Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive

Total Page:16

File Type:pdf, Size:1020Kb

Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive Biomed. Glasses 2019; 5:1–12 Research Article Roland Wetzel, Leena Hupa, and Delia S. Brauer* Glass ionomer bone cements based on magnesium-containing bioactive glasses https://doi.org/10.1515/bglass-2019-0001 Received Sep 25, 2018; revised Dec 16, 2018; accepted Jan 14, 2019 1 Introduction Abstract: Glass ionomer cements (GIC) are used in restora- Cements for prosthetic stabilisation or spinal corrective tive dentistry and their properties (low heat during setting, surgeries (vertebroplasty, kyphoplasty) typically consist adhesion to mineralised tissue and surgical metals) make of polymethylmethacrylate [1, 2]. They exhibit a number them of great interest for bone applications. However, den- of drawbacks which include high curing temperatures tal GIC are based on aluminium-containing glasses, and or the presence of unreacted and toxic methacrylic acid the resulting release of aluminium ions from the cements monomers. They also do not bind to bone and are held in needs to be avoided for applications as bone cements. Re- place by mechanical interlocking only [2–6]. As a result, placing aluminium ions in glasses for use in glass ionomer there is a demand for alternative non-toxic cements with cements is challenging, as aluminium ions play a critical bone bonding capability. role in the required glass degradation by acid attack as Glass ionomer cements (GIC) have been used in well as in GIC mechanical stability. Magnesium ions have restorative dentistry as filler or luting materials for been used as an alternative for aluminium in the glass decades [7, 8]. They are formed by an acid-base reaction component, but so far no systematic study has looked into between a polymeric acid and an acid-degradable fluoro- the actual role of magnesium ions. The aim of the present aluminosilicate glass [9]. Owing to their direct adhesion study is therefore the systematic comparison of the ef- to mineralised tissue these cements have aroused inter- fect of magnesium ions compared to calcium ions in GIC est as bone cements. However, while Al3+ ions play a key glasses. It is shown that by partially substituting MgO for role in cement setting, stability and performance, they are CaO in simple SiO2-CaO-CaF2 glasses, ion release from the known to be neurotoxic [10] and impede bone mineralisa- glass and, subsequently, GIC setting behaviour can be ad- tion [11–13]. Bioactive glasses may present an alternative justed. Magnesium ions act as typical network modifiers to these aluminosilicate glasses owing to their fast ion re- here but owing to their larger field strength compared to lease when in contact with aqueous solutions [14–16]. calcium ions reduce ion release from the glasses signifi- Efforts to substitute Al3+ ions with other multivalent cantly. By choosing an optimum ratio of magnesium and ions, e.g. Fe2+/3+ or Zn2+, have already been reported but calcium ions in the glass, GIC setting and subsequently the resulting cements exhibited drawbacks regarding ce- compressive strength can be controlled. ment stability or even cell toxicity [17–19]. By contrast, studies showed that GIC formed using Mg-containing Keywords: bioactive glasses; magnesium; dissolution; glasses revealed more promising properties [17, 20, 21]. continuous flow; glass ionomer cement Magnesium is an important element found e.g. in bone ap- atite. In addition, it is necessary in preventing osteoporo- sis [22, 23]. The aim of this study was to investigate the effect of MgO for CaO substitution on glass properties and particu- larly on GIC formation and properties. *Corresponding Author: Delia S. Brauer: Otto Schott Institute of Materials Research, Friedrich Schiller University, Fraunhoferstr. 6, 07743 Jena, Germany; Email: [email protected]; Tel.: +49-3641-948510 Roland Wetzel: Otto Schott Institute of Materials Research, Friedrich Schiller University, Fraunhoferstr. 6, 07743 Jena, Germany Leena Hupa: Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland Open Access. © 2019 R. Wetzel et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License 2 Ë R. Wetzel et al. the dilatometric softening point (Td) and the thermal ex- 2 Materials and methods ∘ pansion coefficient (α; temperature range 100 to 400 C). Fine glass particles were heated in a furnace 2.1 Glass synthesis and basic (LT3/11/B410, Nabertherm GmbH, Lilienthal, Germany) characterisation to Tx, and the temperature was held constant for either 10 min or 3 hours before switching off the furnace and A series of glasses in the system SiO2-CaO-MgO-CaF2 was leaving the samples to cool down in the furnace over night. prepared via a melt-quench route by replacing one third Samples were analysed by powder X-ray diffraction (Mini- (glass 15Mg) or two thirds (glass 30Mg) of CaO with MgO flex 300, Rigaku Corporation, Tokio, Japan; CuKα, 30 kV, ∘ (Table 1). Mixtures of SiO2, CaCO3, CaF2 and MgCO3 were 20 mA, 5-75 2θ). ∘ sintered together in a platinum crucible at 1400 C using an inductively heated furnace and afterwards melted at Table 1: Nominal and analysed (in brackets) glass composition ∘ 1500 C for 1 hour. To prevent crystallisation the melts were (mol%). rapidly quenched in water. Glass powders were prepared using ball milling (KM1, Janetzki, milling time 30 min) and SiO2 CaO MgO CaF2 sieving with analytical sieves to obtain fine (≤ 38 µm) or 0Mg 45 45 0 10 coarse (38 µm ≤ x ≤ 63 µm) powders. (42.05 ± (47.18 ± - (10.77 ± Glass monoliths were prepared by re-melting the glass 1.54) 3.46) 1.41) ∘ frits at 1500 C. The melt was then cast into brass moulds, 15Mg 45 30 15 10 which for annealing were placed into a pre-heated fur- (43.76 ± (31.55 ± (15.27 ± (9.41 ± nace set to 30 K below the glass transition temperature 1.53) 2.42) 0.76) 1.14) (Tg). Glasses were cooled down to room temperature in the 30Mg 45 15 30 10 switched-off furnace overnight. Compositions of prepared (43.64 ± (16.79 ± (29.09 ± (10.45 ± glasses were analysed using energy-dispersive X-ray spec- 1.59) 2.38) 1.32) 1.32) troscopy (EDX; JOEL JSM-7001F scanning electron micro- scope equipped with an EDAX Trident analysing system) on polished monoliths. Glass density was measured us- ing helium pycnometry (AccuPyc 1330-1000, Micromeritics GmbH). Furthermore, the molar volume (Vm) of the glass 2.3 Static and dynamic dissolution series was calculated as described previously [24]. Glass experiments powders were characterised by powder X-ray diffraction (XRD; D5000, Siemens) and attenuated total reflectance For static dissolution tests 75 mg of coarse glass powder Fourier transform infrared spectroscopy (ATR-FTIR; Fron- was immersed in 50 mL cell culture medium (Minimum Es- ∘ tier IR/NIR, Perkin Elmer; ATR sample holder, Specac). sential Medium Eagle M4526, Sigma-Aldrich) at 37 C for ei- In addition, particle size distribution of fine and coarse ther 24 hours or 7 days. Glass powders were analysed using powder was determined by dynamic light scattering (DLS; ATR-FTIR after each immersion time point. Malvern Mastersizer 2000 equipped with HYDRO 2000S Early stage ion release was investigated by dynamic module). dissolution experiments, where a dynamic flow cell was connected to an inductively coupled plasma optical emis- sion spectrometer (Optima 5300 DV, Perkin Elmer) as de- 2.2 Glass thermal analysis and scribed previously [25–27]. The flow cell contained glass crystallisation powder (200 to 245 mg; normalised to 243 mg) with a grain size between 315 and 500 µm. Random packing was as- Glass transition temperature (Tg) and crystallisation peak sumed. On-line measurement and experimental set-up are temperature (Tx) were determined by differential ther- shown in detail elsewhere [25, 27, 28]. mal analysis (DTA; in-house made device, heating rate: 10 K min−1) using fine glass powder. Dilatometry (DIL 402 PC, Netzsch, heating rate: 2.4 GIC preparation 5 K min−1; measurements performed on glass rods 5 mm in diameter and 20 mm in length) was used to determine Tg, GICs were prepared by weighing and hand mixing glass powder and poly(vinylphosphonic acid-co-acrylic acid) Glass ionomer bone cements based on magnesium-containing bioactive glasses Ë 3 (PVPA-co-PAA; 40 wt% copolymer solution, weight aver- lost during melting. Substitution of MgO for CaO resulted age of chain length between 40 and 70 kDa according to in a decrease in density and molar volume (Figure 1). manufacturer, First Scientific Dental GmbH). A glass to polymer ratio of 1:3 by weight was used to form cements. The amount of Mg containing glasses was adjusted ow- ing to lower molecular weight of Mg compared to Ca. After mixing, the cement was filled into PTFE moulds (7 mmin ∘ height, 4 mm in diameter) and set for 1 hour at 37 C. Sam- ples were stored for up to 28 days either inside the mould, in deionised water or in 100% relative humidity (rH) as de- scribed elsewhere [21]. 2.5 GIC setting rate and mechanical testing Changes in cement structure during setting were analysed using ATR-FTIR. Spectra were acquired every 60 seconds Figure 1: Density and molar volume (V , blue, right axis) of the for the first 10 minutes, every 150 seconds for the following m glasses. 10 minutes and one spectrum at 25 minutes. The ratio of the peak heights of the carboxylate band at 1550 cm−1 and −1 the carboxyl band at 1700 cm were calculated to char- Results of particle size distribution measurements for acterise the setting rate of the different cement composi- fine and coarse glass powder are shown in Table 2. Nosig- tions [29–33]. nificant variation with glass composition was observed. For mechanical testing, specimens were stored for 1 ∘ day either inside the PTFE mould at 37 C or for 1 hour in- Table 2: Glass particle size distribution: cumulative volume percent- side the mould followed by 23 hours in either deionised age (D10, D50, D90, in µm) for fine and coarse powder.
Recommended publications
  • Thermal Behaviour and Excess Entropy of Bioactive Glasses and Zn-Doped Glasses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Rennes 1 Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. Eric Wers, Hassane Oudadesse To cite this version: Eric Wers, Hassane Oudadesse. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses.. Journal of Thermal Analysis and Calorimetry, Springer Verlag (Germany), 2013, pp.1-8. <10.1007/s10973-013-3280-3>. <hal-00914284> HAL Id: hal-00914284 https://hal.archives-ouvertes.fr/hal-00914284 Submitted on 5 Dec 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. J Therm Anal Calorim (2013) p: 1–8 DOI 10.1007/s10973-013-3280-3 Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses E. Wers, H. Oudadesse ( ✉) Received: 22 March 2013 / Accepted: 4 June 2013 E. Wers, H. Oudadesse ( ✉) SCR, UMR CNRS 6226, University of Rennes 1, 263 av. du Général Leclerc, 35042 Rennes Cedex, France Abstract Bioactive glasses prepared in SiO 2–CaO–Na 2O and P 2O5 system are used as biomaterials in orthopaedic and maxillofacial surgery.
    [Show full text]
  • Journal of Orthodontics and Craniofacial Research
    Journal of Orthodontics and Craniofacial Research Masood H. J Orthod Craniofac Res 2: 109. Research Article DOI: 10.29011/JOCR-109.100109 The Effect of Bioactive Glasses in Air Abrasion Procedures Masood H, Gillam D*, Hill RG Oral Bioengineering, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University, London, UK *Corresponding author: David Gillam, Oral Bioengineering, Institute of Dentistry, Bart’s and the London School of Medicine and Dentistry, Queen Mary University, London, UK Citation: Masood H, Gillam D, Hill RG. (2020) The Effect of Bioactive Glasses in Air Abrasion Procedures. J Orthod Craniofac Res 2: 109. DOI: 10.29011/JOCR-109.100109 Received Date: 14 July 2020; Accepted Date: 24 July 2020; Published Date: 31 July 2020 Abstract Objective: To analyse the effect of particle size and shape of a new bioactive glass BioMinF on air abrasion compared to an air polishing powder (Sylc) using an enamel substitute material (Macor®). Method: The materials used in the study were: 1) Macor, (Precision Ceramics UK) 2) BioMinF: 500gm of glass frit (Cera Dynamics Ltd, UK) and 3) Sylc: Sylc 45S5 glass (Velopex International, UK). An AquaCare Air Abrasion & Polishing System (Velopex) with a hand piece with a 0.8 mm diameter tip was used with a 2mm thick Macor sheet with a feed rate of 1 and an air pressure of 2 bar. The BioMinF glass was milled for 45 seconds in five batches each containing 100 gm of BioMinF frit using a milling machine (Gy-Ro Mill, Glen Creston, and London). The angular particles produced were separated using different sieves to produce <38 micron, 38-63 microns, 63-80 microns, 80-125 microns and 125-250 microns particle size(s) respectively.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • Highly Porous Polycaprolactone-45S5 Bioglass Scaffolds for Bone Tissue Engineering Paola Fabbri, Valeria Cannillo, Antonella Sola, Andrea Dorigato, Federica Chiellini
    Highly porous polycaprolactone-45s5 bioglass scaffolds for bone tissue engineering Paola Fabbri, Valeria Cannillo, Antonella Sola, Andrea Dorigato, Federica Chiellini To cite this version: Paola Fabbri, Valeria Cannillo, Antonella Sola, Andrea Dorigato, Federica Chiellini. Highly porous polycaprolactone-45s5 bioglass scaffolds for bone tissue engineering. Composites Science and Tech- nology, Elsevier, 2010, 70 (13), pp.1869. 10.1016/j.compscitech.2010.05.029. hal-00681645 HAL Id: hal-00681645 https://hal.archives-ouvertes.fr/hal-00681645 Submitted on 22 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Highly porous polycaprolactone-45s5 bioglass® scaffolds for bone tissue en‐ gineering Paola Fabbri, Valeria Cannillo, Antonella Sola, Andrea Dorigato, Federica Chiellini PII: S0266-3538(10)00225-3 DOI: 10.1016/j.compscitech.2010.05.029 Reference: CSTE 4734 To appear in: Composites Science and Technology Received Date: 21 December 2009 Revised Date: 11 May 2010 Accepted Date: 30 May 2010 Please cite this article as: Fabbri, P., Cannillo, V., Sola, A., Dorigato, A., Chiellini, F., Highly porous polycaprolactone-45s5 bioglass® scaffolds for bone tissue engineering, Composites Science and Technology (2010), doi: 10.1016/j.compscitech.2010.05.029 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Celebrating 100 Years
    AMERICANa CERAMICting SOCIETY ars Celebr 100 ye bullemerginge ceramicstin & glass technology SEPTEMBER 2021 Laser-driven chemical vapor deposition for high-performance fibers and powders New issue inside: SEPTEMBER 2021 • VOLUME 2 • ISSUE 3 www.ceramics.org/ceramicandglassmanufacturing THE VALUE OF COLLABORATION: PARTNERSHIPS ARE A PATH TO SUCCESS ABET ENSURES QUALITY IN UNIVERSITY ENGINEERING EDUCATION ACerS Awards of 2021 | Coe College glass research | Big science in aerospace When it Comes to Heat, We Sweat the Details! Your firing needs are unique. Our laboratory can run tests to So why use an “off the shelf” help identify your process kiln in your process? boundaries. Through our toll firing facility, we can At Harrop, we get it. help to further define That’s why, for over a the equipment/ century, we’ve been processing putting in the hard work combination that to design and service works best for your custom kilns. Is it harder material. And if you to do things this way? are not ready for a Yes. Is the extra effort new kiln, we can toll worth it? You bet! fire your material to help meet your At Harrop, we don’t production needs. stop there. If you aren’t sure what you Does your current need, we can help. kiln company sweat the details? www.harropusa.com 1.614.231.3621 Harrop Ad Sweat the Details ACerS Full Size w 100 logo.indd 1 5/21/20 9:33 AM contents September 2021 • Vol. 100 No.7 feature articles department Announcing ACerS Awards of 2021 News & Trends . 3 29 The Society will honor members and corporations at the Spotlight .
    [Show full text]
  • The Beneficial Mechanical and Biological Outcomes of Thin Copper-Gallium Doped Silica-Rich Bio-Active Glass Implant-Type Coatings
    coatings Article The Beneficial Mechanical and Biological Outcomes of Thin Copper-Gallium Doped Silica-Rich Bio-Active Glass Implant-Type Coatings George E. Stan 1,* , Teddy Tite 1, Adrian-Claudiu Popa 1, Iuliana Maria Chirica 1, Catalin C. Negrila 1, Cristina Besleaga 1 , Irina Zgura 1, Any Cristina Sergentu 1, Gianina Popescu-Pelin 2 , Daniel Cristea 3, Lucia E. Ionescu 4, Marius Necsulescu 4 , Hugo R. Fernandes 5 and José M. F. Ferreira 5 1 National Institute for Materials Physics, RO-077125 Magurele, Romania; teddy.tite@infim.ro (T.T.); [email protected] (A.-C.P.); iuliana.bogdan@infim.ro (I.M.C.); catalin.negrila@infim.ro (C.C.N.); cristina.besleaga@infim.ro (C.B.); irina.zgura@infim.ro (I.Z.); [email protected] (A.C.S.) 2 National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; gianina.popescu@inflpr.ro 3 Faculty of Materials Science and Engineering, Transilvania University of Brasov, 500068 Brasov, Romania; [email protected] 4 Army Centre for Medical Research, RO-020012 Bucharest, Romania; [email protected] (L.E.I.); [email protected] (M.N.) 5 Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (H.R.F.); [email protected] (J.M.F.F.) * Correspondence: george_stan@infim.ro; Tel.: +40-21-241-8128 Received: 12 October 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Silica-based bioactive glasses (SBG) hold great promise as bio-functional coatings of metallic endo-osseous implants, due to their osteoproductive potential, and, in the case of designed formulations, suitable mechanical properties and antibacterial efficacy.
    [Show full text]
  • The Effects of Copper Addition on the Structure and Antibacterial
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.24.918524; this version posted January 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Effects of Copper Addition on The Structure and Antibacterial Properties of Biomedical Glasses Leyla Mojtabavi1, Amir Razavi1* 1University of Tehran, Department of Engineering Science, Enghelab Ave, Tehran, Iran 111554563 Address for Correspondence: Department of Engineering Science, University of Tehran, Enghelab Ave, Tehran, Iran 111554563 Tel: +989147560142 Email: [email protected] This study was conducted to determine the effects that copper (Cu) has on the glass structure and antibacterial efficacy of a SiO2- CaO-Na2O-P2O5 bioactive glass composition. Copper is known to be an antibacterial agent, which could potentially be a safer alternative to doping materials with antibiotics. Additionally, the structural effects of copper in the glass were studied, as the glass structure plays an important role in its bioactivity in the physiological solutions. This leads to the possibility of achieving antibacterial glass that can serve as a bioactive glass for skeletal tissue. bioRxiv preprint doi: https://doi.org/10.1101/2020.01.24.918524; this version posted January 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • Glass-Ionomer Cements in Restorative Dentistry: a Critical Appraisal Mohammed Almuhaiza
    JCDP Glass-ionomer Cements in Restorative10.5005/jp-journals-10024-1850 Dentistry: A Critical Appraisal REVIEW ARTICLE Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal Mohammed Almuhaiza ABSTRACT make them useful as restorative and luting materials. Glass-ionomer cements (GICs) are mainstream restorative Glass-ionomer (GI) material was introduced by Wilson materials that are bioactive and have a wide range of uses, such and Kent in 1972 as a “new translucent dental filling as lining, bonding, sealing, luting or restoring a tooth. Although material” recommended for the restoration of cervical the major characteristics of GICs for the wider applications in lesions. It consists of a powdered fluoroaluminosilicate dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to glass and a polyalkenoic acid. Polyacrylic acid is often moisture, inherent opacity, long-term wear and strength are incorporated into the powder in its dehydrated form, not as adequate as desired. They have undergone remarkable leaving the liquid to consist of water or an aqueous changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed solution of tartaric acid. The positive characteristics of the to improve their physical properties and diversified their use as GICs include chemical adhesion to enamel and dentin in a restorative material of great clinical applicability. The light- the presence of moisture, resistance
    [Show full text]
  • Bioactive Glasses: from Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies
    Journal of Functional Biomaterials Review Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies Elisa Fiume, Jacopo Barberi, Enrica Verné * and Francesco Baino * ID Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; elisa.fi[email protected] (E.F.); [email protected] (J.B.) * Correspondence: [email protected] (E.V.); [email protected] (F.B.); Tel.: +39-011-090-4717 (E.V.); +39-011-090-4668 (F.B.) Received: 19 February 2018; Accepted: 13 March 2018; Published: 16 March 2018 Abstract: Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods.
    [Show full text]
  • Lecture #16 Glass-Ceramics: Nature, Properties and Processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015
    Glass Processing Lecture #16 Glass-ceramics: Nature, properties and processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015 Lectures available at: www.lehigh.edu/imi Sponsored by US National Science Foundation (DMR-0844014) 1 Glass-ceramics: nature, applications and processing (2.5 h) 1- High temperature reactions, melting, homogeneization and fining 2- Glass forming: previous lectures 3- Glass-ceramics: definition & applications (March 19) Today, March 24: 4- Composition and properties - examples 5- Thermal treatments – Sintering (of glass powder compactd) or -Controlled nucleation and growth in the glass bulk 6- Micro and nano structure development April 16 7- Sophisticated processing techniques 8- GC types and applications 9- Concluding remmarks 2 Review of Lecture 15 Glass-ceramics -Definition -History -Nature, main characteristics -Statistics on papers / patents - Properties, thermal treatments micro/ nanostructure design 3 Reading assignments E. D. Zanotto – Am. Ceram. Soc. Bull., October 2010 Zanotto 4 The discovery of GC Natural glass-ceramics, such as some types of obsidian “always” existed. René F. Réaumur – 1739 “porcelain” experiments… In 1953, Stanley D. Stookey, then a young researcher at Corning Glass Works, USA, made a serendipitous discovery ...… 5 <rms> 1nm Zanotto 6 Transparent GC for domestic uses Zanotto 7 Company Products Crystal type Applications Photosensitive and etched patterned Foturan® Lithium-silicate materials SCHOTT, Zerodur® β-quartz ss Telescope mirrors Germany
    [Show full text]
  • Injectable Bioactive Glass in the Restoration of Oral Bone Defect
    European Review for Medical and Pharmacological Sciences 2016; 20: 1665-1668 Injectable bioactive glass in the restoration of oral bone defect C.-B. HAN, S.-C. AN Department of Oral and Maxillofacial Surgery, Weifang People’s Hospital, Weifang, Shandong, China Abstract. – OBJECTIVE: To explore the appli- the optimal graft material, but these materials had cation value of injectable bioactive glass in the some limitations2. The injectable bioactive glass had restoration of the oral bone defect. good bioactivity and biocompatibility, ion exchange PATIENTS AND METHODS: This study includ- that occurred between the bioactive glass and soft ed 58 consecutive patients with oral bone defect > 1 mm, these patients were randomly assigned tissue as well as bone may be directly involved in to a control group (n=26, Hydroxyapatite bioce- the metabolism and restoration of human bone tis- ramics) and an observation group (n=32, Inject- sue. As a result, identical inorganic mineral, i.e., car- able bioactive glass). The purpose of this study bonated hydroxyapatite could form on the material was to assess the comparison of the healing of surface, inducing growth of new bone tissue3,4. Most oral bone defect. previous studies explored the application value of RESULTS: X-ray examination was performed at 5,6 6-month and 12-month following treatment. The bioactive glass through animal models , while this bone healing in the observation group was sig- study would further confirm the value of bioactive nificantly better than the control group (p <0.05), glass through clinical controlled trial in humans. the incidences of local rejection reactions were not significantly different (p >0.05).
    [Show full text]