through the wax layer. When applied, the acid will corrode the glass but not attack the wax-covered areas. Alumina-silicate Glass Alumina (aluminum oxide Al2O3) is added to the glass batch in the form of commonly found feldspars containing alkalis in order to help improve chemical resistance and mechanical strength, and to increase viscosity at lower temperatures. Angle of Incidence The angle formed between a ray of light striking a surface and the normal line (the line perpendicular to the surface at that point). Annealing Under natural conditions, the surface of molten glass will cool more rapidly than the center. This results in internal stress- es which may cause the glass sheet or object to crack, shatter or even explode some time later. The annealing process is designed to eliminate or limit such stresses by submitting the glass to strictly controlled cooling in a special oven known as a “lehr”. Inside the lehr, the glass is allowed to cool to a temperature known as the “annealing point”. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School ADVENTURES IN HIGH DIMENSIONS: UNDERSTANDING GLASS FOR THE 21ST CENTURY A Dissertation in Material Science and Engineering by Collin James Wilkinson © 2021 Collin James Wilkinson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2021 ii The dissertation of Collin Wilkinson was reviewed and approved by the following: John Mauro Professor of Materials Science and Engineering Chair, Intercollege Graduate Degree Program Associate Head for Graduate Education, Materials Science and Engineering Dissertation Advisor Chair of Committee Seong Kim Professor of Chemical Engineering Professor of Materials Science and Engineering Ismaila Dabo Associate Professor of Materials Science and Engineering Susan Sinnott Professor of Materials Science and Engineering Professor of Chemistry Head of the Department of Materials Science and Engineering iii Abstract Glass is infinitely variable. This complexity stands as a promising technology for the 21st century since the need for environmentally friendly materials has reached a critical point due to climate change. However, such a wide range of variability makes new glass compositions difficult to design. The difficulty is only exaggerated when considering that not only is there an infinite variability in the compositional space, but also an infinite variability thermal history of a glass and in the crystallinity of glass-cearmics. This means that even for a simple binary glass there are at least 3 dimensions that have to be optimized. To resolve this difficulty, it is shown that energy landscapes can capture all three sets of complexity (composition, thermal history, and crystallinity). The explicit energy landscape optimization, however, has a large computational cost. -
A Dislocation Mechanism for Cryogenic Relaxations in Crystalline Polymers
Polymer Journal, Vol. 3, No. 3, pp 378-388 (1972) A Dislocation Mechanism for Cryogenic Relaxations in Crystalline Polymers Anne HILTNER and Eric BAER Division of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A. (Received September 28, 1971) ABSTRACT: The experimental properties of the 00 -relaxation observed in polyethylene, poly(oxymethylene), and poly(ethylene terephthalate) at about 50°K are reviewed. A mechanism is proposed involving the thermally activated redistribution of kinks along a discontinuous dislocation under an applied stress. The activation energy and relaxa tion intensity are discussed with reference to specific chain conformations in the dislo cation. It is suggested that the kinked dislocations arise from external stresses transferred to the crystalline or ordered regions of the polymer possibly via tie molecules. These stresses are greatest in deformed material or material annealed under constraint and accounts for the increase in peak height observed in these specimens. KEY WORDS Cryogenics/ Dislocation/ Polyethylene/ Poly(ethylene terephthalate) / Poly(oxymethylene) / a-Relaxation / Kink / Confor mation / Secondary relaxations above 77°K have been in the temperature range 4.2 to 77°K have been observed in many crystalline polymers and the reported by a number of authors. Previous effects of orientation and crystallinity on the workers however have been primarily concerned relaxation spectrum have been studied by vari with polymers containing side groups, and re ous investigators. Their results are reviewed laxations observed below 100°K were attributed in the excellent monograph by McCrum, Wil to motions of the pendent group.2- 7 This as liams, and Read.1 The possibility that linear, signment has been substantiated for the a-peak crystalline polymers might show relaxation pro in polystyrene (PS) by correlation of mechanical, cesses below 77°K has received less attention. -
Predicting Polymers' Glass Transition Temperature by a Chemical
polymers Article Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model Guang Chen 1 , Lei Tao 1 and Ying Li 1,2,* 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; [email protected] (G.C.); [email protected] (L.T.) 2 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] Abstract: We propose a chemical language processing model to predict polymers’ glass transition temperature (Tg) through a polymer language (SMILES, Simplified Molecular Input Line Entry System) embedding and recurrent neural network. This model only receives the SMILES strings of a polymer’s repeat units as inputs and considers the SMILES strings as sequential data at the character level. Using this method, there is no need to calculate any additional molecular descriptors or fingerprints of polymers, and thereby, being very computationally efficient. More importantly, it avoids the difficulties to generate molecular descriptors for repeat units containing polymerization point ‘*’. Results show that the trained model demonstrates reasonable prediction performance on unseen polymer’s Tg. Besides, this model is further applied for high-throughput screening on an unlabeled polymer database to identify high-temperature polymers that are desired for applications in extreme environments. Our work demonstrates that the SMILES strings of polymer repeat units can be used as an effective feature representation to develop a chemical language processing model for predictions of polymer Tg. The framework of this model is general and can be used to construct structure–property relationships for other polymer properties. Citation: Chen, G.; Tao, L.; Li, Y.