Quick viewing(Text Mode)

GLASS and GLASS SEALANTS AS BIOCERAMICS INDU BALA Roll No

GLASS and GLASS SEALANTS AS BIOCERAMICS INDU BALA Roll No

GLASS AND SEALANTS AS BIOCERAMICS Thesis submitted in partial fulfillment of the requirement for The award of the degree of Master of Technology In AND ENGINEERING

Submitted by

INDU BALA Roll No.60602008 Under the guidance of Dr. Kulvir Singh

School of Physics & Material Sciences Thapar University, Patiala Patiala - 147001 June-2008

Dedicatedtomylovingparents

ABSTRACT

The optimization of bioactive requires a proper understanding of chemical, physical mechanicalandbiologicalproperties.Theformationofahydroxyapatitelayeronsilicabased bioactiveglasseshasalreadybeeninvestigatedbymanyresearchers.Inthepresentinvestigation, based glasses of different composition have been synthesized by taking appropriate proportion of each oxide composition. The samples are charatererized by using the various techniques viz, Xray diffraction (XRD), UVVisible spectroscopy, and FTIR, density and solubilitymeasurements.Theentiresamplesweredippedinsimulatedbodyfluid(SBF)solution fordifferenttimeduration.SampleAS1andAS3showtheformationofhydroxyapatitelayer. Ontheotherhand,samplesAS2andAS4werenotformedthehydroxyapatitelayer.Apartfrom this,AS1andAS3samplesalsoexhibithigherdurabilityascomparedtoothertwosamples(AS2 andAS4).

LIST OF TABLES

Table2.1 Ceramicsusedinbiomedicalapplications Table2.2 Propertiesofaluminaceramics Table2.3 Mechanicalpropertiesofcommerciallyavailablezirconia Table2.4 Compositionofcommonbioactiveglasses Table3.1 Evolutionofbioactiveglassandglassceramicimplants Table3.2 Themechanicalpropertiesofsomeclinicallyusedbiomaterials Table4.1 Glasscomposition(mol%)withtheirlabel Table4.2 concentrationsofSBFandHumanPlasma Table4.3 Reagentsforpreparationofsimulatedbodyfluid(SBF) Table4.4 FTIRbandassignment Table5.1 VariationindensitybeforeandafterdippingonSBFsolution Table5.2 PercentageweightlossofthesamplesafterdippinginSBFsolution Table5.3 VariationofbandgapbeforeandafterdippinginSBFsolution

LIST OF FIGURES

Figure1.1 AtomicarrangementofA 2O3in(a)crystallineform(b)glassy Figure1.2 Plotofvolumevs.temperatureof(a)glass(b)crystal Figure1.3 Schematicrepresentationofthestressprofileintoughenedglass Figure2.1 Bioactivityspectrumforvariousbioceramicsimplants. Figure2.2 Ternarydiagram Figure2.3 Sequenceofinterfacialreactionsinvolvedinformingabondbetweenbone andbioactiveglasses Figure4.1 DiagramofUVSpectrometer Figure4.2 DiagramofFTIR

CONTENTS

Pageno Certificate ii Acknowledgement iii Abstract iv Listoftables v Listoffigures vi

CHAPTER1 INTRODUCTION 1.0 Historicalbackground 1 1.1 Glasses 2 1.2 Glassstructure 2 Glasstransition 3 1.2.1 1.3 Fabricationtechniquesofglasses 4 1.3.1 Solgelprocess 4 1.3.2 Pressingtechnique 5 1.3.3 Blowingtechnique 5 1.3.4 Glassfiberspinning 6 1.4 Propertiesofglasses 6 1.4.1 Physicalproperties 6 1.4.2 Mechanicalproperties 6 1.4.3 Thermalproperties 7 1.4.4 Electricalproperties 7 1.4.5 Chemicalproperties 7 1.5 Applicationsofglasses 8 1.5.1 Toughenedglass 8

1.5.2 Chemicallystrengthened 9 glass 1.5.3 Evacuatedglazing 10

CHAPTER2 BIOCERAMICS 2.1 Typesofbioceramics 11 2.1.1 Bioinertmaterials 11 2.1.2 Bioactivematerials 11 2.1.3 Biodegradablematerials 12 2.2 Bioceramicsandtheirproperties 12 2.3 Classificationofbioceramics 13 2.3.1 Alumina 14 2.3.2 Zirconia 14 2.3.3 Calciumphosphate 15 2.3.4 Glassceramics 16 2.3.5 Pyrolyticcarbon 16 2.4 Glassandglassceramicas 17 biomaterials 2.5 Typesofbioactiveglasses 18 2.5.1 ClassAbioglasses 18 2.5.2 ClassBbioglasses 18 2.6 Bioactiveglasses 19 2.7 Clinicalusesofbioactiveglasses 22 2.7.1 Osteoporosis 22 2.7.2 Hipreplacement 23 2.7.3 Bonetissueengineering 23 2.7.4 Facialskeleton 23 2.7.5 cement 23

CHAPTER3 LITERATUREREVIEW 25 3.1 Mechanicalpropertiesof 32 biomaterials

CHAPTER4 EXPERIMENTALDETAILS 34 4 Introduction 34 4.1 Samplepreparation 34 4.2 Invitrobioactivityanalysis 35 4.3 ProcedureforpreparingSBF 36 solution 4.4 Density 38 4.5 Xraydiffraction 38 4.6 UVVisspectroscopy 39 4.7 Bandgap 40 4.8 Determinationofenergyband 40 gap 4.9 Fouriertransformspectroscopy 41 CHAPTER5 RESULTS&DISSCUSSION 44 5.1 Densitymeasurement 45 5.2 Weightlossmeasurement 45 5.3 Xraydiffractionanalysis 46 5.4 Bandgapmeasurement 49 5.5 FTIRspectrameasurement 55 CHAPTER6 CONCLUSIONS&FUTURE 61 SCOPE REFERENCES 62 -

CHAPTER1 INTRODUCTION 1HistoricalBackground Anyonewhohaslookedatthelongtermhistoryofhumancivilizationsoverthelast50,000 yearswillnoticethatoneofthemostsignificanttransformationstookplaceduringtheperiod 1200to1850.Thistransformationaffectedtwoofthemostimportanthumancapacities:theway inwhichwethinkandoursenseofsight. Naturalglasshasexistedsincethebeginningoftime, formed when certain types of rocks melt as a result of hightemperature phenomena such as volcanic eruptions, lightning strikes or the impact of meteorites, and then cool and solidify rapidly.Stoneagemanisbelievedtohaveusedcuttingtoolsmadeofobsidian(anaturalglassof volcanic origin also known as hyalopsite, Iceland agate, or mountain mahogany) and tektites (naturallyformedglassesofextraterrestrialorotherorigin,alsoreferredtoasobsidianites)[1]. Glassbeads,seals,andarchitecturaldecorationsdatefromaround2500BC.Glasswas alsodiscoveredbyNativeAmericansduringthesametimeperiod.Theearliestknownbeads fromEgyptweremadeduringtheNewKingdomaround1500BCandwereproducedina varietyofcolors.TheEgyptiansalsocreatedthefirstcoloredglassrodswhichtheyusedto createcolorfulbeadsanddecorations.Theyalsoworkedwithcastglass,whichwasproducedby pouringmoltenglassintoamold,muchlikeironandthemoremoderncruciblesteel[2].Bythe 5thcenturyBCthistechnologyhadspreadtoGreeceandbeyond.InthefirstcenturyBCthere weremanyglasscentrelocatedaroundtheMediterranean.Aroundthistime,attheeasternendof theMediterranean,glassblowing,bothfreeblowingandmouldblowing,wasdiscovered.The 11thcenturysawtheemergenceinGermanyofnewwaysofmakingsheetglassbyblowing spheres.Thesphereswereswungouttoformcylindersandthencutwhilestillhot,afterwhich thesheetswereflattened.Thistechniquewasperfectedin13thcenturyinVenice.Untilthe12th century,stainedglass,glasswithmetallicandotherimpuritiesforcoloring,wasnotwidelyused. Around1688,aprocessforcastingglasswasdeveloped,whichledtoitsbecominga muchmorecommonlyusedmaterial.Theinventionoftheglasspressingmachinein1827 allowedthemassproductionofinexpensiveglassproducts.Thecylindermethodofcreatingflat

glasswasusedintheUnitedStatesofAmericaforthefirsttimeinthe1820s.Itwasusedto commerciallyproducewindows.Thisandothertypesofhandblownsheetglasswasreplacedin the20thcenturybyrolledplateglass,andthenagaininthe1960sbyfloatglass,atfirstinthe UKandthenelsewhere[3]. 1.1 Glasses: Glassisanoncrystallinematerialthatcanmaintainindefinitely,ifleftundisturbed,itsoverall form and amorphous microstructure at a temperature below its glass transition temperature. Glasssynthesisisachievedbyquenching aglass forming liquid through its glass transition temperature sufficiently fast to avoid the formation of a regular crystal lattice, producing an amorphoussolid.Amorphoussolidsmayalsobeformedbymethodsotherthanmeltquenching, suchasvapourdepositionorthesolgelmethod.Silicaglassmaybeproducedbyusingsandasa raw material (or "quartz sand") that contains almost 100% crystalline silica in the form of quartz. The most common method for glass pane production is using molten tin, where the moltenglassfloatsontopoftheperfectlyflatmoltentin,thusgivingitthename"floatglass". The refractive, reflective and transmission properties of glass make specific chemical compositions suitable for technological applications such as and optoelectronics. The manipulationofheatedglassenablesittobeshapedintodifferentformsandtheincorporationof additivesatthemanufacturingstageproducesdifferentcolorswhichenableglasstobeusedas anart[3]. So a glass may be defined as “an amorphous solid completely lacking in long range, periodic atomic structure, and exhibiting a region of glass transformation behavior”. Any material, inorganic, organic, or metallic, formed by any technique, which exhibit glass transformationbehaviorisaglass.Tobetterunderstandhowbioactiveglassesworkwhenputin contactwithbody fluids,afew conceptsconcerning glassstructureandglasssurfacewillbe giveninthefollowingsections: 1.2Glassstructure: Therearemanypossibledefinitionsofglassyphase.Aninterestingoneisthatglassisasolid materialwithastructuresimilartoaliquid.Thissomehowreflectsthepracticaloperations necessarytoobtainaglass:aglassisformedwhenaliquidisovercooled,inabsenceofenough sitesofnucleation.Theresultingsolidstructureisnotcompletelyorganized,onthecontraryof thecrystallinestructuretypicalofallothersolids.Forthisreason,glassstructureiscalled

amorphous (withoutadefiniteshape).Mostofglassesaresilicabased.Inacrystallinesolid madeofsilica(e.g.quartz),SiO 4tetrahedralareorganizedinawelldefinednetwork.In amorphoussilica,SiO 4tetrahedralarestilllinked

Oxygen atom, A atom (a) ( b)

Fig.1.1AtomicarrangementofA 2O3in(a)crystallineform(b)glassyform together,buttheanglebetweenthemisnotconstant,andtheresultingstructureisnotorganized

SiO 2iscalledglassformer,sinceglassstructureismostlykepttogetherbySiO 4tetrahedral.

Otheroxidescanbeusedasglassformers,suchasB 2O3 orP 2O5. Alkalineandalkalineearth oxidesareaddedtoglassasglassmodifiers,inthattheyinterruptthenetworkcreatedbythe glassformertheresultingstructureiscalledrandomnetwork,andwasatfirsthypothesizedby Zachariasenin1932[4]. 1.2.1GlassTransition: Glassesareamorphoussubstanceswhichundergotheglasstransition.Themost strikingfeatureoftheglasstransitionistheabruptchangeinthepropertiesofaliquid, suchasthethermalexpansioncoefficient(a)andheatcapacity (cp), asitiscooledthroughthe rangeoftemperaturewhereitsapproaches10''Pa.s.Inthatrangethecharacteristictime forstructuralrelaxationisoftheorderofafewrninutes,sotheeffectsofstructural reorganizationareeasilydetectedbyhumanobservers.

Fig.1.2Plotofvolumevs.temperatureof(a)glass(b)crystal

Iftheliquidiscooledslowly(pathb)itmaycrystallizeatthemeltingpoint, Tg. Ifthecooling rateisfastenoughtoavoidcrystalnucleationandgrowth,asupercooledliquidwouldbe produced(patha).Asthetemperaturedrops,thetimerequiredtoestablishtheequilibrium configurationoftheliquidincreases,andeventuallythestructuralchange cannotkeeppacewiththerateofcooling.Atthatpointatransitiontemperature,T m,isreached belowwhichtheatomsarefrozenintofixedpositions(onlythermalvibrationsremain)anda glassisformed.Thus,glassformationfromtheliquidstateisfeasibleifpath(a)isfollowed. 1.3Fabricationtechniquesofglasses: 1.3.1solgeltechnique: The SolGel process allows synthesizing ceramic materials of high purity and homogeneitybymeansofpreparationtechniquesdifferentfromthetraditionalprocess of fusion of oxides.Thisprocessoccursinliquidsolutionoforganmetallicprecursors (tetramethylorthosilicate(TMOS), tetraethylorthosilicate(TEOS), Zr(IV)Propoxide, Ti(IV) Butoxide,etc.),which,bymeansofhydrolysisandcondensationreactions,leadtotheformation ofanewphase(SOL).

MOR + H 2O MOH + ROH(hydrolysis)

(1)

MOH + HOM MOM + H 2O (watercondensation) (2) MOR+HOMMOM+ROH(alcoholcondensation) (M=Si, Zr, Ti)(3) Thesolismadeofsolidparticlesofadiameteroffewhundredofnmsuspendedinaliquid phase. Then the particles condense in a new phase (gel) in which a solid macromolecule is immersedinaliquidphase(solvent).Dryingthegel by means of low temperature treatments (25100ºC), it is possible to obtain porous solid matrices (XEROGELs). The fundamental propertyofthesolgelprocessisthatitispossibletogenerateceramicmaterialatatemperature closetoroomtemperature.Thereforesuchaprocedureopenedthepossibilityofincorporatingin theseglassessoftdopants,suchasfluorescentdyemoleculesandorganicchromospheres[5]. 13.2 Pressing technique: pressing is used in the fabrication of relatively thickwalled pieces. The glass piece is formed by the pressure application in the graphite coated cast iron mold havingthedesiredshape;themoldisordinaryheatedtoensureanevensurface.Thepressing techniqueisbetterthanpowdertechnique.Thepressingparsencapsulatedintheglasstoexcrude glassintobodytoformaglasscrystallinecomposite maybeusefulinsomecases.Thecapabilitiesofsize,shapeandtolerancereflectadvantagesthat maybeachievableinanumberofcasesofapplyingglassformingtechniques[6]. 13.3Blowingtechnique :Thetransformationofrawmaterialsintoglasstakesplacearound 2400°F(1315°C);theglassemitsenoughheattoappearalmostwhitehot,theglassisthenleftto "fineout"(allowingthebubblestoriseoutofthemass),andthentheworkingtemperatureis reducedinthefurnacetoaround2000°F(1100°C).Atthisstage,theglassappearstobeabright orangecolor.Thoughmostglassblowingisdonebetween 1600°F1900°F(870°C1040°C),"Sodalime"glassremainssomewhatplasticandworkable aslowas1350°F(730°C).isusuallydonebetween800°F900°F(430°C

480°C).Glassblowinginvolvesthreefurnaces.Thefirst,whichcontainsacrucibleofmolten glass,issimplyreferredtoas"thefurnace."Thesecondiscalledthe"GloryHole",andisusedto reheatapieceinbetweenstepsofworkingwithit.Thefinalfurnaceiscalledthe"lehr"or "annealer",andisusedtoslowlycooltheglass,overaperiodofafewhourstoafewdays, dependingonthesizeofthepieces.Thiskeepstheglassfromcrackingduetothermalstress. [6].

1.3.4 GlassFiberSpinning Theinteractionbetweenmultiplefibersandairflowswithinthequenchboxofglassfiber spinningprocessisaverydifficultphenomenontoanalyzefromatheoreticalpersp ective. Intheprocess,continuousstrandsoffibersaredrawnbyextrudingmolten throughspinneretnozzles.Thefibersareformedbythebalanceofthetensionfroma winderandgravity.Fiberattenuationandinteractionwithquenchingairflows characterizesthisprocess.Quenchingairflowpatternandfibertemperatureare significantlyalteredbytheentrainmentofairduetothedraginducedbyfibermotion 1.4Propertiesofglasses Thespecialpropertiesofglassesarerelatedtoliquidlikestructure.Thepropertyof transparencyisacharacterofliquidsthanthatofsolidstate.Glassesareisotropicand lackinternalgrainboundarieslyinginspecificorientation[4]. 1.4.1Physicalproperties: Densityoftheglassishisstrongfunctionofitscompositionandmostimportant measureoftheglass.ItalsostandsonitsownasanintrinsicpropertyofcastingLighton shortrangestructure.Theadditionofnetworkmodifiercomponentincreasesthedensity asthenetworkmodifierattempttooccupytheintersticeswithinthenetwork. 1.4.2Mechanicalproperties: Glassesarebrittlematerialsasaresultfracture behavior is usually determined by environmentalfactorsandnotbytheinherentstrengthofthebondsfo rmingthevitreous network.Theglassesarealsosusceptibletofailureduetothermalshock.Thefracture strength of the glasses varies with prior surface treatment, inherent stress etc. Other mechanicalpropertiesofglassesareinherenttothematerial .Thehardnessofglassesisa

functionofthestrengthofindividualbondsanddensityofpackingoftheatomsinthe localizedstructure[4] 1.4.3Thermalproperties: Thecontractionandexpansionduetothermalenergyistheimportantfactor. Whenagla ssisheateditexpandsandifthetemperatureoverthebodyisuniformand bodyisnotrestrainedthentherewillbenostressformationinthebody.Ifthereisnon uniform heating of the body, then different layers of glasses will attempt to expand diff erentlyandstressdevelop.Themagnitudeofglass generated is related to thermal expansion.Thermalexpansionofglassesincreaseswithincreasingtemperature. 1.4.4Electricalproperties: The electrical conductivity of glasses changes due to the pr esence of network modifiers.Glasswhichdoesnotcontainanymodifierpossessesaverylessconductivity ascomparedtocrystallinecounterpart.Thestrengthofbondoftheionsinthenetwork and their size influence the electrical properties. On the bas is of electrical properties glassescanbecategorizedasfollows: 1. Glasseswithverysmallconductivity(highresistivity). 2. Glasseswithhighionicconductivityandlowelectronicconductivity. 3. Glasseswithelectronicconductivityonly. 1.4.5Chemicalproperties: Glassismoreresistantthananyothermaterials.Glassisindestructibleby chemical attack, under certain conditions it will corrode, even dissolves... and alkalisolutionattackglassindifferentway.Alkali attacks the silica directly whereas attackthealkaliintheglass.Corrosionby water is similar to acid corrosion in alkali is removed from the glass surface. The properties of glass can be varied and regulatedoveranextensiverangebymodifyingthecomposit ion,productiontechniques or both. In any glass mechanical, chemical, thermal properties cannot be occur separately.

1.5Applicationsofglasses: 1.5.1Toughenedglass: Formanyapplicationssuchasbuildingsrequiringlargespansofglass,toughened glassistheonlyacceptablealternative.Theseglasseshaveexceptionalstrengths comparedtostandardannealedfloatglasses.Theseimprovedpropertiesarearesultofthe stressprofilethatisinducedintheglassbythetougheningheattreatmentprocess.When performedcorrectly,theglasssurfaceisincompression,whilethecentreisintension. Thisstressprofileintheglassissuccessfulasmostfailuresstartatthesurfacefrom tensileloadsasshowninfig1.3.Intoughenedglass,theappliedtensileloadmust overcomethecompressivestressatthesurfacebeforethesurfacecangointotensionand fail.

Fig1.3Schematicrepresentationofthestressprofileintoughenedglass Theheattreatmentprocessinvolvesheatingannealed(stressfree)glassuptoa temperaturebetweenitsglasstransitiontemperatureanditssofteningpointandthen rapidlycoolingthesurface.Thisisusuallyachievedusingairjets.Thisprocessfreezes thesurf ace,whiletheinteriormaystillbemoltenandconsequentlythereisatemperature differentialacrossthethicknessoftheglass.Thehottercoresectionthencontractsata fasterratecomparedtotheoutsideuntilanisothermalstateisreached.Initiallytherapid coolingofthesurfacetendstoinduceatensilestressinthesurface.Thisisreversedinthe latterstagesofcooling,resultingincompressivestressesinthesurface.Nevertheless, evacuatedglazingisstillasinsulativeasmuchthickerconventionaldoubleglazingand

tendstobestronger,sincethetwoconstituentglasssheetsarepressedtogetherbythe atmosphere,andhencereactpracticallyasonethicksheettobendingforces.Evacuated glazingalsooffersverygoodsoundinsulationincomparisonwithotherpopulartypesof windowglazing[3]. 1.5.2Chemicallystrengthenedglass : Whenbrokenitstillshattersinlongpointedsplinterssimilartofloat(annealed) glass.Forthisreason,itisnotconsideredasafetyglassandmustbelaminatedifasafety glassisrequired.Chemicallystrengthenedglassistypicallysixtoeighttimesthestrength ofannealedglass.Theglassischemicallystrengthenedbysubmersingtheglassinabath containingapotassiumsaltat450°C.Thiscausessodiumionsintheglasssurfacetobe replacedbypotassiumionsfromthebathsolutionChemicalstrengtheningresultsina strengtheningsimilartotoughenedglass,howevertheprocessdoesnotuseextreme variationsoftemperatureandtherefor echemicallystrengthenedglasshaslittleornobow orwarp,opticaldistortionorstrainpattern.Thisdiffersfromtoughenedglass,inwhich slenderpiecescanoftenbesignificantlybowed.Chemicallystrengthenedglasswasused onsomefighteraircraftcanopies 1.5.3 Evacuated glazing: Anotherrecentinnovationforinsulatedglazingisevacuatedglass,whichasyetis producedcommerciallyonlyinJapanandChina.Theextremethinnessofevacuated glazingoffersmanynewarchitecturalpossibilities,particularlyinbuildingconservation andhistoricistarchitecture,whereevacuatedglazingcanreplacetraditional(muchless energyefficient)singleglazing. Anevacuatedglazingunitismadebysealingtheedges oftwoglasssheets,typicallyby usingasolderglass,andevacuatingthespaceinsidewith avacuumpump.

CHAPTER 2

BIOCERAMICS

CHAPTER2 BIOCERAMICS Bioceramicsare“thoseengineeredmaterialsthatareinorganicandnonmetallicandfind theirapplicationsinthefieldofmedicine.”Sotheclassofceramicsusedforrepairand replacementofdiseasedanddamagedpartsofthemusculoskeletalsystemarereferredtoasbio ceramics.Thesebioceramicsarealsocalledceramicsbiomaterials. Bioceramicscanhavestructuralfunctionsasjointortissuereplacements,canbeused ascoatingstoimprovethebiocompatibilityofmetalimplants,andcanfunctionasresorbable latticeswhichprovidetemporarystructuresandaframeworkthatisdissolved,replacedasthe bodyrebuildstissue.Someceramicsevenfeaturedrugdeliverycapability. 2.1Typesofbioceramics: 2.1.1Inertbioceramics: Bioinertmaterials donotreleaseanytoxicmaterialbutalsodonotshowpositive interactionwithlivingtissue.Asaresponseofthebodytothesematerialsusuallyanonadherent capsuleofconnectivetissueisformedaroundthebioinertmaterialthatinthecaseofbone remodellingmanifestsitselfbyashapemediatedcontactosteogenesis.Throughthebone materialsinterfaceonlycompressiveforceswillbetransmitted(bonyongrowth).Typical bioinertmaterialsaretitaniumanditsalloys,ceramicssuchasalumina,zirconiaandtitania,and somepolymers,aswellascarbon. 2.1.2Bioactivematerials : Bioactivematerials showapositiveinteractionwithlivingtissuethatincludesalso differentiationofimmaturecellstowardsbonecells.Incontrasttobioinertmaterialsthereis chemicalbondingtothebonealongtheinterface,thoughttobetriggeredbytheadsorptionof bonegrowthmediatingproteinsatthebiomaterialssurface.Thesearedurablematerialsthatcan

bindchemicallywiththesurroundingbonesandinsomecasesevenwithsofttissue.The materialisidealasbonecementfillerandcoatingduetoitsbiologicalactivity. 2.1.3Biodegradablematerials : Thesematerialsdegradeonimplantationtothebody.ThisisDesirableisthatthematerial degradesatthesamerateatwhichthehosttissueregenerates.AlmostallBiodegradable ceramicsarevariationsofcalciumphosphate.Thebenefitofcalciumphosphatebiomaterialsis thatthehumanbodycanreadilyassimilatethedissolutionproducts.Thematerialcanfor examplebeusedforbonerepair.Thebonegrowsintothematerialandreplacesit,whichmakes thebonefullfunctionallyagain[7]. Fig.2.1showsthebioactivityspectrumforvariousbioceramicsimplants.Thefirstfigure showsoverwhichtimescaletheinteractions,ifany,betweentheimplantandthetissuetake place.Thesecondfigureshowsthetimedependenceofformationofbonebondingatanimplant interfaceforthedifferentgroupsofmaterials(resorbable,bioactiveandinert)[8].

Fig.2.1.Bioactivityspectrumforvariousbioceramicsimplants. 2. 2Bioceramicsandtheirproperties:  Connectivetissuecells,suchasboneandcartilagecells, Largeresponsetoinjury

Lowreplicationrate  Bioceramicsareoftenosteoconductiveandhavegoodstrength  BiocompatibleLessstressshielding  Nodiseasetransmission  Unlimitedmaterialsupply 2.3Classificationofbioceramics: Materialsthatcanbeclassifiedasbioceramicswiththeiractivitiesaregivenintable2.1 Table2.1:Ceramicsusedinbiomedicalapplications Ceramics Chemicalformula Comment

Alumina Al 2O3 Bioinert

Zirconia ZrO 2 Bioinert

Pyrolyticcarbon Bioinert

Bioglass Na 2OCaOP 2O3SiO Bioactive

Tricalciumphosphate Ca 3(PO 4)2 Biodegradable

2.3.1Alumina: Thepropertiesandrequiredpurityofaluminausedinbiomedicalapplications.The newISOnormdeviatesfromtheexistingnorminthatmuchloweraveragegrainsizeis specifiedwithaconcurrentincreaseintheflexuralstrengthtobeyond450MPa.Thiscanbe achievedbygrainboundaryengineeringbasedonthesuppressionofgraingrowthatthehigh sinteringtemperaturerequiredbyadditionofminoramountsofmagnesiumoxideintherange ofafewtenthofapercent.AluminahasSmallerthegrainsizeandporosity,higherthestrength; E=380GPa(stressshieldingmaybeaproblem)

Aluminahas Highhardness Lowfriction Friction:surfacefinishof<0.02um Lowwear Wear:nowearparticlesgenerated Corrosionresistance Itsabilitytobepolishedtoahighsurfacefinishmakesitanidealcandidateforthiswear application,whereitoperatesagainstmaterialssuchasultrahighmolecularweight polyethylene[7].

ThepropertiesofAl 2O3 aresummarizedintable2.2 Table2.2:Propertiesofaluminaceramics

Properties Alumina

3 Density(g/cm ) >3.94 Avg.grainsize(m) <4.5 Compressivestrength(GPa) Tensilestrength(MPa) n.s. Flexurestrength(MPa) n.s.

>450

2.3.2Zirconia:

Aszirconiaisproducedfromnaturallyoccurringzirconiumsilicate(zircon,ZrSiO 4) orbaddeleyite(monoclinic βZrO 2)traceamountsofuraniumandthoriumreplacingthe isovalentzirconiumioninthecrystallatticemayremainintheprocessedmaterialmakingit slightlyradioactive.Thisindeedwasamajorconcernthatinthepasthadhamperedthe developmentofotherwisemechanicallysuperiorzirconiaceramicsforbiomedicalapplications. Zirconiaisknownfortheirgeneralchemicalinertnessandhardnessasshownintable2.3.

Thesepropertiesareexploitedforimplantpurposes,whereitisusedasanarticulatingsurfacein hipandkneejoints. Table2.3.Mechanicalpropertiesofcommerciallyavailablezirconia Property Rangeofvalue Density[g/cm³]6.05–6.09 Zirconiacontent[%] 95–97 Yttriacontent[%] 3–5 Averagegrainsize[m] 0.2–0.4 Emodulus[GPa] 150–210 Compressivestrength[MPa] >2000 Tensilestrength[MPa] >650 Flexuralstrength[MPa] 900–1300 2.3.3Calciumphosphate: 2+ 3 Familyofmineralshavingacalciumion(Ca ),andanorthophosphate(PO 4 ), 4 metaphosphatesorpyrophosphates(P 2O7 ),andsometimeshydrogenorhydroxideions. Stabilityofcalciumphosphatephasesdependsontemperatureandwaterpresenceinprocessing andintheenvironment.Thereareseveralcalciumphosphateceramicsthatareconsidered biocompatible.Ofthese,mostareresorbableandwilldissolvewhenexposedtophysiological environments.Someofthesematerialsinclude,inorderofsolubility:

TetracalciumPhosphate(Ca 4P2O9)>AmorphouscalciumPhosphate>alphaTricalcium

Phosphate(Ca 3(PO 4)2)>betaTricalciumPhosphate(Ca 3(PO 4)2)>>Hydroxyapatite

(Ca 10 (PO 4)6(OH) 2) Unliketheothercalciumphosphates,hydroxyapatitedoesnotbreakdownunder physiologicalconditions.Infact,itisthermodynamicallystableatphysiologicalpHandactively takespartinbonebonding,formingstrongchemicalbondswithsurroundingbone.Thisproperty hasbeenexploitedforrapidbonerepairaftermajortraumaorsurgery.Whileitsmechanical propertieshavebeenfoundtobeunsuitableforloadbearingapplicationssuchasorthopedics,it

isusedasacoatingonmaterialssuchastitaniumandtitaniumalloys,whereitcancontributeits 'bioactive'properties,whilethemetalliccomponentbearstheload[7]. 2.3.4Glassceramics: Thebioactiveglassescanbeemployedtorepairandtorebuilddamagedtissues, particularlyhardtissues.Onepointthatdifferentiatesthemfromotherbioactiveceramicsor glassceramicisthepossibilitytotailoragreatchemicalrangeofpropertiesandoflinkingspeed tothetissues.Thereforeisitpossibletodesignglasseswithtailoredpropertyforaspecific clinicalapplication.Thebioactiveglassescanbeproducedwiththeconventionaltechnologiesof theglassindustry,butitisnecessarytoverifythepurityoftherawmaterials,toavoidthe contaminationbyimpurityandthelossofvolatileelements,likeNa 2OorP 2O5.Thedifferent phasesofproduction,solikethechoiceoftherawmaterials,influencethefinalfeaturesofthe piece.Thebioactiveglassesaresoftglassesandthereforethefinalshapecanbeeasilygiven withconventionaltools[9].

ThebasecomponentsareusuallySiO 2,Na 2O,CaO,andP 2O5. Glassceramicswerethefirstbiomaterialstodisplaybioactivity(bonesystem): • Capableofdirectchemicalbondingwiththehosttissue • Stimulatoryeffectsonbonebuildingcells Themainadvantageofthebioactiveglassesisthehighsuperficialspeedreactionthatbrings torapidconnectionstothetissues.Thegreaterdisadvantagesarethenotoptimalmechanical propertyandthemeagrebreakresistance.Theoutbendingtensilerigidityofthegreaterpartof thebioactiveglassesvariedbetween40and60MPa,andtheyarenotthereforeuseablefor loadingapplications[7]. 2.3.5Pyrolyticcarbon: Pyrolyticcarboniscommonlyusedinartificialheartvalvesandhasbeenthemost popularmaterialforthisapplicationforthelast30years.Propertiesthatmakethismaterial suitableforthisapplicationincludegoodstrength,wear,resistanceanddurability,andmost

importantly,thromboresistance,ortheabilitytoresistbloodclotting.Pyrolyticcarbonisalso usedforsmallorthopaedicjointssuchasfingersandspinalinserts. 2.3.6Hydoxyapatite: Another bioceramic coating that has been reached a significant level of clinical applicationsaretheuseofhydroxyapatite,asacoatingonporousmetalsurfaceforfixationof orthopedic prosthesis. This approach combines methods of fixation and originates from the observationsducheyneandcolloguesin1983thathydroxyapatitepowderintheporesofporous, coatedmetal implant could significantly affect the rate and vitality of bone in the growth of bone.Thereissustainableenhancementoftheearlystageinterfacialbondstrengthofimplants with hydroxyapatite coating when compared with porous metals without coating. Long term animalstudiesandclinicaltrialsofloadbearingdentalandorthopedicprosthesissuggestthat somehydroxyapatitecoatingmaydegradeandcomesoffwithtimedependinguponcrystallityof hydroxyapatitelayerHenchetal[9]. 2.4Glassandglassceramicsasbiomaterials: Henchetal.[10]discoveredthatbonecanbondchemicallytocertainglasscomposition. Thisgroupofglassesisknownasbioactiveglasses.Sobioactiveglassesare“Bioactiverefersto amaterial,whichuponbeingplacedwithinthehumanbodyinteractswiththesurroundingbone andinsomecases,evensofttissue.Thisoccursthroughatime–dependentkineticmodification ofthesurface,triggeredbytheirimplantationwithinthelivingbone.”Thebioactiveglassescan beemployedtorepairandtorebuilddamagedtissues,particularlyhardtissues.Onepointthat differentiatesthemfromotherbioactiveceramicsorglassceramicisthepossibilitytotailora greatchemicalrangeofproperties andoflinkingspeedtothetissues [10] .

Thebioactiveglassescanbeproducedwiththeconventionaltechnologiesoftheglass industry,butitisnecessarytoverifythepurityoftherawmaterials,toavoidthecontamination byimpurityandthelossofvolatileelements,likeNa 2OorP 2O5.Thebioactiveglassesaresoft glassesandthereforethefinalshapecanbeeasilygivenwithconventionaltools.Thebase componentsareusuallySiO 2,Na 2O,CaO,andP 2O5.Thecompositionsofsomecommon bioactiveglassesareshownintable2.4. Table2.4Compositionofcommonbioactiveglasses Component 45S5 45S5.4F 52S4.6 52S4.3 A/W MB Bioglass Bioglass Bioglass Bioglass Glassceramic Glassceramic

SiO 2 45 45 52 55 34.2 1952

P2O5 6 6 6 6 16.3 424 CaO 24.5 14.7 21 19.5 44.9 93

CaF 2 9.8 0.5 MgO 4.6 515

Na 2O 24.5 24.5 21 19.5 35

Al 2O3 1233

B2O3 15

2.5Typesofbioactiveglasses Bioactiveglassesarebroadlydividedintwoglasses:classAandclassB 2.5.1Class‘A’bioglasses: Thesematerialsareosteoproductiveinnature.Thesecanbondtosoftandhardtissues.They releasessilicaionsintheformofsilicicacid,providesasilicagellayer,whichfurtherenhances theprecipitationofamorphousCaPlayerandrapidlycrystallizeshydroxyapatitelayer.Generally hydroxyapatitelayerisformedwithin110hoursforthistypeofmaterials.Bioglasses45S5(45 wt%SiO 2, 24.5wt%CaO,24.5wt%Na 2Oand6.0wt%P 2O5)isaclassAbioactiveglasses. 2.5.2ClassBbioglasses:

Thesematerialsareosteoconductiveinnature.Theydon’tproducesilicagellayerandthey onlybondtohardtissues.Inhistypeofglasseshydroxyapatitelayerisformedwithin24hoursto severaldays[13]. 2.6Bioactiveglasses ThemoststudiedoftheseistheBioglass ®45S5.Theabbreviationindicatesthatitcontains

45%inweightofSiO 2(oxidecreator)andthemolarratebetweenCaandPisof5:1.Glasses withsignificantlylowermolarrate(intheformofCaOandP 2O5)don’tgenerateconnections withthebone[11].Alotofglasseswerestudiedinthisfourcomponentssystemwithaconstant contentofP 2O5of6%.Theresultsaresummarisedinthediagramoffigure2.2.

Fig.2.2.Ternarydiagram Inthediagramwereindicatedthelinesofisobioactivity.Thelevelofbioactivityisdefinedlike

Ib=100/t 0.5bb ,wheret 0.5bb isthenecessarytimetobindatthebonemoreof50%ofthesurface.

ThebioactiveglassesareinzoneAandtheybindwiththebone.Intothesketchedline(I b>8), theglassesbindalsowiththesofttissues,whilemovingfromthecentredecreaseI b,and thereforethespeedofreactiondecreases.InthezoneBtheybehavelikealmostinert,whilethe

glassesintheregionCarereabsorbinatimeincludedbetween1030days.Thecompoundsin thezoneDdidnotresulttechnicallyinteresting,andthereforewerenotimplanted.Anindicator ofveryhighbioactivitybringstoawideconnectionzone,butalsotoalowsheerresistance.So theoptimalcompoundischoseninfunctionofthenecessitytohaverapidconnections,orhigh sheerresistance.

ApartialsubstitutionofCaOwithCaF 2doesn’tchangessignificantlythebehaviourofthe linkagedisintegrationandchangestheboundarybetweenthezoneAandC.Alsothe substitutionofCaOwithMgOorofNa 2OwithK 2Odoesnotinfluencetheconnectiononthe bone.TheadditionofAl 2O3isusefultomonitorthedurationoftheglasssurfaceandthe featuresofforgingandofmerger,butcanforbidtheconnectionwiththebone.Thepercentage ofaluminatoleratedvariedbetween1%and1.5%.Itcansurpassthesevaluesiftheglasshasa highreactivity(bioactivity).IncreasingtheamountofAl 2O3, thedimensionofthelimitzoneof connectionwiththebone(zoneA)decreases. Theroleofthephosphateisinteresting:atfirstitisbelievedthatitwasnecessarytomakeaglass bioactive,thenitwasdemonstratedthatalsoglasseswithoutphosphate,orglassceramicsin whichP 2O5isboundinaphaseofinsolubleapatiteanditisrelativelystable,havebioactive behaviour. Themainadvantageofthebioactiveglassesisthehighsuperficialspeedreactionthat bringstorapidconnectionstothetissues.Thegreaterdisadvantagesarethenotoptimal mechanicalpropertyandthemeagrebreakresistance.Theoutbendingtensilerigidityofthe greaterpartofthebioactiveglassesvariedbetween40and60MPa,andtheyarenottherefore useableforloadingapplications.Theelasticmodulusisinorderof3035GPa,anditisvery similartothatofthecorticalbone.Thelowresistancedoesnothindertheuseofthebioactive glasseslikecovering,wherethelimitingfactoristheresistanceoftheinterfacebetweenthe metalandthecovering,solikeitisnothindertheuseinlowloadorloadedincompression implantations,inshapeofdust,orlikebioactivephaseincomposites.Theuniquesurface reactivityofbioactiveglasseshasbeendescribedextensively.Figure6summarizesthevarious reactionsthattranspireatthebioactiveglass—tissuesurface,withstages1through5occurring ostensiblyinsequence[11]. Stage(1) isthelossofsodiumions(Na +)fromthesurfaceoftheglassviaionexchangewith + + hydrogen(H orH 3O ).Thisreactionoccursveryrapidly,withinminutesofmaterialexposureto

bodilyfluids,andcreatesadealkalinizationofthesurfacelayerwithanetnegativesurface charge.Thisstageisusuallycontrolledbydiffusionandexhibitsat 1/2 dependence. + + + SiONa +H +OH SiOH+Na (solution)+OH

(4)

Stage(2) LossofsolublesilicainformofSi(OH) 4tothesolutionresultingfrombreakingofSi OSibondsandformationofSiOH(silanols)attheglasssolutioninterface.

SiOSi+H 2OSi–OH+OHSi (5) Thisstageisusuallycontrolledbyinterfacialreactionandexhibitsat1.0 dependence. Henchhasproposedthatthelossofsolublesilicafromthesurfaceofbioactiveglassesmightbe atleastpartiallyresponsibleforstimulatingtheproliferationofboneformingcellsintheareaof theglasssurface.

Stage(3) CondensationandrepolymerizationofaSiO 2richlayeronthesurfacedepletedin alkalisandalkalineearthcations. OOOO OSiOH+HOSiOOSiOSiO+H2O OOOO (6) 2+ 3 Stage(4) MigrationofCa andPO 4 groupstothesurfacethroughtheSiO 2richlayerforming aCaOP2O5richfilmontopoftheSiO 2richlayer,followedbygrowthoftheamorphousCaO

P2O5richfilmbyincorporationofsolublecalciumandphosphatesfromsolution. 2 Stage(5) CrystallizationoftheamorphousCaOP2O5filmbyincorporationofOH ,CO 3 ,orF anionsfromsolutiontoformamixedhydroxyl,carbonate,fluoroapatitelayer.

Fig.2.3.Sequenceofinterfacialreactionsinvolvedinformingabondbetweenboneand bioactiveglasses 2.7Clinicalusesofbiomaterials: Anoverviewofareaswherebioceramicscanbeused: 2.7.1Osteoporosis: Osteoporosisischaracterizedbylossofbonedensitythatcanleadtodebilitatingfractures ofthehipandspine.Thediseaseusuallystrikespostmenopausalwomen,age50to70,asaresult ofdecreasedestrogenandprogestinlevels.Thediseasealsocanoccurlaterinlifeinwomenand, asaresultoftestosteroneimbalance,inmen. Orthovita produces two biomaterials Vitagel™ Surgical Hemostat and Vitoss™ Scaffold. Vitagel, composed of thrombin, is a product that assiststhebodyinbloodclottingwhenallconventionalmethodsfail.Vitossisintendedtobe gentlypackedintobonyvoidsorgapsoftheskeletal system (i.e., the extremities, spine and pelvis)[12].

2.7.2 Hip replacement: Thecommonreasonforhipreplacementsurgeryisthewearingdownofthehipjoint, resultingfromosteoarthritis.Otherconditionsinclude:rheumatoidarthritis(achronic inflammatorydiseasethatcausesjointpain,stiffness,andswelling),avascularnecrosis(lossof bonecausedbyinsufficientbloodsupply),injury,andbonetumors.Systemincorporatesthe provenperformanceofaluminaonaluminaceramicbearingcouplesandtheadvantageous historyofthehemisphericalporouscup.Itsusecanbeineithercementedornoncementedhip arthroplasty. 2.7.3Scaffoldsforbonetissueengineering: Bioceramicscalciumphosphatecementhasattractedmuchattentioninmedicineand becauseofitsexcellentbiocompatibilityandbonereplacingbehavioroverlong periods.The3Ddicalciumphosphatedihydratecement(DCPD)isproposedforpotentialguided bonetissueregeneration.TheDCPDporousscaffoldswerefabricatedwithaspecificdesignof macroporeswithchosensizeandinterconnectivitybyindirectsolidfreeformfabrication(ISFF). Calciumphosphatecement(CPC)hasbeenwidelyevaluatedinmedicineanddentistrytrials becauseofitsexcellentbiocompatibilityandbonereplacementbehavioroverlongperiods. Furthermore,theCPCcanbecuredatphysiologytemperaturewhichisclinicallydesired[14]. 2.7.4FacialSkeletondeformities: Theremovalofcertaindeformitiesoffacialbonesisaprerequisitetoarestorationof function,stability,andappearance.Syntheticbonesubstitutesarebeneficialincaseswhereother operativetechniquewouldrepresentaninadequateburdenforapatient.Aresultisachievedin onesurgicalinterventionwithlowcostsandlowdemandsontechnicalequipment.Biocompatible nonresorbableglassceramicsbasedonoxyfluoroapatiteandwollastonitepresenting osteoconductivitypermitsosteointegration 2.7.5InSitutreatmentofCancerbyradiotherapyandhyperthermia: Oneofthemostcommonapproachesincancertreatmentistheremovalofthediseased parts, however unfortunately recovery or return of full function is seldom achieved. Non invasivetreatmenttechniqueswhereonlythecancercellsaredestroyedwereintroducedinmid

80’s.In1987,microspheresof17Y 2O319Al 2O364SiO 2(molwt%)glass,2030mindiameter wereshowntobeeffectiveforinsitu radiotherapyoflivercancer.

2.7.6Silicatecement constitutethefirstdentalcementtouseglassasitscomponent.Thecement powderisaglassconsistingsilica,aluminaandcompounds.Theliquid,ontheother hand,isanaqueoussolutionofphosphoricacidwithbuffersalts.Thecementpowderandliquid aremixedtogetherresultinginanacidbasereaction.Fluorideionsareleachedoutfromtheset cement,whichisresponsiblefortheanticryogenicpropertyexhibited. 2.7.7Glassionomercement(GIC) Glassionomercementrepresentsalogicalstepintheevolutionoftherapeuticcements. Theyconstituteanimprovedversionofthesilicatecement,inwhichtheliquidisreplacedby carboxylicacidswithglassremainingasthepowder.Itisthemostpopular dentalcementthatisusedinvariousaspects.Thehighlightofthismaterialisdemonstratedbyits superiorbiocompatibilityandanticariogenicproperty. ModificationsofglassionomercementincludethehighdensityGlassionomers,packable ionomersforuseinAtraumaticRestorativeTreatment(ART).modifiedGlassionomer cementsincorporateintheirpowdercomponentforbetterstrength.

CHAPTER3 LITERATUREREVIEW Bioceramicshaveproventobeattractivematerialsforrepairingandreplacingbodyparts duetotheirbiocompatibility.Inmanyapplicationsbioceramicsareusedintheformofbulk materialsofaspecificshape.Howeverinloadingbearingapplicationstheirinherentbrittleness requiresthemtobeusedasacoatingmaterialonatoughersubstrate.Hydroxyapatite(HA)isa bioceramicthathasacompositionsimilartothatofbone.Aswellasimproving biocompatibility,itencouragestheingrowthofboneandthuscanbeusedasamethodof fixationforimplantssuchastotalhipreplacementsanddentalimplants Over the last several decades, bioceramics have helped improve the quality of life for millions of people. These specially designed materials—polycrystalline aluminum oxide, hydroxyapatite(amineralofcalciumphosphatethatisalsothemajorcomponentofvertebrate bone),partiallystabilizedzirconiumoxide,bioactiveglassorglassceramics,andpolyethylene hydroxyapatite composites—have been successfully used for the repair, reconstruction, and replacementofdiseasedordamagedpartsofthebody,especiallybone.Forinstance,aluminum oxidehasbeenusedinorthopedicsurgeryformorethan20yearsasthejointsurfaceintotalhip prosthesesbecauseofitsexceptionallylowcoefficientoffrictionandminimalwearrates.Inthis chaptertheadvancementinthefieldofbioceramicglassesaresummarized. HenchandWilsonetal.[15]havereportedthefirstbioactivematerialreported bioglass45S5,containedafourcomponentsilicaglass(45wt%SiO 2,24.5wt%CaO,24.5wt

%Na 2Oand6wt%P 2O5).Thelowsilicacontentandthepresenceofsodiumions,intheglass resultsinveryrapidionexchangewiththeprotonandhydroniumioninphysiologicalsolution. Theevaluationofbioceramicswithreferencearegivenintable3.1

Table3.1Evolutionofbioactiveglassandglassceramicimplants Year Event Reference 1969 Evidenceofbonebondingtobioactiveglassandglass Henchetal.,1970 ceramics(45S5bioglass)

1973 Mechanismofbonebioactiveglassidentified HenchandPaschall,1973

1973 BonebondingofbioactiveglassceramicinEurope Bromeretal.,1975

1975 Successfulloadbearingorthopaedicprosthesesinmonkey Piotrowskietal.,1975 using45S5Bioglass

1976 Compositional profile of bioactive glass bone Clarketal.,1976 measurement

1976 Successfulbondingofbioactiveglassdentalimplant Stanleyetal.,1976

1980 Comparativehistologyofimplantsvariablebioactivity Grossandstrunz,1980

1981 Clinical use of bioactive glass ceramics in middle ear Reck,1981 prostheses

1981 Structultralanalysisofbioactiveglassceramicandbone Grossetal.,1981

1982 High strength bioactive implant(A/Wglassceramic)and Kokuboetal.,1982 prostheses

1983 Machinablebioactiveglassceramic Hohlandetal.,1983

1984 FDAapprovalofbioactiveglassasmiddleearprostheses Hohlandetal,1984

ChiaHaoet.al.[16]studiedthat,ceramicandmetaliswidelyappliedinorthopedic anddentalmaterials.However,mostmetalincludingtitanium,titaniumalloyand316Lstainless

steeldonotpossesbioactivitiestobondwithbonetissue.Forimprovingthisweakness,we incubatedtitaniumwireand316Lstainlesssteelfiberintothesimulatedbodyfluid(SBF)after alkalineandthermaltreatmentstoformabonelikeapatitelayeronit.Withthereaction,the coatingwasformedonthesurfaceofmetalanditcaninduceapatitenucleusappearonthe surface.Thesurfaceappearancewasobservedandthechemicalconstitutionofbonelikeapatite wasexamined.Astheresultshow,whenthetitaniumwireand316Lstainlesssteelfibertreated with5MNaOHaqueoussolution,subsequentlyheatedat400°CandsoakedintoSBFata temperatureof80°Cincreasethepossibilityofnucleationofconsiderablequantitiesofbonelike hydroxyapatite.TheyalsofoundthemaincomponentsofboththeHAstructureswereCaandP, andthepercentageCa/Pwere1.69and1.1,whichissimilartothatofanaturalbone.

V.Rajendranet.al.[17]madethebioactiveglassofcomposition53SiO 2–6Na 2O–22CaO–

11K 2O–5MgO–2P 2O5–1B 2O3 (1–98)hasbeenpreparedusingthemeltmethod.Theultrasonic velocities,attenuationandelasticpropertiesmeasurementshavebeenmadeoperatedata fundamentalfrequencyof5MHzatroomtemperatureonbioactiveglass1–98beforeandafter differentthermaltreatmentconditions.Thermaltreatmentsofbioactiveglassesleadtochanges inelasticpropertiesofbioactiveglass.Furthermore,alongtermthermaltreatmentathigher temperaturesalsoseemedtocausesuchchangestotheglasssurfacethattheformationofCa,P layerwasinhibitedduringa48himmersioninsimulatedbodyfluid(SBF).

Ohtsukiet.al.[18]workingwithCaOSiO 2P2O5 glasses,showedthatnobioactive

CaOP2O5compositionincreasesthedegreeofsupersaturatingmorethanthebioactiveCaOSiO 2 glass,concludingthatdegreeofsupersaturatingmustnotglass.Anonbioactive AluminacontainingglassceramicAW(AI)developedanapatiterichlayerwhenimmersedina syntheticfluidwithcalciumandsilicateionsaddedsimultaneously,which meansthat39solublesilicates,ionsplayanimportantroleinsiliclalayerformation.However,a silicalayerwasnotdetectedontheAW.GCsurfacetestedinSBFsolution.Thebioactivityof glassceramicshavebeendiscussedonthebasisofsurfacechemicalstudiesofglassceramicsthe observedresultshowsthatapatitephasepresentintheglassceramicdoesnotplayanimportant roleinformingthechemicalbondtobone.However,aCaPrichlayerformedonthesurfaceof theglassceramicinthebodyenvironmentplaystheessentialroleinformingthechemicalbond

ofglassceramictobone.Further,itisconcludedthatvariouskindsofbioactivematerialswith differentfunctioncanbedesignedusingglassesandglassceramics.

K.ElEgiliet.al.[19]analyzedInfraredspectraofNa 2O–B2O3–SiO 2 andAl 2O3–Na 2O–B2O3–

SiO 2glasses(withintermediateSiO 2 contents)havebeentocalculatethefractionN4offour coordinatedborons.AreasonableagreementbetweentheN4valuescalculatedfromIRspectra andthosedeterminedfromNMRspectroscopy(orusingliteraturemodels)couldbeattained undercertaincondition.Ithasbeenproposedthattheabsorptionbandsintheregion1000–1120 cm_1arisefromcontributionsofSiO 2andB 2O3 vibrationsthecontributionofanoxideis proportionaltoitsconcentration.HeattreatmentofNa 2O–B2O3–SiO 2glassesdoesnotchange thevalueofN4andthisindicatesthatthestructureofalkaliboratephaseisthesameintheglass obtainedfrommeltandintheheattreatedone. Peitlet.al.[20]haveshownthatcrystallizationofBioglass®45S5didnotinhibitHCA formationinaninvitrotestwithSBFK9evenwithafullycrystallizedglassceramic.Theonset timeforHCAlayerformationdiddecreasewithincreasedcrystallineinhisstudy.They concludedafactthatcrystallizationdidnotaffectsignificantlythekineticreactionsin1.5Na 2O

1.5CaO=3SiO 2containing0,2,4,6,wt.%P 2O5glasses.Thissystemofglasseswasshowntobe highlybioactiveastheseshowbioactivityevenintheabsenceofphosphorousthanother commercialbioactiveglassceramics.Theyhaverevealedtheinvitrobioactivityofpartially crystallized45S5BG®asafunctionoftimethroughinsituobservationusingAFM.Thethermal treatmentshavebeencarriedouttoobtainamaterialthatislessresorbable,stillbioactiveand stifferthanstandardBG®.ThiscrystallizedBG®ismoresuitablethanthoseofhydroxyapatite Cfacesandcanbeusedasfillerforpolymericmatrixbioactivecomposites. Roman et.al.[21]studiedtheinfluenceofthephosphorusonthecrystallizationandbioactivityof glassceramicsobtainedfromsol–gelglasses.Forthispurposetwosol–gelglasseswithasimilar compositionbutoneofthemcontainingP 2O5(70%SiO 2;30%CaOand70%SiO 2;26%CaO;

4%P 2O5,mol%)wereprepared.Piecesoftheseglassesweretreatedattemperaturesranging between700ºCand1400ºCfor3h.TheobtainedmaterialswerecharacterizedbyXRD,FTIR, SEMEDSandthebiaxialflexuralstrengthwasdeterminedinsamplesheatedat1100ºC.In

addition,aninvitrobioactivitystudyinsimulatedbodyfluid(SBF)wascarriedout.Theresults showedthatphosphorusplaysanimportantroleinthecrystallizationoftheglasses:itinduced thecrystallizationofcalciumphosphatephases,thestabilizationofthewollastonitephaseathigh temperatureaswellasthecrystallizationofSiO 2phasesatlowtemperatures.Moreover,the presenceofphosphorusproducedaheterogeneousdistributionofdefectsinthepiecesand, therefore,theflexuralstrengthofsamplescontainingthiselementdecreased.Finally,glass ceramicsobtainedfromglassescontainingphosphorusshowedthefastestformationrateofthe apatitelayerwhensoakedinSBF. RenlongXinet.al.[22]Formationofcalciumphosphate(CaP)onvariousBioceramicsurfaces insimulatedbodyfluid(SBF)andinrabbitmusclesiteswasinvestigated.TheBioceramicswere sinteredporoussolids,including bioglass, glassceramichydroxyapatite,atricalcium phosphateandbtricalciumphosphate.TheabilityofinducingCaPformationwascompared amongtheBioceramics.TheCaPcrystalstructureswereidentifiedusingsinglecrystal diffractionpatternsintransmissionelectronmicroscopy.Theexaminationresultsshowthat abilityofinducingCaPformationinSBFwassimilaramongBioceramics,butconsiderably variedamongBioceramicsinvivo.Sinteredbtricalciumphosphateexhibitedapoorabilityof inducingCaPformationbothinvitroandinvivo.Octacalciumphosphate(OCP)formedonthe surfacesofbioglass,AW,hydroxyapatiteandatricalciumphosphateinvitroandinvivo. Kasugaet.al.[23]studiedthatCalciumphosphateglassbasedmaterialsinthepyrophosphate regionarebrieflyreviewed.Calciumpyrophosphateglassescanbepreparedbyincludingasmall amountofTiO 2( 10mol%).Bonelikeapatiteformsonsomeoftheglassesinsimulatedbody fluid.Byheatingpowdercompactsoftheglasses,theyarecrystallizedandsubsequentlyare sintered,resultinginfabricationofhighstrengthglassceramicswithmachinability;theyare easiertobemachinedusingconventionaltoolsincomparisonwithconventionalcalcium phosphateceramics.βCa 2P2O7crystalformedintheglassceramicsplaysanimportantrolein themachinability.Theirapatiteformingabilityinsimulatedbodyfluidisdrasticallyenhanced afterautoclavingindistilledwater.Theglassceramicscanbeeasilycoatedonanewβtype titaniumalloyusingaconventionalglazingtechnique.

KimYet.al.[24]studiedthataluminawascoatedwithbioactiveglasswhichisknowntoshow abondingbehaviortolivingtissue.Anotherglassalsocoatedbetweenaluminaandbioactive glasstocompensatetheirdifferencesinthermalexpansion.Aftercoatingthealuminawith bioactiveglass,itreactedinsimulatedbodyfluidstoinvestigatetheformationofhydroxyapatite. Thebioactiveglazedlayercrystallizedintoαwollastoniteandβwollastonitecrystallinephases whentheglazewasfiredat1200°Cand1100°C,respectively.Whenthesamplesreactedin SBFαwollastoniteeasilyleachedoutofthesurfaceandhydroxyapatiteformedontheleached site.Theleachingrateofαwollastonitewasfasterthanthatofβwollastonite,andthe hydroxyapatiteformingratewasalsofasterinthesamplecontainingαwollastonitethaninthe othersample.Nosilicarichlayerwasfoundunderneaththenewlydevelopedhydroxyapatite.

V.Simonet.al.[25]TheinvitrobehaviorofxAg 2O(100−x)[50P 2O530CaO20Na 2O] glasses(0.14 x 20mol%)isinvestigatedinsimulatedbodyfluid(SBF)mainlywithrespect tobioactivityandsilverionsrelease.Inordertoestimatethebiodegradabilityandbioactivity,the samplesweresoakedinSBF,whichhasalmostequalionsconcentrationtothoseofhumanblood plasma,andkeptat37°Cforfixedperiodsoftimeupto18days.Afterthefixedperiodsoftime analyseswereperformedontheSBFsolutions.CalciumandsilverionsconcentrationofSBF afterdifferentsoakingtimesoftheglasssampleswereprimarilyexamined.Conductivitydata supporttheassumptionthatthereleasedsilverionsarereducedinSBFandtheirreleaseis obstructedbygrowthofthebioactivelayerontheglasssurface.Xraydiffractionandinfrared analysisattestthedevelopmentonglasssurfaceofahydroxyapatitetypelayer. Oliveira,et.al.[26]studiedglassofnominalcomposition(wt%)17.25 MgO52.753CaO.P,0,

30SiO 2andaglassceramicobtainedfromitshowedsurfacemodificationswhenimmersedin andacellularmediumhavingacompositionsimilartothatofhumanbloodplasma.A(Ca,P) richlayer,withanapproximate,CalPatomicratioof1.7,identifiedashydroxyapatite,developed onbothsamples.Theprecipitatedfilmontheglassysamplewasweaklybonded,whereasthat formedontheglassceramicwasstronglyadherent.Theapatiteprecipitatedduringtheinvirro testsonbothsamplesgrewasaneedlelikestructurewithcrystalsabout150200nmlongand 5070nmthick,asmeasuredonspecimenssoakedfor1monthinthesimulatedbodyfluid

(SBF).ThepresenceofcalciumandphosphateionsintheSBFcontributedtotheprecipitationof the(Ca,P)richlayersonbothspecimens. Rapaczet.al.[27]hasreportedthePerformanceofhydroxyapatitematerialinalivingbody dependsonanumberoffactors.Stabilityofhydroxyapatitestructure,whichisinfluencedby both,preparationconditionsofthestartingprecursorpowdersandfabricationmethodofthe implantmaterials,isanimportantone.Inappropriatepreparationconditionsofsynthesis, calcinationofpowderandsinteringofformedsamplesresultindehydroxylationandevenin decompositionofHApwhichleadtothechangeinthephysicochemicalpropertiesofimplants.In theworksamplesofhydroxyapatiteceramicshavebeenobtainedbytwomethods,i.e.byhot pressingandbypressurelesssinteringinthetemperaturerangeof1150–13008C.Thematerials preparedhavebeenstudiedusingFTIRandXRDinordertoidentifythedehydroxylation processesandthepossiblehydroxyapatitedecompositionduringthermaltreatment.The usefulnessofbothmethodsinidentificationofthermalstabilityofhydroxyapatitewas confirmed. Inearly1990s,solgelprocessingwasintroducedforthesynthesisofbioactiveGlasses. Thesolgelrouteallowsglassesofhigherpurityandhomogeneitytobeobtainedattemperatures notablylowerthanthoserequiredtoobtainglassesbythemeltingmethod.Thesebioactive glasseshavehigherbioactivityandresorbabilityinvitro,whichhaveapplicationasbonegraft material.Variousresearchgroupsusedsolgelrouteforpreparationofbioactiveglassesnotonly intheternarySiO 2CaOP2O5systembutalsointhequaternarySiO 2CaOP2O5Mgsystemand binarySiO 2CaOsystemforbiomedicalapplications.Invitrostudieshaveshownthatnucleation andcrystallizationratesofhydroxycarbonateapatite(HCA)dependonmanyfactorsincluding thesolgelglasscomposition. Intherecenttimeborateglasseshavefetchedlotsofattentionforthemedicalapplications. Brownetal,Dayet.al,Rehmanet.al.[28]havedemonstratedthatsilicafreeborateglassesalso exhibitbioactivebehaviorandhavebeenshowntoconverttocalciumphosphateataremarkable rapidrate.

3.1 MECHANICALPROPERTIESOFBIOGLASSES Thenewgenerationbiomaterialswithnewcompositionsandtheirapplicationshavebeen highlightedbymanyreachersinviewoftheirpotentialbiomedicalapplications.Areviewon thematerialssuchasphosphatebasedcompositions,solgelderivedmaterials,matricesin composites,packingandscalingandhighstrengthhightoughnessandmachinablematerialsand theirapplicationsinimplants. HenchandAndersonet.al.[5]devotedhisreviewtotheuseofbioceramicsasimplantstorepair ofthebody.Theachievementsoftheuseofclinicalapplicationswhichrequirematchof Mechanicalbehaviorofimplantswiththetissuetobereplacedhasbeenrevealed.The developmentofbiomaterialsfordentistryisconcentratedonfulfillingtheexpectationregarding thestrength,shade,translucency,chemicalresistanceandwearofthematerial.Thefracture behaviorofbinaryofCaOMgOphosphateglasseshasbeenstudiedbyashizukabymeasuring thefracturetoughnessanddeterminingtheresultingfracturefracturesurfaceenergy.The fracturetoughnessandfracturesurfaceenergyofbinaryglassesdecreaseswithincreaseinCaO orMgOcontent,evenanincreasingtrendinelasticmodulewasnoticed. Kokuboet.al.[16]showedthemechanicalstrengthofAWglass–ceramicsissuperiortothat ofcorticalbone.Themechanicalpropertiesofsomeofthebioceramicglassesaregivenintable 3.2

Rajendranet.al.[17]hasstudiedelasticpropertiesofbioactiveglassesinSiO 2Na 2OCaOP2O5 system.TheyconcludedthatthestrengthofthenetworkcontaininguptoSiO 2equalto45wt% furtheradditionsofSiO 2contentsleadstosofteningnetwork.

Table3.2.Mechanicalpropertiesofsomeclinicallyusedbiomaterials Name Young’smodulus Compressive Hardness Fracture references strength toughness

Al 2O3 380 4000 2000300056Thamaiselvi(2004)

ZrO 3 150-200 2000 10003000412Thamaiselvi(2004) BioactiveHAP 73-117 600 350<1Thamaiselvi(2004) Bioglass® 75 1000 Na0.7Hench(1982) Bone 3-30 130180 NanaThamaiselvi(2004) Porcelain Na Na NanaAbe(1990) Bioverit1 70-88 500 50001.22.1Holand(1993) Bioverit2 70 450 80001.21.8Holand(1993) Bioverit3 45 Na na0.6Holand(1993) AWglassceramic® 118 1080 6802Thamaiselvi(2004)

CHAPTER4 EXPERIMENTALDETAILS

4.Introduction Inthischapterprocedureappliedduringtheexperimentispresented.Thedetailed measurementtechniquesandprocedureemployedforvitrobioactivitytesting,density,Xray diffraction(XRD),bandgapmeasurementofsamplesbyUVVisibleSpectroscopyandFourier transforminfraredspectroscopy(FTIR)aregivenindetail. 4.1Samplepreparation: Forthepresentstudysilicarichglasseswereselected.Thecompositionsofglasseswith theirlabelaregivenintable1. Table4.1.Glasscomposition(mol%)withtheirlabel

Sample SiO 2 CaO B2O3 Y2O3 Al 2O3 Cr 2O3 La 2O3 Label AS1 40 30 20 10 AS2 40 30 20 10 AS3 40 30 20 10 AS4 40 30 20 10 Alltheseglasssamplesweretakenandcutonebyoneintherectangularshapesby diamondcutter.Thengrindingandpolishingofthesesampleswasdoneonemerypaperandafter thenthesesampleswerecleanedbyultrasonicwashinginultrasonicbathcleaner.Afterthat densityofthesesampleswerefoundbyArchimedesprinciple.ThenXRDofalltheseglass samplesweretakenoconformheglassynatureofsamples.Thenthe1000mlsimulatedbody fluid(SBF)solutionwaspreparedbytakingallthechemicalsintheproperproportions.During thepreparationofsimulatedbodyfluid(SBF)solutionthepHwasmaintained~7to7.5.This solutionwaspreparingbymaintaintemperatureat37°Candputthissolutionatthecoolplace for1day.Thenthesesampleswereimmersedinsimulatedbodyfluid(SBF)solutionfor17 days. DuringthisperiodwecheckoutthepHofthesamplesaftersmallintervaloftimeand afterremovalthesamplesfromsimulatedbodyfluid(SBF)solutionagaindensityofthese

samplesisfindoutandgettherelevantinformationanddoneXRDofallthesesamples.Than againallthesesampleswereagainimmersedinsimulatedbodyfluid(SBF)solutionfor8days. DuringthisdurationthepHofallthesesamplesweretaken.After8daysallthesampleswere takenoutfromsimulatedbodyfluid(SBF)solutionanddensityofsamplesweremeasuredusing Archimedesprinciple.AfterthanallcharacterizationsofthesesampleslikeXRD,UVVisible, FTIRweredone. Thestepsfortheformationofhydroxyapatitelayerare 1.ExchangeofNa.forH.=H 3O.attheglasssurfacepHincrease. 2.Breakupofsilicatenetworksilanolgroups. 3.Condensationandpolymerizationofsilanolssilicagellayer. 4.MigrationofCa,PtosurfaceCa,Prichlayer. 5.Crystallizationofcalciumphosphatehydroxyapatite 4.2InVitroBioactivityAnalysis Thereisawellestablishedrelationshipbetweentheabilityofagivenmaterialtoform bondswithlivingtissuesanditsabilitytogrowanapatitelikelayerwhensoakedinfluidsimilar tohumanplasmaandsoinvitroassayarepopulartoolinthestudyofbioactivityofnew synthetic/processedimplantmaterials.Theinvitrotestingminimizestheuseofanimals,a worthygoal,butisalsorequiredbymostregulatoryagenciesinthedeviceapprovalprocessfor clinicalapplications.Invitrotestingalsoprovidesusefulinsightsastowhetheradeviceneeds furtherevaluationinexpensiveinvivoexperimentalmodels. Inpresentresearchsimulatedbodyfluid(SBF)proposedbyKokubohasbeenused. simulatedbodyfluid(SBF)isanaqueoussolutionwithanioniccompositionthatclosely resemblestohumanplasma,bufferedtophysiologicalpH(7.257.40)at37°Cwithamixtureof HCl/tris(hydroxymethyl)aminomethane.Theionicconcentrationofsimulatedbodyfluid (SBF)andhumanplasmaaregivenbelowintable4.2.SincethisfluidcontainsCa 2+ and 2 HPO 4 ions,itcanbeusedtoassesstheinvitrobioactivityofawiderangeofmaterials.

AnSBFK9solutionwaspreparedbymixingsodiumchloride,sodiumbicarbonate, potassiumchloride,calciumchloride,dibasicpotassiumphosphateandmagnesiumchloridein deionisedwater,accordingtomethodproposedbyKokuboetal.[31].

Table4.2.IonconcentrationsofSBFandHumanPlasma Ions SimulatedBody HumanBlood Fluid Plasma Na + 142.0 142.0 K+ 5.0 5.0 Mg 2+ 1.5 1.5 Ca 2+ 2.5 2.5 Cl 147.8 103.0

HCO 3 4.2. 27.0 2 HPO 4 1.0 1.0 2 SO 4 0.5 0.5 4.3StandardoperatingprocedureforpreparingSimulatedBodyFluid Simulatedbodyfluid(SBF)isametastablesolutioncontainingcalciumand phosphateionsalreadysupersaturatedwithrespecttotheapatite.Thereforesimulatedbodyfluid (SBF)ispreparedasfollows: (a)Cleaning • Cleanallthebottlesincludingflasks,beakersetc.withdilutehydrochloricacidsolution, sterilizingagentandultrapurewaterinthisorder. • Immerseallthebottlesetc.indilutehydrochloricacidsolutionforseveralhours. Removethebottlesfromthesolutionandwashwithtapwaterwell. • Immersethebottlesetc.insterilizingliquidforovernight.Removethemfromthe liquid,andwashedwithultrapurewaterwell. (b)Dissolutionofchemicals • Put750ml(=cm 3)ofultrapurewaterintoa1000mlbeaker(polyethylenebeaker ispreferred).Stirthewaterandkeepitstemperatureat36.5 oCwithmagneticstir

withheater.Thebeakerispreferredtobeplacedincleanbench,toavoiddusts. • AddeachchemicalgiveninTable4.3intothewateruntil8,onebyoneinthe ordergiveninTable4.3,aftereachreagentwascompletelydissolved.Weigha chemicalwithweighingbottle.Additinthewater. • Additionofreagent9shouldbelittlebylittlewithlessthanabout1g,inorderto avoidlocalincreaseinpHofthesolution. (c)AdjustmentofpH • CalibratethepHmeterwithfreshstandardbuffersolution. • After9ontheorderinTable4.3,checkthetemperatureofthesolutioninthe beaker,andplacetheelectrodeofpHmeterinthesolution.MeasureitspHwhile thetemperatureisat36.5 oC.Atthispoint,pHofthesolutionisapproximately 7.5Titrate1kmol/dm 3HClsolutionwithpipettetoadjustthepHat7.25(or 7.40). • AftertheadjustmentofpH,transferthesolutionfromthebeakertoaglass volumetricflaskof1000ml.Washtheinsideofthebeakerwithultrapurewater severaltimesandaddthesolutiontotheflask. • Addultrapurewatertothesolution,adjustingthetotalvolumeofthesolutionto 1000ml,andtheshaketheflaskwell. (d)Storage • Rinseapolyethylene(orpolystyrene)bottleof1000mlwithabitoftheprepared solution,simulatedbodyfluid(SBF),atleastthreetimes.Transferthesolution fromtheflasktothepolyethylenebottle. • Storethebottleinarefrigeratorat510 oC. Stabilityofthesolutionobtainedmustbeexamined.Put50mlofthesolutionina polystyrenebottleandplaceitinincubatorat36.5 oC.After23days,checkwhetherthesolution hasanyprecipitationornot.Ifanyprecipitationwouldbefound,donotusethesolution.Bottles inwhichprecipitationoccurmustnotbeusedforanyfurtherexperiments,becausesomecalcium phosphateswouldbeadheredontheirwallsinside.Aprecipitationofcalciumphosphate

especiallysuchashydroxyapatiteeasilyinducesfurtherformationofhydroxyapatiteinthe solution,sincethesimulatedbodyfluid(SBF)isalreadysupersaturated. Table4.3.Reagentsforpreparationofsimulatedbodyfluid ( SBF) Order Ions Amount(g/dm 3 ) 1 NaCl 7.996

2 NaHCO 3 0.350 3 KCl 0.224

4 K2HPO 4.3H 2O 0.228

5 MgCl 2. 6H 2O 0.305 6 1NHClaqueoussolution 35ml

7 CaCl 2. H2O 0.368

8 Na 2SO 4 0.071

9 (CH 2OH) 3CNH 2 6.057 10 1NHCl,aqueoussolution 10ml 4.4Density DensityofallglasssampleswerefoundoutfromArchimedesprincipleusingwater buoyant.Thedensitywasdeterminedfromthefollowingrelation:

ρ=Wa/WaWb×ρb (7)

WhereW a istheweightinair,W b istheweightinbuoyantandρ bisthedensityof buoyant.Alltheweightinmeasurementhasbeenmadeusingadigitalbalance.Theexperiment wasrepeatedforthreetimesforaccuratevalues Archimedes'principle, principlethatstatesthatabodyimmersedinafluidisbuoyedupbya forceequaltotheweightofthedisplacedfluid.Theprincipleappliestobothfloatingand submergedbodiesandtoallfluids,i.e.,liquidsandgases. 4.5XRayDiffraction(XRD): Xrayscatteringtechniquesareafamilyofnondestructiveanalyticaltechniqueswhich revealinformationaboutthecrystallographicstructure,chemicalcomposition,andphysical propertiesofbulkmaterialsaswellasthinfilms.Thesetechniquesarebasedonobservingthe

scatteredintensityofanXraybeamhittingasampleasafunctionofincidentandscattered angle,polarization,andwavelengthorenergy.Toconfirmtheamorphousnatureofglass samplesandtofindoutthechangeinsamplesafterdippinginSBFsolution,XRDhasbeen madeofallsampleswithCuKα(1.54A°)radiation. 4.6UVVisibleSpectroscopy Ultravioletvisiblespectroscopy(UV/VIS)involvesthespectroscopyofphotonsinthe UVvisibleregion.Ituseslightinthevisibleandadjacentnearultraviolet(UV)andnearinfrared (NIR)ranges.Inthisregionoftheelectromagneticspectrum,moleculesundergoelectronic transitions(Fig4.2). Thistechniqueiscomplementarytofluorescencespectroscopy,inthatfluorescencedeals withtransitionsfromtheexcitedstatetothegroundstate,whileabsorptionmeasurestransitions fromthegroundstatetotheexcitedstate.

Fig4.2DiagramofUVSpectrometer UVvisiblespectroscopyisthereliableandaccurateprocedureforanalysisofsamples.UV measurestheabsorption,transmissionandemissionofultravioletandvisiblewavelengthby matter.UVSpectroscopymeasuresabsorptionandtransmissionofelectromagneticradiationsby atomsormolecules.Herewearecalculatingthebandgapofthesamplestoknowtheeffectof hydroxylapatitelayerontheenergybandofwithoutsoakedandsoakedsamples.Ifsome modificationonthesurfaceofthesampleswerehappenedinsoakedsample,itcanbeverifiedby UVVisspectroscopy.

4.7Bandgap Thebandgap,alsocalledanenergygapisaregionwhereaparticleorquasiparticleis forbiddenfrompropagating.Forinsulatorsandsemiconductors,thebandgapgenerallyrefersto theenergydifferencebetweenthetopofthevalencebandandthebottomoftheconduction band.Thetransitionofelectroncanbedirectorcanbeindirect. Directbandgapmeansthattheminimumenergyoftheconductionbandliesdirectly abovethemaximumenergyofthevalencebandinmomentumspace.Inadirectbandgap semiconductor,electronsattheconductionbandminimumcancombinedirectlywithholesat thevalencebandmaximum,whileconservingmomentum.Theenergyoftherecombination acrossthebandgapwillbeemittedintheformofaphotonoflight . Indirectbandgapisabandgapinwhichtheminimumenergyintheconductionbandis shiftedbyakvectorrelativetothevalenceband.Thekvectordifferencerepresentsadifference inmomentum.Inindirectbandgapsemiconductorssuchascrystallinesilicon,themomentumof theconductionbandminimumandvalencebandmaximumarenotthesame,soadirect transitionacrossthebandgapdoesnotconservemomentumandisforbidden.Recombination occurswiththemediationofathirdbody,suchasaphononoracrystallographicdefect,which allowsforconservationofmomentum.

4.8DeterminationofEnergyBandgap(E g) Absorptionisthepowerfultoolformeasuringthebandgapoftheglasssamples.Letthe photonbeamintensityI oisincidentthesampleofthethicknesstandintensityoflight transmittedisI t, then αt It=I o e (8) α=absorptioncoefficient Thisvarieswithphotonwavelengthandalsowithmaterialtomaterial. Fordirecttransition n αhν=A(hνE g) (9)

Eg=photonenergy α=Absorptioncoefficient n=½forallowedtransitions Forindirecttransitions n αhν=A(hνE’ g) (10) Heren=2forallowedtransitions Sothegraphplotofαhνvs.(αhν) 2 ,givesthevalueofenergybandgap. 4.9Fouriertransforminfraredspectrometer(FTIR) FTIRisaneffectiveanalyticaltoolforidentificationofunknowns,samplescreening andprofilingsamples.FTIRabsorptionspectrawererecordedatroomtemperatureinthe400– 4000cm 1rangeusingaspectrometeroftypeShimadzu(Japan)FTIR8700.Thespectra obtainedwereusedtoanalyzethestructureofglassesbeforeandafterexposuretotheSBF. Beforesoakinginsimulatedbodyfluid(SBF),4.0mgofeachpowderedsamplewasmixedwith 200mgofKBrinanagatemortarandthenpressedtoapressureof100kg/cm 2andtheresulting pelletsof13mmdiameterwereusedforrecordingtheabsorptionspectra.TheFTIRanalysis afterexposuretosimulatedbodyfluid(SBF)hasbeenperformedon13mmdiameterpellets preparedbymixingabout4mgofmaterialsscrapedfromtheglasssurfacewithKBr.Foreach sample,thespectrumrepresentsanaverageof20scans,whichwerenormalizedtothespectrum oftheblankKBrpellet.FTIRusingtheKBrtechniquewasfruitfullyperformedtostudythe structurecompositionrelationinvariousglassesandglass–ceramics. Fouriertransformspectroscopyisameasurementtechniquewherebyspectraare collectedbasedonmeasurementsofthetemporalcoherenceofaradiativesource,usingtime domainmeasurementsoftheelectromagneticradiationorothertypeofradiationasshowninfig. 4.3.FTIRstandsforFourierTransformInfrared,thepreferredmethodofinfraredspectroscopy. Ininfraredspectroscopy,IRradiationispassedthroughasample.Someoftheinfraredradiation isabsorbedbythesampleandsomeofitispassedthrough(transmitted).TheresultingSpectrum representsthemolecularabsorptionandtransmission,creatingamolecularfingerprintofthe sample.LikeafingerprintnotwouniquemolecularstructuresproducethesameInfrared spectrum.Thismakesinfraredspectroscopyusefulforseveraltypesofanalysis.FTIRisusedto analysisthebondingofthesamples[28].

FTIRismostusefulforidentifyingchemicalsthatareeitherorganicorinorganic.Itcan beutilizedtoquantitativesomecomponentsofanunknownmixture.Itcanbeappliedtothe analysisofsolids,liquids,andgasses.ThetermFouriertransforminfraredspectroscopy(FTIR) referstoafairlyrecentdevelopmentinthemannerinwhichthedataiscollectedandconverted fromaninterferencepatterntoaspectrum.FTIRcanbeusedtoidentifychemicalsfromspills, paints,polymers,coatings,drugs,andcontaminants.FTIRisperhapsthemostpowerfultoolfor identifyingtypesofchemicalbonds(functionalgroups).Thewavelengthoflightabsorbedis characteristicofthechemicalbondascanbeseeninthisannotatedspectrum[28]. Thechangeoccursinthesamplesbeforeandafterdippinginthesimulatedbodyfluid(SBF) solutioncanbemeasuredusingFTIRmethod.Fouriertransforminfraredspectroscopy(FTIR) studiesrevealtheexistenceofphosphate,carbonateandhydroxylgroups,suggestingthatHA coatingsarecarbonated.FTIRweremeasuredandcomparedforsomeselectedbioactiveglasses beforeandafterimmersioninvarioussolutionstofollowupformationofsilanolgroup. FormationofHCAlayerisconfirmedbybandsassignedonthebasisofpublisheddata(table 4.4). Table4.4FTIRbandassignment Wavenumber(cm 1) Vibrationalmode 13501080 P=Ostretch 890800 COstretch 610600 PObend/crystal 560550 PObend/glass 530515 PObend/crystal 14151465 COstretch 1045,1025 PStretch 960 PStretch

Fig4.4DiagramofFTIR

CHAPTER 5

RESULTS AND DISSCUSION

CHAPTER5 RESULTANDDISSCUSSION 5.1Densitymeasurement: Thedensitymeasurementisveryusefultoolinshowingthedegreeofchangeinthe structurewithcompositionoftheglassandglassceramics[Felleret.al.][32][Dowiedet.al.][33]. Thevariationsofdensitybeforeandaftersoakinginsimulatedbodyfluidaregivenintable5.1. Table5.1VariationindensitybeforeandafterdippingonSBFsolution Sample Densitybefore Densityafter %changeindensity dippinginSBFsolution dippinginSBFsolution AS1 3.93 4.01 2.0 AS2 2.27 1.30 42.73 AS3 3.32 3.66 10.24 AS4 2.53 1.21 52.17 TheAS1sampleexhibithigherdensitythananyotherstudiedsamples.Theincreaseinthevalue ofdensityforglassesAS1andAS3ascomparedtoglassAS2andAS4mightbeduetothefact thattheadditionof(Y2O3)and(Cr 2O3)havestrongglassnetworkthanothertwosamples.This canalsobeexplainedonthebasisoftheglasstransitiontemperature.AS1andAS3samples showhigherglasstransitiontemperatureasreportedunpublishedwork[K.Singhet.al][33].

Interestingly,lowerT gsamplescouldnotshowtheformationofhydroxyapatitelayer(fig.5.3 andfig.5.4).Moreover,thesamplesalsoshowthedecreasingtrendindensityanddissolutionin simulatedbodyfluid(SBF)solution. 5.2Weight–lossmeasurements: Thepercentageweightlossoftheentirepreparedsamplesimmersedinsimulatedbodyfluidat roomtemperatureisgivenintable5.2.Sampleweightmeasurementprovidesagoodestimation ofdissolution.Itisclearlyevidentfromthetable5.2thatallthesamplesshowaweightloss> 10%in25days.Thustheseglassesofferagoodrangeofdegradableglasses.Percentageweight lossishighestforAS2sampleandleastdurableglassexhibitshighestweightloss.

Table5.2PercentageweightlossofthesamplesafterdippinginSBFsolution Sample Weightofsamplesbefore Weightofsamplesafter Weightloss dippinginSBFsolution dippinginSBFsolution (%) AS1 2.16 1.92 11.17 AS2 2.18 1.07 50.45 AS3 1.72 1.62 17.2 AS4 2.34 1.23 47.4 Themostdurableglassexhibitsleastweightloss.InthepresentstudyAS2istheleastdurable andAS1isthemostdurableglassamongallfourstudiedglasses.AdditionofCr 2O3 toglass servestoincreaseitsdurabilityascomparedtoAS4(La 2O3)glass.Thedurabilitysequenceare observedinthestudiedsamplesasAS1>AS3>AS4>AS3.Thisresultisinagreementwiththe densitymeasurementasshownintable5.1.resorptionorbiodegradationofmaterialsinvivois verycomplexprocessthatisreactiontakesplacebetweenphysiochemical(quest)andbiological (host).Thereforeitisnotexclusivelycontrolledbyitsphysiochemicalproperties,suchas degradationofglassesinsimulatedbodyfluid(SBF)solution[13]. 5.3X–raydiffraction(XRD)Analysis: TheXRDpatternfromallaspreparedsilicabasedglasses(AS1,AS2,AS3andAS4)possessed thecharterstichump.ThehumpinXRDpatternconfirmsthe“amorphous”natureofthesample asshowninfig.5.1.Asthesamplesdippedinthesimulatedbodyfluidsolution,somechemical reactiontakesplacebetweentheconstituentsofglassesandionspresentinthesimulatedbody fluid(SBF)solutionwithtime.Thesechemicalreactionsresultsintheformationofcrystalline layeronthesurfaceofAS1andAS3samplesasshowninfig.5.1and5.2.Ontheotherhand sampleAS2andAS4couldnotformanyhydroxyapatitelayeronshowninfig.5.3and5.4 respectively.IncaseofAS1andAS4samples,thecrystallinephasescouldbeindexedas

Ca 10 (PO 4)6(OH) 2(JCPDFcardno740565)andCa 3.29 P2.4720 18H 17.94 (JCPDFcardno831888) respectively.Interestingly,thosesamplesshowedhigherdissolutionratecouldnotformthe hydroxyapatitelayerevenafter25dayssoaking.Thisbehaviorofthepresentsamplesindicated thatthehydroxyapatitelayerformationdependsonthereactionbetweensimulatedbodyfluid (SBF)andglassesasindicatedindensity,weightlossmeasurement.Basedonthese measurements,theformationofhydroxyapatitelayerpurelydependsontheaffinityofvarious

ionsofsimulatedbodyfluid(SBF)solutionsandinitialingredientofglasses.However,itisvery difficulttoconcludethathigherleachingfromsamples(AS2andAS4)playimportantroleto formhydroxyapatitelayer.

Fig5.1. XRDdiffractogramforsampleAS1 (a)0hr(b)400hrs(c)600hrs

Fig5.2.XRDdiffractogramforsampleAS3 (a)400hrs(b)600hrs

Fig.5.3.XRDdiffractogramforsampleAS2 (a)400hrs(b)600hrs

Fig.5.4.XRDdiffractogramforsampleAS4 (a)400hrs(b)600hrs 5.4Bandgapmeasurement Thebandgapofallsamples,beforeandafterdippinginsimulatedbodyfluid(SBF) solutioniscalculatedbyUVSpectroscopy.Theseresultswillgivetheinformationaboutthe formationofhydroxyapatitelayer.Ifthehydroxyapatitelayerisformedthentheremustbe changeinthebandgapofsamples.Thetransmissionabsorptioncoefficientandenergywere calculatedtousethetransmissionspectraofthesamples.Thesevaluesareplottedashνand (αhν) 2 andthesegraphsareusedtocalculatethebandgapofthesamples. TABLE5.3VariationofbandgapbeforeandafterdippinginSBFsolution Sample Bandgapbeforedippingin Bandgapafterdipping25 SBFsolution(eV) daysinSBFsolution(eV) AS1 2.7 2.4 AS2 2.0 2.5 AS3 2.5 2.3 AS4 2.3 2.8 ThebandgapsofsamplesAS1andAS3decreaseaftersoakingsamplesinsimulatedbodyfluid (SBF)solution25days.Whereas,incaseofsamplesAS2andAS4thebandgapincreasesafter dippinginsimulatedbodyfluid(SBF)solution.FromcomparingtheseresultswithXRDresults thiscanbeseenthatthosesamples(AS1andAS3)formthehydroxyapatitelayershowsthe

decreasingtrendinbandgap.Theformationofcrystallinehydroxyapatitelayer(AS1andAS3) samplesreducestheporosityandincreasestheorderingwhichleadtodecreasethebandgap.On theotherhandthebandgapofAS2andAS4exhibitsthereversetrendthanAS1andAS3 samples.Asshownintable5.1and5.2,thosesamplesshowshigherweightlosscouldnotform theapatitelayer.ThedensityofAS2andAS4samplesdecreasesafterdippinginsimulatedbody fluid(SBF)solution.Itindicatesthatthesesamplesbecamemoreporousduetohigherrateof leaching.Thisleadsmoreamorphizationinthesesamples.Therefore,thebandgapinAS2and AS4samplesincreasesafterimmersinginsimulatedbodyfluid(SBF)solution. Bandgapinamorphoussolidscanbeexplainedasthewidthofthelocalizedstatesnearthe mobilityedgewhichinturndependsonthedegreeofdisorderanddefectspresentinamorphous structure.Thebandgapofsamplesbeforeandafterdippinginsimulatedbodyfluid(SBF) solutionisshowninfigures5.5.to5.12forAS1,AS2,AS3andAS4samples.

Fig.5.5SampleAS1beforedippinginsolution

Fig5.6SampleAS1afterdipping600hrsinSBFsolution

Fig5.7SampleAS2beforedippinginSBFsolution

Fig5.8SampleAS2afterdipping600hrsinSBFsolution

Fig5.9SampleAS3beforedippinginSBFsolution

Fig5.10SampleAS3afterdipping600hrsinSBFsolution

Fig5.11SampleAS4beforedippinginSBFsolution

Fig5.12SampleAS4afterdipping600hrsinSBFsolution

5.5EvaluationofbioactivityusingFTIRSpectra Thebioglass–ceramicabsorptionspectrashowwelldefinedtransmissionbands characteristicoftheSi–O–Sistretchingandbendingmodeswhichareassociatedwiththe crystallinephasesofthesamples.Theobservedlimitedchangesinthetransmissionspectraof bioglass–ceramicssamplesrelativetotheparentamorphousbioglasssamplesarerestrictedtothe regionbetween700and400cm −1.Allthebioglass–ceramicssamplesshownewabsorption bandsinthisregionat(650–619cm −1)and(580–570cm −1)whichcanbeattributedtothe vibrationalmodesoftheformedprecipitatedphasesofcalciumsodiumsilicateandthisis verifiedbyElbattalet.al[29].Theweakreflectionat1620cm −1canbeassignedtothemolecular water.Thebroadbandcenteredat3438cm −1canbeassignedtohydroxylgroup(–OH)orsilanol group(SiO–H). Inordertoinvestigatetheformationofthehydroxyapatitelayeronthesurfaceofthe samples,FTIRanalysisoftheglasssamplesbeforeandafterdippingintheSBFsolutionwas done.TheglasssampleAS1afterdippinginsimulatedbodyfluid(SBF)solutionshowsthe broadhump~3500cm 1duetotheOH group.Ontheotherhandthereisnopeakatthatregion insampleAS1beforedippinginsimulatedbodyfluid(SBF)solution.Presenceofwaterbands aftersoakinginsimulatedbodyfluid(SBF)solutionensuretheionexchangeprocessbetween hydroniumionsfromsolutionandionsfromthesurfaceoftheglasssample.Peaks~1500cm 1 1 2 2 and~1000cm isduetotheCO 3 andPO 4 ions,respectivelyinsoakedsamplesasshownin figure5.13.Thereisanotherpeak~700cm 1whichagainshowsthepresenceofOH ions. TheseresultsclearlyindicateformationofthehydroxyapatitelayerinsampleAS1afterdipping inthesimulatedbodyfluid(SBF)solution.SimilarresultswereobtainedandreportedbyTorre et.al.[28]. Thepronouncedhydroxylbandformed~3500,627and700cm 1 aretypicalof 2 hydroxyapatitewithcrystallinityandat1000showsthePO 4 ions.Thesebandsaretypicalof carbonateoccupyingOH 1andPO4 3sitesinhydroxyapatiehexagonalstructureandsuggestthe formationofcarbonatedhydroxyapatitecoatingsinAS1sample. InsampleAS3thereischangeinthepeakat~3500cm 1 beforeandafterdippingin solutionasshowninfig5.14.AfterdippinginSBFsolutionsampleshowsthebroadhump ~3500cm 1 whichisduetotheOH groupasexplainedearlierandalsothepeakformation~

1 2 1 1500cm afterdippinginsolutionisduetotheCO 3 ions.Peakalsoformedat~1000cm after 2 dippinginthesolutionshowsthepresenceofPO 4 ions.Thusthesimultaneouspresenceofthe 1 abovebandsanddecreaseofintensityofB0 3units(~709cm )confirmstheformationofCaP hydroxyapatielayer.Oliveiraet.al[35]. InFTIRspectraofAS2andAS4samplescouldnoshowtheappreciablechangeinpeaks beforeandafterdipping.ThedissolutionrateofglassesinSBFwasfast.Howeverinsample AS2therewasnochangeinthepeakwhichwas~at3500cm 1 whereasinsampleAS4there wasverylittlechangeinthatpeakasshowninfigures5.15and5.16.Apartfromthissample AS4alsoshowasinglepeakat~700cm 1.Itmightbepossibleanamorphousapatitelayer formation.Brownet.al.[36]. ThisresultcanfurtherbesupportedbyXraydiffractionpattern(fig.5.4(b)).Obtained fromstudiedglassinSBFsolution.

Fig.5.13FTIRSpectrashowingchangeinsampleAS1(a)0hr(b)600hrs

Fig.5.14FTIRSpectrashowssampleAS3(a)0hr(b)600hrs

Fig.5.15FTIRSpectraofsampleAS2(a)0hr(b)600hrs

Fig.5.16FTIRSpectraofsampleAS4(a)0hr(b)600hrs

CHAPER 6

CONCLUSIONS AND FUTURE

SCOPE

CHAPTER6 CONCLUSIONSANDFUTURESCOPE

Inpresentinvestigation,fourSiO 2–CaOrichglasssampleswereselectedtochecktheir bioactivity.ThesesampleswerecauterizedusingXRD,FTIR,UVVisspectroscopy,density andsolubilitymeasurement. Itisconcludedfrominvitroanalysisthatcalciumcontaining bioglassreactswithsolutionandthereactionproductishydroxyapatitelayer(AS1andAS3). Theseglassesarereferredasthebioactive.Alltheglasssamplesinitiallytakenareamorphousin natureasconfirmedfromtheXRD.Inthesesamplesalayernamedhydroxyapatitewasformed afterdippinginSBFsolutionfor25days,whichwasalsoconfirmedfromXRD.Howeverthe formationofthislayerdependsuponmanyfactorssuchasformationofsilanolgroup,dipping conditions,initialingredientofglassandtimeperiodforwhichsamplesaredipped. FurthertheUVspectroscopyconfirmedthehydroxyapatielayerinAS1andAS3samples. TherewassomechangeinthebandgapbeforeandafterdippingintheSBFsolution.FTIR analysisfurtherconfirmedthefunctionalgroupspresentinthesamplesAS1andAS3which wereduetothehydroxyapatitelayer.Whereas,therewasnoformationofthislayerinAS2and AS4. Inordertounderstandmoreaboutthedurabilityandfunctionalityofhydroxyapatitelayer thereisneedtostudymoreaboutit.HoweverSEMcoupledwithEDXwillprovetobeavery handytoolwhichwillprovidemoreinsightintothemorphologyofhydroxyapatitelayer.After fromthissampleAS1andAS3willbeinvestigatedforlongerdurationofsoaking.Sothatthe growthrateofhydroxyapatitelayerwillbecalculated.

REFERENCES: 1.Science,vol305,pp1407[2004]. 2.H.Rawson,DScTech,CEng,FIM,FICeram,fima,IEEREVIEW[1990] 3.GlassfromWikipedia,thefreeencyclopedia 4.J.E.Shelby,“Introductiontoglassscienceandtechnology”,2ndEdition,RS.C 5.C.J.BrinkerandG.W.Scherer,NewYork,AcademicPress,[1990]. 6.Aglassonline:pressingtechniqueofglass,retrievedon1029[2007] 7.RobertB.Heimann;EngineeringMineralogyofCeramicMaterialsproceedingofthe internationalschoolearthandplanetarysciencesSiena[2001] 8.MartaGiuliaCerru).ti;Characterizationofbioactiveglasses.Effectofthe immersion,insolutionsthatsimulatebodyfluids.[2004] 9.LarryLHenchAmericanCeramicSociety.JournaloftheAmericanCeramicSociety; 81,7;ProQuestScienceJournalspg.1705[1998]; 10.HenchL.L.AndersonOBioactiveglasses.HenchLL,WilsonJ(Eds.),An introductiontoBioceramics.WorldScientific,Singapore.[1993] 11.LauraNicolodi,EmmaSjölanderandKristofferOlsson;BiocompatibleCeramicsAn OverviewofApplicationsandNovelMaterials[2004] 12.GeresaGonsalvesandSamanthaRenfrow;Bioceramics:medicaltechnology

enhancinghumansustainabilityconferencesession[2005] 13.Manupriya,SinghK,ThindS,RajendranV,SharmaV,Aravindand,;solubleborate glasses:invitroanalysis,J.Am.Ceram.Soc.,InPress[2006] 14.Bioceramics:Materials,Properties,ApplicationsByAntonioRavaglioli,Adriano Krajewski

15. HenchLL,WilsonJ,AnIntroductiontoBioceramics,Advanceseriesinceramics, WorldScientific,Singapore[1993] 16. JiaHorngLin,ChingWenLou,ChiaHaoChang,YuehShengChen,Journalof MaterialsProcessingTechnology,Volumes192193,1[2007] 17.A.NisharaBegum,V.Rajendran,MaterialsChemistryandPhysics96409–417 [2006] 18.OhtsukiC,KushitaniH,KokuboT,KotaniS,YamamuroT,;J.Biomed.Mater.Res. 25,1363[1992] 19.K.ElEgili;PhysicaB325340–348[2003] 20PeitlO,TorreGPL,HenchLL,JournalofBiomed.Mater.Res.30,509[1996] 21S.Padilla,J.Roman,A.Carenas,M.ValletReg!Biomaterials26,475–483[2005] 22RenlongXin,YangLeng,JiyongChen,QiyiZhang,Biomaterials26,6477–6486 [2005] 23.ToshihiroKasuga,actaBiomaterialia,volume1,January[2005] 24.KimY,JeeSS,J.Europ.Soc.,23,1803[2003] 25.V.Simon,C,AlbonandS.Simon journalofnoncrystallinesolids,inpress,

correctedproofcot[2007] 26J.M.Oliveira,R.N.CorreiaandM.H.Fernandes,Biomaterials16,649654[1995] 27.A.RapaczKmita,C.PaluszkiewiczA.S´lo´sarczyka,Z.Paszkiewicza,Journalof MolecularStructure744–747[2005] 28. WileyinterscienceJournalofBiomedicalMaterialsResearchVolume24,Issue6, Sep[2004] 29.K.A.Gross,*,L.Berzin,a,R.Cimdin,sÏ,V.GrossbCeramicsInternational25231 237[1999] 30.H.A.ElBatal,M.A.Azooz ,,E.M.A.Khalil,A.SoltanMonem,Y.M.Hamdy MaterialsChemistryandPhysics80599–609[2003] 31.T.Kokubo,H.Kushitani,S.Sakka,T.KitsugiandT.Yamamuro,J.Biomed.Mater. Res.,24,721734[1990]. 32.FellerSA,LowerN,AffatigatoMPhys.chem.Glasses42,240[2001] 33.DoweidarH,RamadanRM,MoustafaYMPhysicaB.362,123[2005]. 34.K.singh.nehagupta.O.p.pandeyJmatersci[2007] 35.OliveraJM,CorreiaRN,FernandesMHBiomaterials.23,371.[1995] 36.BrownRF,AdamsNL,BrowRKmatRes,Soc,andSymp.Proceed.SeriesBio Enamelslide.724[2002]