Thermal Characterization of Magnesium Containing Ionomer Glasses

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Characterization of Magnesium Containing Ionomer Glasses Thermal characterization of magnesium containing ionomer glasses ELENI MARIA KARTELIA Supervisor: Dr. A. Stamboulis Thesis submitted for the degree of MRes Biomaterials University of Birmingham School of Engineering Department of Metallurgy and Materials September, 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ACKNOWLEDGMENTS I would like to thank my supervisor Dr. A. Stamboulis for her help and encouragement during my project. Without her support, I feel that I would not have been able to complete this work. I would also like to express my gratitude to Dr. D. Holland at University of Warwick for her helping on DSC measurements. Many thanks are given to academic staff and technicians of the School of Metallurgy and Materials. I would like to thank sincerely the Phd students Praveen Ramakrishnan, Georgina Kaklamani, Siqi Zhang and Mitra Kashani for their significant help through my experimental work. Last but not least, I would like to thank my family for their support and understanding. Special thanks to Thanos Papaioannou. 2 TABLE CAPTIONS CHAPTER 2: MATERIALS AND METHODS Table 2.1.2: Composition of Mg substituted alumino-silicate glasses. CHAPTER 3: RESULTS Table 3.1: DSC analysis data for all Mg containing glasses (particle size >45μm) measured at a heating rate of 10oC/min. Table 3.2: Analysis of XRD patterns of different Mg containing glass-ceramics. Table 3.3: Comparison of the crystal size and type of Ca fluorapatite (Ca5(PO4)3F), wagnerite (Mg2(PO4)F) and mullite (Al6Si2O13) phase formed in glass- ceramics with different Mg content. Table 3.4: Optimum nucleation temperature and activation energies in Mg containing glasses for FAP crystallisation determined by the Marotta and Kissinger method (Matusita) 3 FIGURE CAPTIONS CHAPTER 1: LITERATURE REVIEW Figure 1.1: Setting reaction of a glass ionomer cement [25]. Figure 1.2: An example of the basic structure of tetrahedral units in silicate glasses[44]. Figure 1.3: The figure indicates the fluorapatite crystal growth which is inhibited by the size of the droplet. The droplet phase size is equivalent to the fluorapatite crystal size. Reaching the transition temperature of the second phase stimulates the fluorapatite crystal to exceed the droplet phase boundaries [39]. Figure 1.4: SEM of a fracture surface showing elongated apatite crystals with a high lenth to diameter aspect ratio [16]. CHAPTER 3: RESULTS Figure 3.1: Density of Mg containing glasses. Figure 3.2: Oxygen Density of Mg containing glasses. Figure 3.3: FTIR spectra of all Mg substituted glasses. Figure 3.4: DSC trace of calcium containing glass LG26 with particle size >45μm measured at a heating rate of 10oC/min. Figure 3.5: DSC traces of all Mg containing glasses ( (a) LG26(25%)Mg, (b) LG26(50%)Mg, (c) LG26(75%)Mg, (d) LG26(100%)Mg) with particle size ranging from 3mm to 45μm-100 μm measured at a heating rate of 10oC/min. Figure 3.6: Density of Mg containing glass ceramics. Figure 3.7: X-ray powder diffraction patterns of heat treated Mg glass-ceramics. F = Fluorapatite, M = Mullite, W = Wagnerite. 4 Figure 3.8: X-ray powder diffraction patterns of heat treated Mg glass-ceramics up to Tp1 .F = fluorapatite, W = Wagnerite. Figure 3.9: DSC traces of LG26(25%)Mg glass with 1 hour hold at different nucleation Temperatures (656˚C, 676˚C, 696˚C, 716˚C) and a heating rate of 10oC/min. Figure 3.10: Optimum Nucleation curves of Tp´1 collected for the LG26(25%)Mg, LG26(50%)Mg and LG26(75%)Mg containing glasses. Figure 3.11: DSC traces of (a) LG26(25%)Mg, (b) LG26(50%)Mg and (c) LG26(75%)Mg glass at five different heating rates after 1 hour of optimum nucleation hold. 5 ABBREVIATIONS A Apatite APS Amorphous Phase Separation AW Atomic Weight BO Bridging Oxygens Ca-FAP Calcium Fluorapatite DSC Differential Scanning Calorimetry Ea Activation Energy Ca-FAP Fluorapatite FTIR Fourier Transform Infrared Spectroscopy GICs Glass Ionomer Cements HA Hydroxyapatite M Mullite MAS-NMR Magic Angle Spinning Nuclear Magnetic Resonance NBO Non-Bridging Oxygens rA/rO Ratio of the ionic radii of the atom A and the atom O SEM Scanning Electron Microscopy Tg Glass Transition Temperature Tn Optimum Nucleation Temperature Tp1 First Crystallisation Peak Temperature Tp'1 The crystallisation peak temperature occurring after nucleation hold Tp2 Second Crystallisation Peak Temperature W Wagnerite XRD X-ray Diffraction 6 CONTENTS CHAPTER 1 .................................................................................................................................... 10 LITERATURE REVIEW ................................................................................................................ 10 1.1 Introduction ........................................................................................................................... 10 1.2 Composition and Structure of Ionomer glasses ............................................................................ 13 1.3 Structural Characterization of Ionomer glasses by Solid state MAS-NMR Spectroscopy .... 19 1.4 Crystallisation of Ionomer glasses ................................................................................................ 21 1.5 Cation Substitution in Ionomer glasses ........................................................................................ 24 1.6 Aims and Objectives ..................................................................................................................... 26 CHAPTER 2 .................................................................................................................................... 27 MATERIALS AND METHODS .................................................................................................... 27 2.1 Materials ....................................................................................................................................... 27 2.2 Methods ........................................................................................................................................ 28 2.2.1 Helium Pycnometer – Density Measurements ....................................................................... 28 2.2.2 Fourier Transform Infrared Spectroscopy.............................................................................. 29 2.2.3 X-ray Powder Diffraction ...................................................................................................... 30 CHAPTER 3 .................................................................................................................................... 34 RESULTS ....................................................................................................................................... 34 3.1 Effect of Cation Substitution on Glasses. ..................................................................................... 34 3.1.1 Density and Oxygen Density of Mg Substituted Glasses .......................................................... 34 3.1.2 FTIR analysis of Mg substituted glasses ............................................................................... 35 3.1.3 Glass Transition and Crystallization Temperatures of Mg Substituted Glasses .................... 36 3.2 Effect of Cation Substitution on Glass-Ceramics ......................................................................... 39 3.2.1 Density of Mg Substituted Glass-Ceramics ........................................................................... 39 3.2.2 XRD Study of Mg substituted Glass-Ceramics ..................................................................... 40 3.2.3 Optimum Nucleation Temperature and Activation Energy Study on Mg Substituted glasses ........................................................................................................................................................ 43 CHAPTER 4 .................................................................................................................................... 50 DISCUSSION ................................................................................................................................. 50 4.1 Effect of Cation Substitution on Glasses ...................................................................................... 50 4.1.1 Density and Oxygen Density ................................................................................................. 50 4.1.2 Fourier Transform Infrared Spectroscopy ............................................................................. 51 4.1.3 Glass Transition and Crystallization Temperatures of Mg Substituted Glasses .................... 52 4.2 Effect of Cation Substitution on Glass-Ceramics ......................................................................... 54 4.2.1 Density of Glass Ceramics..................................................................................................... 54 4.2.2 XRD Study of Mg substituted Glass-Ceramics ..................................................................... 55 4.2.3 Optimum Nucleation Temperature
Recommended publications
  • Mineralogy and Geology of the \Vkgnerite Occurrence Co Santa Fe Mountain, Front Range, Cobrado
    Mineralogy and Geology of the \Vkgnerite Occurrence co Santa Fe Mountain, Front Range, Cobrado GEOLOGICAL SURVEY PROFESSIONAL PAPER 955 Mineralogy and Geology of the Wignerite Occurance on Santa Fe Mountain, Front Range, Colorado By DOUGLAS M. SHERIDAN, SHERMAN P. MARSH, MARY E. MROSE, and RICHARD B. TAYLOR GEOLOGICAL SURVEY PROFESSIONAL PAPER 955 A detailed mineralogic study of wagnerite, a rare phosphate mineral occurring in the report area in Precambrian gneiss; this is the first recorded occurrence of wagnerite in the United States UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main entry under title: Mineralogy and geology of the wagnerite occurrence on Santa Fe Mountain, Front Range, Colorado. (Geological Survey Professional Paper 955) Includes bibliographical references. 1. Wagnerite Colorado Santa Fe Mountain. 2. Geology Colorado Santa Fe Mountain. I. Sheridan, Douglas M., 1921- II. Series: United States Geological Survey Professional Paper 955. QE391.W3M56 549'.72 76-10335 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 Stock Number 024-001-02844-1 CONTENTS Page Metric-English equivalents .............................. Descriptive mineralogy Continued Page Abstract............................................................ 1 Wagnerite............................................... 5 Introduction....................................................
    [Show full text]
  • Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive
    Biomed. Glasses 2019; 5:1–12 Research Article Roland Wetzel, Leena Hupa, and Delia S. Brauer* Glass ionomer bone cements based on magnesium-containing bioactive glasses https://doi.org/10.1515/bglass-2019-0001 Received Sep 25, 2018; revised Dec 16, 2018; accepted Jan 14, 2019 1 Introduction Abstract: Glass ionomer cements (GIC) are used in restora- Cements for prosthetic stabilisation or spinal corrective tive dentistry and their properties (low heat during setting, surgeries (vertebroplasty, kyphoplasty) typically consist adhesion to mineralised tissue and surgical metals) make of polymethylmethacrylate [1, 2]. They exhibit a number them of great interest for bone applications. However, den- of drawbacks which include high curing temperatures tal GIC are based on aluminium-containing glasses, and or the presence of unreacted and toxic methacrylic acid the resulting release of aluminium ions from the cements monomers. They also do not bind to bone and are held in needs to be avoided for applications as bone cements. Re- place by mechanical interlocking only [2–6]. As a result, placing aluminium ions in glasses for use in glass ionomer there is a demand for alternative non-toxic cements with cements is challenging, as aluminium ions play a critical bone bonding capability. role in the required glass degradation by acid attack as Glass ionomer cements (GIC) have been used in well as in GIC mechanical stability. Magnesium ions have restorative dentistry as filler or luting materials for been used as an alternative for aluminium in the glass decades [7, 8]. They are formed by an acid-base reaction component, but so far no systematic study has looked into between a polymeric acid and an acid-degradable fluoro- the actual role of magnesium ions.
    [Show full text]
  • Phosphates, Arsenates, Vanadates, Antimonates A
    592 DESCRIPTIVE MINERALOGY Epistdite. A niobate of uncertain composition. Analysis shows chiefly SjOz, TiOz, NkO, H20. Monoclinic. In rectangular plates, also in aggregates of curved foha. Basal cleavage perfect. H. = 1-1.5. G. = 2.9. Color white, grayish brownish. Refractive index 1.67. Bound in pegmatite veins or in massive albite from ~llianehaab,Greenland. Plumboniobite. A niobatc of yttrium, uranium, lead, iron, etc. Amorphous. H. = 5-5'5. G. = 4.81. Color dark brown to black. Found in mica mines at Morogoro, German Enst Africa. Oxygen Salts 4. PHOSPHATES, ARSENATES, VANADATES, ANTIMONATES A. Anhydrous Phosphates, Arsenates, Vanadates, Antimonates Normal phosphoric acid is H3P04, and consequently normal phosphates I 11 m have the formulas RtPOa, R3(PO4)2 and RPO4, and similarly for the arse- nates, etc. Only a comparatively small number of species conform to this simple formula. Most species contain more than one metallic element, and in the prominent Apatite Group the radical (CaF), (CaCI) or (PbCI) enters; " in the Wagnerite Group we have similarly (kF) or (ROH). XENOTIME. Tetragonal. Axis c = 0.6187, zz' (1 11 A ill) = 55" 301, 22" (111 A 771) = 82" 22'. In crystals resembling zircon in habit; sometimes compounded with zircon in parallel position (Fig. 462, p. 173). In 972 rolled grains. Cleavage: m (110) perfect. Fracture uneven and splintery. Brittle. H. = 4-5. G. = 4.454.56. Luster resinous to vitreous. Color yellowish brown, reddish brown, hair-brown, flesh-red, grayish white, wine-yellow, pale yellow; streak pale brown, yellow- ish or reddish. Opaque. Optically + . w = 1.72. e = 1-81.
    [Show full text]
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • Glass-Ionomer Cements in Restorative Dentistry: a Critical Appraisal Mohammed Almuhaiza
    JCDP Glass-ionomer Cements in Restorative10.5005/jp-journals-10024-1850 Dentistry: A Critical Appraisal REVIEW ARTICLE Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal Mohammed Almuhaiza ABSTRACT make them useful as restorative and luting materials. Glass-ionomer cements (GICs) are mainstream restorative Glass-ionomer (GI) material was introduced by Wilson materials that are bioactive and have a wide range of uses, such and Kent in 1972 as a “new translucent dental filling as lining, bonding, sealing, luting or restoring a tooth. Although material” recommended for the restoration of cervical the major characteristics of GICs for the wider applications in lesions. It consists of a powdered fluoroaluminosilicate dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to glass and a polyalkenoic acid. Polyacrylic acid is often moisture, inherent opacity, long-term wear and strength are incorporated into the powder in its dehydrated form, not as adequate as desired. They have undergone remarkable leaving the liquid to consist of water or an aqueous changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed solution of tartaric acid. The positive characteristics of the to improve their physical properties and diversified their use as GICs include chemical adhesion to enamel and dentin in a restorative material of great clinical applicability. The light- the presence of moisture, resistance
    [Show full text]
  • Effect of Polymerization and Type of Glass-Ionomer Cement on Thermal Behaviour
    International Journal of Applied Science and Technology Vol. 2 No. 10; December 2012 Effect of Polymerization and Type of Glass-Ionomer Cement on Thermal Behaviour Kosmas TOLIDIS Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece. Tiverios VAIMAKIS Section of Industrial and Food Chemistry Department of Chemistry School of Sciences University of Ioannina 45110, Ioannina, Greece. Christina BOUTSIOUKI Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece. Paris GERASIMOU Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece Abstract The purpose of this study was to evaluate the effect of type of glass-ionomer cement (GIC), extrinsic energy offer and light intensity of the curing device, on thermal behavior. Ketac Molar, 3M-ESPE, USA (KM), Diamond Rapid Set Capsules, Kemdent, Wiltshire, UK (D) and Ketac N100, 3M-ESPE, USA (KN), being all different types of GIC. o Measurements of coefficient of thermal expansion (CTE) were performed at 20-60 C and thermal behavior was evaluated in lower and higher temperatures. KM exhibits lower CTE values (p<0.001). D exhibits significant differences (p<0.001), showing greater CTE values. KN exhibits great differences (p<0.001) in higher temperatures. Qualitative differences were also noted in CTE diagrams, diversifying between expansion and contraction, as temperature raised. Type of GIC and light intensity of curing device affect thermal behavior. Extrinsic energy offer had no important effect on CTE values. Keywords: Coefficient of Thermal Expansion, Glass-Ionomer Cements, Dilatometer, Temperature, Polymerization 1.
    [Show full text]
  • Compressive and Flexural Strengths of High-Strength Glass Ionomer Cements: a Systematic Review Ridyumna Garain1, Mikayeel Abidi2, Zain Mehkri3
    REVIEW ARTICLE Compressive and Flexural Strengths of High-strength Glass Ionomer Cements: A Systematic Review Ridyumna Garain1, Mikayeel Abidi2, Zain Mehkri3 ABSTRACT Objective: To perform a systematic review of test methodologies of high-strength restorative glass ionomer cement (GIC) materials for compressive (CS) and flexural strengths (FS) to compare the results between different GICs. Materials and methods: Screening of titles and abstracts, data extraction, and quality assessment was conducted in search for in vitro studies, which reported on CS and/or FS properties of high-strength GIC. PubMed/Medline (US National Library of Medicine—National Institutes of Health), EBSCO, and ProQuest databases were searched for the relevant literature. Results: A total of 123 studies were found. These were then assessed based on preestablished inclusion and exclusion criteria. Of the selected studies, two studies of fair quality tested CS, while none tested FS. The CS of experimental groups in both studies was less than their respective control groups. Discussion: It was observed that many studies reported following the International Standards Organization (ISO) recommendations for testing but with modifications. Additionally, in absence of guidelines for testing other parameters that may be potentially advantageous, authors have used differing experimental techniques. These disparities make it difficult to draw comparisons between different studies. Conclusion: Only two studies of fair quality showed lower CS of experimental groups compared to their respective control groups. Lack of adherence to guidelines and lack of guidelines for potentially better test methodologies make it difficult to scrutinize and compare the validity of the research being conducted. Keywords: Compressive strength, Flexural strength, Glass ionomer cement, High strength GIC, Materials testing, Review, Standards.
    [Show full text]
  • Glass Ionomer Cement
    09-17-002 V1 GLASS IONOMER CEMENT INSTRUCTIONS FOR USE: RECOMMENDED INDICATIONS: IOS Glass Ionomer Cement represents an advanced, fluoride-releasing glass ionomer formulation designed for a broad scope of uses: 1. Cementation of metal or porcelain fused to metal crowns, bridges, inlays. 2. Cementation of stainless steel crowns or cementation of orthodontic bands. 3. Base or liner. CONTRAINDICATIONS: Pulp capping and sensitive teeth. COMPOSITION: Alumino silicate glass Polyacrylic acid PRODUCT PRESENTATION: Regular Kit (15gm Powder/15ml Liquid) # 17-211-102 Economy Kit (100gm Powder/60ml Liquid) # 17-211-103 INSTRUCTIONS FOR USE: 1. Prepare tooth cavity and base as required. 2. Clean and dry enamel and dentin thoroughly. 3. Shake powder bottle to uniformly blend the special powders. 4. Dispense 1 full scoop of powder to a mixing pad or glass slab. 5. Dispense 2 drops of liquid into the mixing pad or glass slab. When dispensing liquid, hold the dropper vertically. 6. Incorporate powder into liquid in small increments. Total mixing time should not exceed 30 seconds 7. Apply the material, without delay, in a uniform layer. 8. Placement of mixed cement should be done immediately while mix is still glossy; approximately 1& 1/2 to 2 minutes working time. If cement becomes dull, it should be discarded and a new mixture prepared. If a longer working time is needed, mix the cement on a cold, dry slab. 9. Keep restoration free from saliva or water for 5 minutes. Important Information: Excess cement should be removed with a cotton roll immediately, before it sets, and should be cleaned from all surrounding areas such as gingiva and adjacent teeth before final set.
    [Show full text]
  • The Effect of Dentine Pre-Treatment Using Bioglass And/Or Polyacrylic
    Journal of Dentistry 73 (2018) 32–39 Contents lists available at ScienceDirect Journal of Dentistry journal homepage: www.elsevier.com/locate/jdent The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on T the interfacial characteristics of resin-modified glass ionomer cements ⁎ Salvatore Sauroa,b, , Timothy Watsonb, Agustin Pascual Moscardóc, Arlinda Luzia, Victor Pinheiro Feitosad, Avijit Banerjeeb,e a Dental Biomaterials, Preventive & Minimally Invasive Dentistry, Departamento de Odontologia, CEU Carndenal Herrera University, Valencia, Spain b Tissue Engineering and Biophotonics Research Division, King’s College London Dental Institute, King’s College London, United Kingdom c Departamento de Odontologia, Universitat de Valencia, Valencia, Spain d Paulo Picanço School of Dentistry, Fortaleza, Ceará, Brazil e Department of Conservative & MI Dentistry, King’s College London Dental Institute, King’s College London, United Kingdom ARTICLE INFO ABSTRACT Keywords: Objective: To evaluate the effect of load-cycle aging and/or 6 months artificial saliva (AS) storage on bond Air-abrasion durability and interfacial ultramorphology of resin-modified glass ionomer cement (RMGIC) applied onto den- Bioactive glass tine air-abraded using Bioglass 45S5 (BAG) with/without polyacrylic acid (PAA) conditioning. Bonding Methods: RMGIC (Ionolux, VOCO) was applied onto human dentine specimens prepared with silicon-carbide Dentine pre-treatment abrasive paper or air-abraded with BAG with or without the use of PAA conditioning. Half of bonded-teeth were Polyacrylic acid submitted to load cycling (150,000 cycles) and half immersed in deionised water for 24 h. They were cut into Resin-modified glass ionomer cements matchsticks and submitted immediately to microtensile bond strength (μTBS) testing or 6 months in AS im- mersion and subsequently μTBS tested.
    [Show full text]
  • GLASS and GLASS SEALANTS AS BIOCERAMICS INDU BALA Roll No
    GLASS AND GLASS SEALANTS AS BIOCERAMICS Thesis submitted in partial fulfillment of the requirement for The award of the degree of Master of Technology In MATERIALS SCIENCE AND ENGINEERING Submitted by INDU BALA Roll No.60602008 Under the guidance of Dr. Kulvir Singh School of Physics & Material Sciences Thapar University, Patiala Patiala - 147001 June-2008 Dedicated to my loving parents ABSTRACT The optimization of bioactive glasses requires a proper understanding of chemical, physical mechanical and biological properties. The formation of a hydroxyapatite layer on silica based bioactive glasses has already been investigated by many researchers. In the present investigation, calcium based glasses of different composition have been synthesized by taking appropriate proportion of each oxide composition. The samples are charatererized by using the various techniques viz, X-ray diffraction (XRD), UV-Visible spectroscopy, and FT-IR, density and solubility measurements. The entire samples were dipped in simulated body fluid (SBF) solution for different time duration. Sample AS1 and AS3 show the formation of hydroxyapatite layer. On the other hand, samples AS2 and AS4 were not formed the hydroxyapatite layer. Apart from this, AS1 and AS3 samples also exhibit higher durability as compared to other two samples (AS2 and AS4). LIST OF TABLES Table2.1 Ceramics used in biomedical applications Table 2.2 Properties of alumina ceramics Table 2.3 Mechanical properties of commercially available zirconia Table 2.4 Composition of common bioactive glasses
    [Show full text]
  • Fiber Reinforcement of a Resin Modified Glass Ionomer Cement Abstract Objectives. Understand How Discontinuous Short Glass Fiber
    Fiber reinforcement of a resin modified glass ionomer cement a b b a Carina B. Tanaka , Frances Ershad , Ayman Ellakwa , Jamie J. Kruzic * a - School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia b - School of Dentistry, The University of Sydney, Westmead NSW 2145, Australia *Corresponding author. Jamie J. Kruzic Address: School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia. Tel.: +61 2 9385 4017 E-mail address: [email protected] Abstract Objectives. Understand how discontinuous short glass fibers and braided long fibers can be effectively used to reinforce a resin modified glass ionomer cement (RMGIC) for carious lesions restorations. Methods. Two control groups (powder/liquid kit and capsule) were prepared from a light cured RMGIC. Either discontinuous short glass fibers or braided polyethylene fiber ribbons were used as a reinforcement both with and without pre-impregnation with resin. For the former case, the matrix was the powder/liquid kit RMGIC, and for the latter case the matrix was the capsule form. Flexural strength was evaluated by three-point beam bending and fracture toughness was evaluated by the single-edge V-notch beam method. Compressive strength tests were performed on cylindrical samples. Results were compared by analysis of variances and Tukey’s post-hoc test. Flexural strength data were analyzed using Weibull statistical analysis. Results. The short fiber reinforced RMGIC both with and without pre-impregnation showed a significant increase of ~50% in the mean flexural strength and 160 – 220% higher fracture toughness compared with the powder/liquid RMGIC control.
    [Show full text]
  • Official Journal of the Patent Office
    ऩेटᴂट कामाारम शासकीम जनार OFFICIAL JOURNAL OF THE PATENT OFFICE ननर्ाभन सॊ. 22/2017 शक्रु वाय ददनाॊक: 02/06/2017 ISSUE NO. 22/2017 FRIDAY DATE: 02/06/2017 ऩेटᴂट कामाारम का एक प्रकाशन PUBLICATION OF THE PATENT OFFICE The Patent Office Journal 02/06/2017 18030 INTRODUCTION In view of the recent amendment made in the Patents Act, 1970 by the Patents (Amendment) Act, 2005 effective from 01st January 2005, the Official Journal of The Patent Office is required to be published under the Statute. This Journal is being published on weekly basis on every Friday covering the various proceedings on Patents as required according to the provision of Section 145 of the Patents Act 1970. All the enquiries on this Official Journal and other information as required by the public should be addressed to the Controller General of Patents, Designs & Trade Marks. Suggestions and comments are requested from all quarters so that the content can be enriched. ( Om Prakash Gupta ) CONTROLLER GENERAL OF PATENTS, DESIGNS & TRADE MARKS 2nd JUNE, 2017 The Patent Office Journal 02/06/2017 18031 CONTENTS SUBJECT PAGE NUMBER JURISDICTION : 18033 – 18034 SPECIAL NOTICE : 18035 – 18036 CORRIGENDUM (DELHI) 18037 CORRIGENDUM (KOLKATA) 18038 EARLY PUBLICATION (DELHI) 18039 – 18068 EARLY PUBLICATION (MUMBAI) 18069 – 18083 EARLY PUBLICATION (CHENNAI) : 18084 – 18118 EARLY PUBLICATION (KOLKATA) 18119 - 18120 PUBLICATION AFTER 18 MONTHS (DELHI) : 18121 – 18355 PUBLICATION AFTER 18 MONTHS (MUMBAI) 18356 – 18458 PUBLICATION AFTER 18 MONTHS (CHENNAI) : 18459 – 19199 PUBLICATION AFTER
    [Show full text]