Fiber Reinforcement of a Resin Modified Glass Ionomer Cement Abstract Objectives. Understand How Discontinuous Short Glass Fiber

Total Page:16

File Type:pdf, Size:1020Kb

Fiber Reinforcement of a Resin Modified Glass Ionomer Cement Abstract Objectives. Understand How Discontinuous Short Glass Fiber Fiber reinforcement of a resin modified glass ionomer cement a b b a Carina B. Tanaka , Frances Ershad , Ayman Ellakwa , Jamie J. Kruzic * a - School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia b - School of Dentistry, The University of Sydney, Westmead NSW 2145, Australia *Corresponding author. Jamie J. Kruzic Address: School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia. Tel.: +61 2 9385 4017 E-mail address: [email protected] Abstract Objectives. Understand how discontinuous short glass fibers and braided long fibers can be effectively used to reinforce a resin modified glass ionomer cement (RMGIC) for carious lesions restorations. Methods. Two control groups (powder/liquid kit and capsule) were prepared from a light cured RMGIC. Either discontinuous short glass fibers or braided polyethylene fiber ribbons were used as a reinforcement both with and without pre-impregnation with resin. For the former case, the matrix was the powder/liquid kit RMGIC, and for the latter case the matrix was the capsule form. Flexural strength was evaluated by three-point beam bending and fracture toughness was evaluated by the single-edge V-notch beam method. Compressive strength tests were performed on cylindrical samples. Results were compared by analysis of variances and Tukey’s post-hoc test. Flexural strength data were analyzed using Weibull statistical analysis. Results. The short fiber reinforced RMGIC both with and without pre-impregnation showed a significant increase of ~50% in the mean flexural strength and 160 – 220% higher fracture toughness compared with the powder/liquid RMGIC control. Reinforcement with continuous braded fibers gave more than a 250% increase in flexural strength, and pre- impregnation of the braided fibers with resin resulted in a significant improvement of nearly 400% relative to the capsule control. However, for the short fiber reinforced RMGIC there was no significant benefit of resin pre-impregnation of the fibers. The Weibull modulus for the flexural strength approximately doubled for the fiber reinforced groups compared to the control groups. Finally, compressive strength was similar for all the groups tested. Significance. By using a RMGIC as a matrix, higher flexural strength was achieved compared to reported values for short fiber reinforced GICs. Continuous braided polyethylene fibers can give much higher flexural strength than discontinuous glass fibers, and their effectiveness is enhanced by pre-impregnation of the fibers with resin. However, the short fibers were more effective to toughen the RMGIC matrix. Keywords: Resin modified glass ionomer cement, fiber reinforcement, resin Composite, mechanical properties, fracture toughness 1. Introduction The maintenance of oral health in geriatric patients is a significant issue in dental care. Age-related salivary changes such as xerostomia combined with other factors including poor oral hygiene or gingival recession exposing root surfaces tend to result in a higher prevalence of caries in elderly patients [1]. Currently, the minimal intervention approach known as Atraumatic Restorative Treatment (ART) has been the treatment of choice for these patients [2]. The ART technique has numerous advantages compared to conventional adhesive restorations such as it does not require local anesthesia, a rubber dam for isolation, or drilling and can be performed in a shorter treatment time, thus reducing patient discomfort. However, restorations placed using the ART technique only achieve high survival rates for relatively small cavities with sufficient support of tooth structure, such as in class I occlusal restorations [3]. In addition, clinical studies have shown that restorations placed in the root and cervical surfaces are one of the least durable types of restorations [4, 5]. Indeed, they commonly experience high loss of retention, failure at the restoration margins, and secondary caries [4, 6]. The high failure rates of complex cavities and Class V restorations are related to the poor mechanical properties of the materials used [7]. Currently, the preferred material for root and cervical lesion restorations are glass ionomer cements (GICs) and resin modified GICs (RMGICs) [8, 9] due to their excellent adhesion to the tooth and their natural capacity for fluoride release. Furthermore, compared to resin-based composites, GICs are easier to handle and require less steps during the placement procedure. Although RMGICs represent a significant improvement in mechanical properties compared with conventional GICs, the strength and fracture resistance remains much less than typical resin composites [10, 11], and this is a significant concern when using them for permanent restorations. A few studies have shown that adding fiber reinforcements represents one potential way to improve the strength and fracture resistance for this class of dental materials [12-16]. However, one challenge is achieving good bonding between the matrix and the fibers [12], and no studies have examined fiber reinforcement of RMGICs. For fiber composite reinforcement, it is well known that control of the fiber/matrix interfacial properties is essential for achieving good mechanical properties [17]. In the field of resin based dental restorative composites, surface treatments such as cold gas plasma, silanization, or etching have been used to improve the interfacial bonding properties [18, 19]. In addition, studies show that fibers pre-impregnated with resin can have improved interfacial bonding, resulting in higher flexural strength [20], and this methodology has been successfully applied to porous continuous fibers for periodontal and post traumatic splints [21] and orthodontic retainers [22]. The purpose of this study was to evaluate the mechanical properties of fiber reinforced resin modified glass ionomer cements when using discontinuous/short glass fiber and braided long fibers. Additionally, the second purpose was to examine the effect of resin pre- impregnation of the fibers on the mechanical properties. The hypotheses of this study were that 1) by using a resin modified GIC matrix, enhanced properties would be achieved relative to fiber reinforced GICs that have been reported in the literature, 2) the RMGIC reinforced with long braided fibers would perform better than with short discontinuous fibers and 3) that fibers pre-impregnated with resin would give improved mechanical properties compared to non- impregnated fibers. 2. Materials and method 2.1. Specimen preparation Two control groups (powder/liquid kit and capsule) were prepared from a light cured, resin modified glass ionomer cement (Riva Light Cure, SDI Limited, Australia) following the manufacturer dose and mixing recommendations. The hand mixed group was prepared with a powder-to-liquid mass ratio of 3.1:1. The capsule group was activated and mechanically mixed in an amalgamator for 10 s. Table 1 –Manufacturer and composition of the resin modified glass ionomer and composite materials used in this study. Material Manufacturer Composition Resin-modified Riva Light-Cure Liquid: polyacrylic acid, tartaric acid, glass-ionomer Powder/Liquid and HEMA; cement Capsule powder: fluoroaluminosilicate glass (SDI Limited, Australia) *Filler (wt%): 30-60; *Filler composition: glass, oxide, fumed Construct™ Flowable resin silica; (Kerr, USA) resin composition: bis-EMA, TEGDMA, light-cure initiators, and stabilizers Abbreviations: HEMA: 2-hydroxyethyl methacrylate; bis-EMA: ethoxylated bis-phenol-A- dimethacrylate; TEGDMA: triethylene glycol dimethacrylate. *Further proprietary details not provided by manufacturer Braided polyethylene woven fibers ribbons (Construct™, Kerr, USA) were used as a reinforcement with and without pre-impregnation with flowable resin (Construct™, Kerr, USA) in a laminate construction (Figure 1) that may be quickly applied in the clinical setting. For the impregnated group, the cut ribbons of fibers were placed on a glass slab and using a spatula the fiber was saturated with resin on both sides. The impregnated fiber was kept away from light until it was incorporated with the RMGIC and the whole composite structure was cured as described below. Additional details on the RMGIC and the flowable resin can be found in Table 1. For the flexural strength samples, the 1.0 mm wide fiber ribbons were cut into 25 mm lengths and placed at the base of a stainless steel split mold. The fiber ribbon was covered with the RMGIC capsule material to fill the mold. Compressive strength specimens were prepared with a 3 mm braided fiber ribbon. The fibers were stretched to 4 mm width and placed in the middle of the cylinder height between layers of RMGIC (Figure 1). Figure 1. Schematic of the braided fiber specimens for flexural strength (A) and compressive strength (B) tests. Discontinuous short glass fibers (S-2 glass® fibers, AGY, USA) with a diameter of 5 m were cut by the manufacturer into a uniform length of 0.5 mm to create fibers with an aspect ratio of ~100. Adding fibers to the capsules was trialed but did not allow for good mixing. So, instead the short fibers were hand mixed with the bulk powder/liquid kit formulation of the same RMGIC (Riva Light Cure, SDI Limited, Australia). The short fibers were treated in two different ways: (1) wetted with the mixing liquid contained from the RMGIC kit or (2) pre-impregnated with flowable resin (Construct™, Kerr, USA). For the former group,
Recommended publications
  • Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive
    Biomed. Glasses 2019; 5:1–12 Research Article Roland Wetzel, Leena Hupa, and Delia S. Brauer* Glass ionomer bone cements based on magnesium-containing bioactive glasses https://doi.org/10.1515/bglass-2019-0001 Received Sep 25, 2018; revised Dec 16, 2018; accepted Jan 14, 2019 1 Introduction Abstract: Glass ionomer cements (GIC) are used in restora- Cements for prosthetic stabilisation or spinal corrective tive dentistry and their properties (low heat during setting, surgeries (vertebroplasty, kyphoplasty) typically consist adhesion to mineralised tissue and surgical metals) make of polymethylmethacrylate [1, 2]. They exhibit a number them of great interest for bone applications. However, den- of drawbacks which include high curing temperatures tal GIC are based on aluminium-containing glasses, and or the presence of unreacted and toxic methacrylic acid the resulting release of aluminium ions from the cements monomers. They also do not bind to bone and are held in needs to be avoided for applications as bone cements. Re- place by mechanical interlocking only [2–6]. As a result, placing aluminium ions in glasses for use in glass ionomer there is a demand for alternative non-toxic cements with cements is challenging, as aluminium ions play a critical bone bonding capability. role in the required glass degradation by acid attack as Glass ionomer cements (GIC) have been used in well as in GIC mechanical stability. Magnesium ions have restorative dentistry as filler or luting materials for been used as an alternative for aluminium in the glass decades [7, 8]. They are formed by an acid-base reaction component, but so far no systematic study has looked into between a polymeric acid and an acid-degradable fluoro- the actual role of magnesium ions.
    [Show full text]
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • Glass-Ionomer Cements in Restorative Dentistry: a Critical Appraisal Mohammed Almuhaiza
    JCDP Glass-ionomer Cements in Restorative10.5005/jp-journals-10024-1850 Dentistry: A Critical Appraisal REVIEW ARTICLE Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal Mohammed Almuhaiza ABSTRACT make them useful as restorative and luting materials. Glass-ionomer cements (GICs) are mainstream restorative Glass-ionomer (GI) material was introduced by Wilson materials that are bioactive and have a wide range of uses, such and Kent in 1972 as a “new translucent dental filling as lining, bonding, sealing, luting or restoring a tooth. Although material” recommended for the restoration of cervical the major characteristics of GICs for the wider applications in lesions. It consists of a powdered fluoroaluminosilicate dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to glass and a polyalkenoic acid. Polyacrylic acid is often moisture, inherent opacity, long-term wear and strength are incorporated into the powder in its dehydrated form, not as adequate as desired. They have undergone remarkable leaving the liquid to consist of water or an aqueous changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed solution of tartaric acid. The positive characteristics of the to improve their physical properties and diversified their use as GICs include chemical adhesion to enamel and dentin in a restorative material of great clinical applicability. The light- the presence of moisture, resistance
    [Show full text]
  • Effect of Polymerization and Type of Glass-Ionomer Cement on Thermal Behaviour
    International Journal of Applied Science and Technology Vol. 2 No. 10; December 2012 Effect of Polymerization and Type of Glass-Ionomer Cement on Thermal Behaviour Kosmas TOLIDIS Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece. Tiverios VAIMAKIS Section of Industrial and Food Chemistry Department of Chemistry School of Sciences University of Ioannina 45110, Ioannina, Greece. Christina BOUTSIOUKI Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece. Paris GERASIMOU Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece Abstract The purpose of this study was to evaluate the effect of type of glass-ionomer cement (GIC), extrinsic energy offer and light intensity of the curing device, on thermal behavior. Ketac Molar, 3M-ESPE, USA (KM), Diamond Rapid Set Capsules, Kemdent, Wiltshire, UK (D) and Ketac N100, 3M-ESPE, USA (KN), being all different types of GIC. o Measurements of coefficient of thermal expansion (CTE) were performed at 20-60 C and thermal behavior was evaluated in lower and higher temperatures. KM exhibits lower CTE values (p<0.001). D exhibits significant differences (p<0.001), showing greater CTE values. KN exhibits great differences (p<0.001) in higher temperatures. Qualitative differences were also noted in CTE diagrams, diversifying between expansion and contraction, as temperature raised. Type of GIC and light intensity of curing device affect thermal behavior. Extrinsic energy offer had no important effect on CTE values. Keywords: Coefficient of Thermal Expansion, Glass-Ionomer Cements, Dilatometer, Temperature, Polymerization 1.
    [Show full text]
  • Compressive and Flexural Strengths of High-Strength Glass Ionomer Cements: a Systematic Review Ridyumna Garain1, Mikayeel Abidi2, Zain Mehkri3
    REVIEW ARTICLE Compressive and Flexural Strengths of High-strength Glass Ionomer Cements: A Systematic Review Ridyumna Garain1, Mikayeel Abidi2, Zain Mehkri3 ABSTRACT Objective: To perform a systematic review of test methodologies of high-strength restorative glass ionomer cement (GIC) materials for compressive (CS) and flexural strengths (FS) to compare the results between different GICs. Materials and methods: Screening of titles and abstracts, data extraction, and quality assessment was conducted in search for in vitro studies, which reported on CS and/or FS properties of high-strength GIC. PubMed/Medline (US National Library of Medicine—National Institutes of Health), EBSCO, and ProQuest databases were searched for the relevant literature. Results: A total of 123 studies were found. These were then assessed based on preestablished inclusion and exclusion criteria. Of the selected studies, two studies of fair quality tested CS, while none tested FS. The CS of experimental groups in both studies was less than their respective control groups. Discussion: It was observed that many studies reported following the International Standards Organization (ISO) recommendations for testing but with modifications. Additionally, in absence of guidelines for testing other parameters that may be potentially advantageous, authors have used differing experimental techniques. These disparities make it difficult to draw comparisons between different studies. Conclusion: Only two studies of fair quality showed lower CS of experimental groups compared to their respective control groups. Lack of adherence to guidelines and lack of guidelines for potentially better test methodologies make it difficult to scrutinize and compare the validity of the research being conducted. Keywords: Compressive strength, Flexural strength, Glass ionomer cement, High strength GIC, Materials testing, Review, Standards.
    [Show full text]
  • Glass Ionomer Cement
    09-17-002 V1 GLASS IONOMER CEMENT INSTRUCTIONS FOR USE: RECOMMENDED INDICATIONS: IOS Glass Ionomer Cement represents an advanced, fluoride-releasing glass ionomer formulation designed for a broad scope of uses: 1. Cementation of metal or porcelain fused to metal crowns, bridges, inlays. 2. Cementation of stainless steel crowns or cementation of orthodontic bands. 3. Base or liner. CONTRAINDICATIONS: Pulp capping and sensitive teeth. COMPOSITION: Alumino silicate glass Polyacrylic acid PRODUCT PRESENTATION: Regular Kit (15gm Powder/15ml Liquid) # 17-211-102 Economy Kit (100gm Powder/60ml Liquid) # 17-211-103 INSTRUCTIONS FOR USE: 1. Prepare tooth cavity and base as required. 2. Clean and dry enamel and dentin thoroughly. 3. Shake powder bottle to uniformly blend the special powders. 4. Dispense 1 full scoop of powder to a mixing pad or glass slab. 5. Dispense 2 drops of liquid into the mixing pad or glass slab. When dispensing liquid, hold the dropper vertically. 6. Incorporate powder into liquid in small increments. Total mixing time should not exceed 30 seconds 7. Apply the material, without delay, in a uniform layer. 8. Placement of mixed cement should be done immediately while mix is still glossy; approximately 1& 1/2 to 2 minutes working time. If cement becomes dull, it should be discarded and a new mixture prepared. If a longer working time is needed, mix the cement on a cold, dry slab. 9. Keep restoration free from saliva or water for 5 minutes. Important Information: Excess cement should be removed with a cotton roll immediately, before it sets, and should be cleaned from all surrounding areas such as gingiva and adjacent teeth before final set.
    [Show full text]
  • The Effect of Dentine Pre-Treatment Using Bioglass And/Or Polyacrylic
    Journal of Dentistry 73 (2018) 32–39 Contents lists available at ScienceDirect Journal of Dentistry journal homepage: www.elsevier.com/locate/jdent The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on T the interfacial characteristics of resin-modified glass ionomer cements ⁎ Salvatore Sauroa,b, , Timothy Watsonb, Agustin Pascual Moscardóc, Arlinda Luzia, Victor Pinheiro Feitosad, Avijit Banerjeeb,e a Dental Biomaterials, Preventive & Minimally Invasive Dentistry, Departamento de Odontologia, CEU Carndenal Herrera University, Valencia, Spain b Tissue Engineering and Biophotonics Research Division, King’s College London Dental Institute, King’s College London, United Kingdom c Departamento de Odontologia, Universitat de Valencia, Valencia, Spain d Paulo Picanço School of Dentistry, Fortaleza, Ceará, Brazil e Department of Conservative & MI Dentistry, King’s College London Dental Institute, King’s College London, United Kingdom ARTICLE INFO ABSTRACT Keywords: Objective: To evaluate the effect of load-cycle aging and/or 6 months artificial saliva (AS) storage on bond Air-abrasion durability and interfacial ultramorphology of resin-modified glass ionomer cement (RMGIC) applied onto den- Bioactive glass tine air-abraded using Bioglass 45S5 (BAG) with/without polyacrylic acid (PAA) conditioning. Bonding Methods: RMGIC (Ionolux, VOCO) was applied onto human dentine specimens prepared with silicon-carbide Dentine pre-treatment abrasive paper or air-abraded with BAG with or without the use of PAA conditioning. Half of bonded-teeth were Polyacrylic acid submitted to load cycling (150,000 cycles) and half immersed in deionised water for 24 h. They were cut into Resin-modified glass ionomer cements matchsticks and submitted immediately to microtensile bond strength (μTBS) testing or 6 months in AS im- mersion and subsequently μTBS tested.
    [Show full text]
  • GLASS and GLASS SEALANTS AS BIOCERAMICS INDU BALA Roll No
    GLASS AND GLASS SEALANTS AS BIOCERAMICS Thesis submitted in partial fulfillment of the requirement for The award of the degree of Master of Technology In MATERIALS SCIENCE AND ENGINEERING Submitted by INDU BALA Roll No.60602008 Under the guidance of Dr. Kulvir Singh School of Physics & Material Sciences Thapar University, Patiala Patiala - 147001 June-2008 Dedicated to my loving parents ABSTRACT The optimization of bioactive glasses requires a proper understanding of chemical, physical mechanical and biological properties. The formation of a hydroxyapatite layer on silica based bioactive glasses has already been investigated by many researchers. In the present investigation, calcium based glasses of different composition have been synthesized by taking appropriate proportion of each oxide composition. The samples are charatererized by using the various techniques viz, X-ray diffraction (XRD), UV-Visible spectroscopy, and FT-IR, density and solubility measurements. The entire samples were dipped in simulated body fluid (SBF) solution for different time duration. Sample AS1 and AS3 show the formation of hydroxyapatite layer. On the other hand, samples AS2 and AS4 were not formed the hydroxyapatite layer. Apart from this, AS1 and AS3 samples also exhibit higher durability as compared to other two samples (AS2 and AS4). LIST OF TABLES Table2.1 Ceramics used in biomedical applications Table 2.2 Properties of alumina ceramics Table 2.3 Mechanical properties of commercially available zirconia Table 2.4 Composition of common bioactive glasses
    [Show full text]
  • All About Fibers
    RawRaw MaterialsMaterials ¾ More than half the mix is silica sand, the basic building block of any glass. ¾ Other ingredients are borates and trace amounts of specialty chemicals. Return © 2003, P. Joyce BatchBatch HouseHouse && FurnaceFurnace ¾ The materials are blended together in a bulk quantity, called the "batch." ¾ The blended mix is then fed into the furnace or "tank." ¾ The temperature is so high that the sand and other ingredients dissolve into molten glass. Return © 2003, P. Joyce BushingsBushings ¾The molten glass flows to numerous high heat-resistant platinum trays which have thousands of small, precisely drilled tubular openings, called "bushings." Return © 2003, P. Joyce FilamentsFilaments ¾This thin stream of molten glass is pulled and attenuated (drawn down) to a precise diameter, then quenched or cooled by air and water to fix this diameter and create a filament. Return © 2003, P. Joyce SizingSizing ¾The hair-like filaments are coated with an aqueous chemical mixture called a "sizing," which serves two main purposes: 1) protecting the filaments from each other during processing and handling, and 2) ensuring good adhesion of the glass fiber to the resin. Return © 2003, P. Joyce WindersWinders ¾ In most cases, the strand is wound onto high-speed winders which collect the continuous fiber glass into balls or "doffs.“ Single end roving ¾ Most of these packages are shipped directly to customers for such processes as pultrusion and filament winding. ¾ Doffs are heated in an oven to dry the chemical sizing. Return © 2003, P. Joyce IntermediateIntermediate PackagePackage ¾ In one type of winding operation, strands are collected into an "intermediate" package that is further processed in one of several ways.
    [Show full text]
  • The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers
    Clemson University TigerPrints All Dissertations Dissertations May 2020 The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers Thomas Wade Hawkins Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Hawkins, Thomas Wade, "The Materials Science and Engineering of Advanced YB-Doped Glasses and Fibers for High-Power Lasers" (2020). All Dissertations. 2585. https://tigerprints.clemson.edu/all_dissertations/2585 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE MATERIALS SCIENCE AND ENGINEERING OF ADVANCED YB-DOPED GLASSES AND FIBERS FOR HIGH-POWER LASERS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Materials Science and Engineering by Thomas Wade Hawkins May 2020 Accepted by: Dr. Liang Dong, Committee Chair Dr. John Ballato Dr. Peter Dragic Dr. Stephen Foulger Dr. Philip Brown ABSTRACT This research studies and yields new understandings into the materials science and engineering of advanced multicomponent glass systems, which is critical for next generation fiber lasers operating at high output powers. This begins with the study and development of Yb-doped glasses in the Al2O3-P2O5-SiO2 (APS) ternary system, fabricated using modified chemical vapor deposition (MCVD), that, despite being highly doped, possess an average refractive index matched to that of silica (SiO2). The highly doped active core material was subsequently processed through a multiple stack-and- draw process to realize a single fiber with high doping, compositionally-tailored index, and scalability for fiber lasers.
    [Show full text]
  • Femtosecond Laser Direct-Write of Optofluidic Lab in Fiber Through Polymer-Coated Optical Fibers
    Femtosecond Laser Direct-Write of Optofluidic Lab in Fiber through Polymer-Coated Optical Fibers by Kevin A. J. Joseph A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Copyright c 2017 by Kevin A. J. Joseph Abstract Femtosecond Laser Direct-Write of Optofluidic Lab in Fiber through Polymer-Coated Optical Fibers Kevin A. J. Joseph Master of Applied Science Graduate Department of The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 2017 Three-dimensional femtosecond laser processing of lab in fiber, the combination of integrated photonics and microfluidics inside optical fiber, was demonstrated in silica glass fibers coated with polymer buffer. This enables the laser fabrication of lab-on- chip functionalities onto optical fiber without the time-consuming and mechanically- compromising process of buffer removal. In this thesis, an assessment of laser-induced damage in buffer-coated fiber is reported, along with methods to avoid and mitigate this damage. Further, selective buffer machining is studied enabling in-tandem processing of the glass fiber core and cladding with the polymer buffer. Structuring of the fiber core, cladding photonic circuits, and microfluidics were demonstrated in buffer-coated fiber without removal of or damage to the polymer buffer. The methods and processes here make the lab in fiber platform to be more industry viable and opens new opportunities for device architectures spanning across the fiber core, cladding, and buffer, representing a significant technological advancement.
    [Show full text]
  • Official Journal of the Patent Office
    ऩेटᴂट कामाारम शासकीम जनार OFFICIAL JOURNAL OF THE PATENT OFFICE ननर्ाभन सॊ. 22/2017 शक्रु वाय ददनाॊक: 02/06/2017 ISSUE NO. 22/2017 FRIDAY DATE: 02/06/2017 ऩेटᴂट कामाारम का एक प्रकाशन PUBLICATION OF THE PATENT OFFICE The Patent Office Journal 02/06/2017 18030 INTRODUCTION In view of the recent amendment made in the Patents Act, 1970 by the Patents (Amendment) Act, 2005 effective from 01st January 2005, the Official Journal of The Patent Office is required to be published under the Statute. This Journal is being published on weekly basis on every Friday covering the various proceedings on Patents as required according to the provision of Section 145 of the Patents Act 1970. All the enquiries on this Official Journal and other information as required by the public should be addressed to the Controller General of Patents, Designs & Trade Marks. Suggestions and comments are requested from all quarters so that the content can be enriched. ( Om Prakash Gupta ) CONTROLLER GENERAL OF PATENTS, DESIGNS & TRADE MARKS 2nd JUNE, 2017 The Patent Office Journal 02/06/2017 18031 CONTENTS SUBJECT PAGE NUMBER JURISDICTION : 18033 – 18034 SPECIAL NOTICE : 18035 – 18036 CORRIGENDUM (DELHI) 18037 CORRIGENDUM (KOLKATA) 18038 EARLY PUBLICATION (DELHI) 18039 – 18068 EARLY PUBLICATION (MUMBAI) 18069 – 18083 EARLY PUBLICATION (CHENNAI) : 18084 – 18118 EARLY PUBLICATION (KOLKATA) 18119 - 18120 PUBLICATION AFTER 18 MONTHS (DELHI) : 18121 – 18355 PUBLICATION AFTER 18 MONTHS (MUMBAI) 18356 – 18458 PUBLICATION AFTER 18 MONTHS (CHENNAI) : 18459 – 19199 PUBLICATION AFTER
    [Show full text]