Thermal Characterization of Magnesium Containing Ionomer Glasses
Total Page:16
File Type:pdf, Size:1020Kb
Thermal characterization of magnesium containing ionomer glasses ELENI MARIA KARTELIA Supervisor: Dr. A. Stamboulis Thesis submitted for the degree of MRes Biomaterials University of Birmingham School of Engineering Department of Metallurgy and Materials September, 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ACKNOWLEDGMENTS I would like to thank my supervisor Dr. A. Stamboulis for her help and encouragement during my project. Without her support, I feel that I would not have been able to complete this work. I would also like to express my gratitude to Dr. D. Holland at University of Warwick for her helping on DSC measurements. Many thanks are given to academic staff and technicians of the School of Metallurgy and Materials. I would like to thank sincerely the Phd students Praveen Ramakrishnan, Georgina Kaklamani, Siqi Zhang and Mitra Kashani for their significant help through my experimental work. Last but not least, I would like to thank my family for their support and understanding. Special thanks to Thanos Papaioannou. 2 TABLE CAPTIONS CHAPTER 2: MATERIALS AND METHODS Table 2.1.2: Composition of Mg substituted alumino-silicate glasses. CHAPTER 3: RESULTS Table 3.1: DSC analysis data for all Mg containing glasses (particle size >45μm) measured at a heating rate of 10oC/min. Table 3.2: Analysis of XRD patterns of different Mg containing glass-ceramics. Table 3.3: Comparison of the crystal size and type of Ca fluorapatite (Ca5(PO4)3F), wagnerite (Mg2(PO4)F) and mullite (Al6Si2O13) phase formed in glass- ceramics with different Mg content. Table 3.4: Optimum nucleation temperature and activation energies in Mg containing glasses for FAP crystallisation determined by the Marotta and Kissinger method (Matusita) 3 FIGURE CAPTIONS CHAPTER 1: LITERATURE REVIEW Figure 1.1: Setting reaction of a glass ionomer cement [25]. Figure 1.2: An example of the basic structure of tetrahedral units in silicate glasses[44]. Figure 1.3: The figure indicates the fluorapatite crystal growth which is inhibited by the size of the droplet. The droplet phase size is equivalent to the fluorapatite crystal size. Reaching the transition temperature of the second phase stimulates the fluorapatite crystal to exceed the droplet phase boundaries [39]. Figure 1.4: SEM of a fracture surface showing elongated apatite crystals with a high lenth to diameter aspect ratio [16]. CHAPTER 3: RESULTS Figure 3.1: Density of Mg containing glasses. Figure 3.2: Oxygen Density of Mg containing glasses. Figure 3.3: FTIR spectra of all Mg substituted glasses. Figure 3.4: DSC trace of calcium containing glass LG26 with particle size >45μm measured at a heating rate of 10oC/min. Figure 3.5: DSC traces of all Mg containing glasses ( (a) LG26(25%)Mg, (b) LG26(50%)Mg, (c) LG26(75%)Mg, (d) LG26(100%)Mg) with particle size ranging from 3mm to 45μm-100 μm measured at a heating rate of 10oC/min. Figure 3.6: Density of Mg containing glass ceramics. Figure 3.7: X-ray powder diffraction patterns of heat treated Mg glass-ceramics. F = Fluorapatite, M = Mullite, W = Wagnerite. 4 Figure 3.8: X-ray powder diffraction patterns of heat treated Mg glass-ceramics up to Tp1 .F = fluorapatite, W = Wagnerite. Figure 3.9: DSC traces of LG26(25%)Mg glass with 1 hour hold at different nucleation Temperatures (656˚C, 676˚C, 696˚C, 716˚C) and a heating rate of 10oC/min. Figure 3.10: Optimum Nucleation curves of Tp´1 collected for the LG26(25%)Mg, LG26(50%)Mg and LG26(75%)Mg containing glasses. Figure 3.11: DSC traces of (a) LG26(25%)Mg, (b) LG26(50%)Mg and (c) LG26(75%)Mg glass at five different heating rates after 1 hour of optimum nucleation hold. 5 ABBREVIATIONS A Apatite APS Amorphous Phase Separation AW Atomic Weight BO Bridging Oxygens Ca-FAP Calcium Fluorapatite DSC Differential Scanning Calorimetry Ea Activation Energy Ca-FAP Fluorapatite FTIR Fourier Transform Infrared Spectroscopy GICs Glass Ionomer Cements HA Hydroxyapatite M Mullite MAS-NMR Magic Angle Spinning Nuclear Magnetic Resonance NBO Non-Bridging Oxygens rA/rO Ratio of the ionic radii of the atom A and the atom O SEM Scanning Electron Microscopy Tg Glass Transition Temperature Tn Optimum Nucleation Temperature Tp1 First Crystallisation Peak Temperature Tp'1 The crystallisation peak temperature occurring after nucleation hold Tp2 Second Crystallisation Peak Temperature W Wagnerite XRD X-ray Diffraction 6 CONTENTS CHAPTER 1 .................................................................................................................................... 10 LITERATURE REVIEW ................................................................................................................ 10 1.1 Introduction ........................................................................................................................... 10 1.2 Composition and Structure of Ionomer glasses ............................................................................ 13 1.3 Structural Characterization of Ionomer glasses by Solid state MAS-NMR Spectroscopy .... 19 1.4 Crystallisation of Ionomer glasses ................................................................................................ 21 1.5 Cation Substitution in Ionomer glasses ........................................................................................ 24 1.6 Aims and Objectives ..................................................................................................................... 26 CHAPTER 2 .................................................................................................................................... 27 MATERIALS AND METHODS .................................................................................................... 27 2.1 Materials ....................................................................................................................................... 27 2.2 Methods ........................................................................................................................................ 28 2.2.1 Helium Pycnometer – Density Measurements ....................................................................... 28 2.2.2 Fourier Transform Infrared Spectroscopy.............................................................................. 29 2.2.3 X-ray Powder Diffraction ...................................................................................................... 30 CHAPTER 3 .................................................................................................................................... 34 RESULTS ....................................................................................................................................... 34 3.1 Effect of Cation Substitution on Glasses. ..................................................................................... 34 3.1.1 Density and Oxygen Density of Mg Substituted Glasses .......................................................... 34 3.1.2 FTIR analysis of Mg substituted glasses ............................................................................... 35 3.1.3 Glass Transition and Crystallization Temperatures of Mg Substituted Glasses .................... 36 3.2 Effect of Cation Substitution on Glass-Ceramics ......................................................................... 39 3.2.1 Density of Mg Substituted Glass-Ceramics ........................................................................... 39 3.2.2 XRD Study of Mg substituted Glass-Ceramics ..................................................................... 40 3.2.3 Optimum Nucleation Temperature and Activation Energy Study on Mg Substituted glasses ........................................................................................................................................................ 43 CHAPTER 4 .................................................................................................................................... 50 DISCUSSION ................................................................................................................................. 50 4.1 Effect of Cation Substitution on Glasses ...................................................................................... 50 4.1.1 Density and Oxygen Density ................................................................................................. 50 4.1.2 Fourier Transform Infrared Spectroscopy ............................................................................. 51 4.1.3 Glass Transition and Crystallization Temperatures of Mg Substituted Glasses .................... 52 4.2 Effect of Cation Substitution on Glass-Ceramics ......................................................................... 54 4.2.1 Density of Glass Ceramics..................................................................................................... 54 4.2.2 XRD Study of Mg substituted Glass-Ceramics ..................................................................... 55 4.2.3 Optimum Nucleation Temperature