Influence of Cement on Survival of All-Ceramic Restorations

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Cement on Survival of All-Ceramic Restorations INFLUENCE OF CEMENT ON SURVIVAL OF ALL-CERAMIC RESTORATIONS THESIS Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of The Ohio State University By Enas Elbahie Alakhras, B.D.S Graduate Program in Dentistry The Ohio State University 2011 Thesis Committee: Dr. Robert Seghi, DDS, MS (Advisor) Dr. William A. Brantley, PhD Dr. Noriko Katsube, PhD Copyright by Enas Mohamed Elbahie Alakhras 2011 ABSTRACT Previous research has shown that new technology in adhesive dentistry improves the performance of all-ceramic restorations. However, the major reason for failure of these restorations remains the occurrence of fractures. The overall objective of this research project was to investigate the influence of cement on the survival of all-ceramic restorations. A preliminary study was performed to evaluate the influence of the cement as a supporting structure on the survival of a simulated all-ceramic restoration. A trilayer simulation of a model restoration subjected to a clinically relevant condition of functional mastication was used. The results from the preliminary study showed that adhesively bonded specimens had higher survival rates than those conventionally cemented and that one of the adhesive cements had a significant higher survival rate than the other. Based on results from the preliminary study, three other studies were performed to investigate why adhesive cementation improves the performance of all-ceramic restorations. Results from these studies showed: (1) Resin cements had fewer defects or were void-free at the ceramic-cement interface of our ceramic model, while conventional cements showed areas of voids at the this interface. (2) The resin cement had no influence on ceramic sensitivity to slow crack growth (SCG). (3) While the actual mechanism for ii resin strengthening could not be determined, it may involve the formation of a more durable bond at the ceramic/cement interface. iii Dedicated to My Mother, Father and Husband iv ACKNOWLEDGEMENTS I would like to thank my thesis advisor; Dr. Robert Seghi for taking me under his wing and teaching me everything I know about research. You have an enormously generous heart. I am always inspired by you and I thank you for standing by me and helping me constructs and executes this study. Thank you so much for giving me an opportunity to work with you and for you always support, encouraging and helping me see the true value in research and inspiring me to be a better researcher. I would like to also thank Dr. William Brantley whose knowledge and guidance contributed tremendously to this project. It is an honor to me to be Dr. Brantley‟s student and learning from him does not only contribute to my academic performance but also influenced my personal life. To my parents, Sana and Mohammed, I would like to first and foremost thank you both for the amazing love and support you have given me throughout the years. Thank you for encouraging me endlessly to pursue higher education and explaining to me how through education and knowledge comes enlightenment and humility. Both of you have inspired me to always do my best and to constantly challenge and better myself. As well, in my difficult moments you were both endlessly comforting and even more supporting. You have done your best to give me the opportunities and the means to pursue my dreams that were not available to either one of you growing up, and for that I am v eternally grateful. I love you both very much and I dedicate everything to my loving parents. I am nothing without you and I am everything with you. To my wonderful beloved husband Mohamed, whose love, patient and support brighten my life and enabled me to finish my masters program. Thanks you for being always by my side, inspite of being busy, but you were always there when it most needed. To my mother in law Safiya, for her love, encouragement and patient. To my wonderful sisters, Amira, Eman, Sara and Dalia, even though we have been far apart for a long time, I still feel the love and care every time we meet. I wish you the very best in everything you pursue in life. I would like to also thank all my faculty members at The Ohio State University for educating me and being great mentors. vi VITA December 09, 1983…………………………………………Sharkiya, EGYPT 2005…………………………………………………………B.D.S ………………………………………………………………Suez Canal University ………………………………………………………………Ismailia, EGYPT 2007……………………………………………………...….Instructor ………………………………………………………………Dental Materials Department ………………………………………………………………School of Dentistry ………………………………………………………………Suez Canal University ………………………………………………………………Ismailia, EGYPT 2008-09……………………………………………………...Research Assistant ………………………………………………………………School of Dentistry ………………………………………………………………The Ohio State University ………………………………………………………………Columbus, Ohio 2009 to present………………………………………………MS, Dental Material Program ………………………………………………………………The Ohio State University ………………………………………………………………Columbus, Ohio 2010 to present……………………………………………...Bench Instructor ………………………………………………………………School of Dentistry ………………………………………………………………The Ohio State University ………………………………………………………………Columbus, Ohio vii FIELDS OF STUDY Major Field: Dentistry Specialty: Dental Materials viii TABLE OF CONTENTS Page Abstract................................................................................................................................ii Dedication...........................................................................................................................iv Acknowledgements .............................................................................................................v Vita....................................................................................................................................vii Chapter 1 Introduction ........................................................................................................................1 Chapter2 Influence of cement on the interface initiated fracture rate of all ceramic restorations under cyclic loading...........................................................................................................14 Chapter 3 Nondestructive acoustic microscopic Evaluation of the cement / glass-ceramic interface..............................................................................................................................36 ix Chapter 4 Influence of resin cement on slow crack growth parameter of two glass-ceramic…........51 Chapter 5 Effect of short and long terms aging conditions on the micro-tensile bond strength of resin cement to glass-ceramic…………………………….………………………….......78 Chapter 6 summary and conclusion………………………………………………………………...93 References………………………….………………………………….……………...…94 x Chapter 1 Introduction Over the past decade the high demand for esthetically pleasing restorations has driven the development of all-ceramic systems for use in dental restorations (inlays, onlays, crowns, fixed partial dentures (FPD‟s), and implant-supported restorations). The absence of a metallic substructure in all-ceramic restorations allows them to have improved esthetics, as the underlying tooth structure can potentially influence the final shade of the restoration and more closely imitate the optical effects of the natural teeth and result in a more “life-like” or natural appearance. These restorations are nonmetallic and biocompatible, which provide an advantage to soft tissue health since lesser amounts of plaque and adherence molecules are recovered from ceramic surfaces 1. It is often acceptable in all-ceramic restorations to leave the margin of the prosthesis supragingival or at the gingival margin, which adds the benefit of more predictable and less traumatic impression making. Improved clinical performance, especially with the use of higher strength ceramics and adhesives for bonding the ceramic restoration to tooth structure, have led to a resurgence of interest in all-ceramic restorations and make these restorations a more favorable choice by patients and dentists. 1 Dental ceramics can be considered as “composites” because they have two or more distinct entities in their compositions. Dental ceramic materials can be classified according to their crystalline content into three main divisions: (1) predominantly glassy materials, (2) particle-filled glasses, and (3) polycrystalline ceramics. Defining characteristics are provided for each of these ceramic types 2, 3. High-esthetic dental ceramic restorations consist predominantly of glass, while high-strength ceramics are generally polycrystalline. Predominantly glassy ceramics are the best at mimicking the optical properties of enamel and dentin. Glasses in dental ceramics are derived from a group of mined minerals called feldspars, and are based on silicon and aluminum oxides. Hence, the dental feldspathic porcelains belong to a family called aluminosilicate glasses 3. Feldspar glass-ceramics are resistant to crystallization (devitrification) during firing and have long firing temperature ranges. They resist slumping if firing temperatures rise above optimal. There is a wide range of materials used for all-ceramic restorations, and they contain a variety of crystalline phases. Theses crystalline phases act primarily as reinforcements to the ceramic matrix and improve the material properties. The physical and mechanical properties of ceramics are very sensitive to the nature, amount, and particle size distribution of the crystalline phases 4. Filler particles are usually added to
Recommended publications
  • Clinical Study of Dental Cements. VII. a Study of Bridge Retainers Luted with Three Different Dental Cements
    Clinical Study of Dental Cements. VII. A Study of Bridge Retainers Luted with Three Different Dental Cements RALPH G. SILVEY and GEORGE E. MYERS Crown and Bridge Department, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA In a clinical study of three luting cements, the restoration could be examined for 547 bridges and 162 crowns were per- looseness. The restoration was recorded as manently cemented. Patzents were recalled successful if no looseness was detected. Pa- at 6-month intervals and the restorations tients were told to report at once should were examined for looseness. A pattern of any unusual signs or symptoms arise. retainer type, cement type and retainer success was demonstrable. Results Table 1 illustrates the rate of success of J Dent Res 57(5-6):703-707, May-June 1978. all single restorations evaluated during the study and also shows the success rate of A previous report' discussed the success each type of restoration relative to the ce- rate of three luting cements used on 547 ment used. bridges and 162 crowns. Using data col- Table 2 gives the rate of success for lected in the same study, the success rate of bridge retainers. Since a bridge generally the different types of luted retainers with consists of two or more retainers for each those cements was determined and is here- in reported. restoration and the failure of one retainer results in the failure of the restoration, no recognition is given to the retainers that re- Materials and Methods main luted in place when just restoration A description of the materials and failures are recorded.
    [Show full text]
  • Glass Ionomer Bone Cements Based on Magnesium-Containing Bioactive
    Biomed. Glasses 2019; 5:1–12 Research Article Roland Wetzel, Leena Hupa, and Delia S. Brauer* Glass ionomer bone cements based on magnesium-containing bioactive glasses https://doi.org/10.1515/bglass-2019-0001 Received Sep 25, 2018; revised Dec 16, 2018; accepted Jan 14, 2019 1 Introduction Abstract: Glass ionomer cements (GIC) are used in restora- Cements for prosthetic stabilisation or spinal corrective tive dentistry and their properties (low heat during setting, surgeries (vertebroplasty, kyphoplasty) typically consist adhesion to mineralised tissue and surgical metals) make of polymethylmethacrylate [1, 2]. They exhibit a number them of great interest for bone applications. However, den- of drawbacks which include high curing temperatures tal GIC are based on aluminium-containing glasses, and or the presence of unreacted and toxic methacrylic acid the resulting release of aluminium ions from the cements monomers. They also do not bind to bone and are held in needs to be avoided for applications as bone cements. Re- place by mechanical interlocking only [2–6]. As a result, placing aluminium ions in glasses for use in glass ionomer there is a demand for alternative non-toxic cements with cements is challenging, as aluminium ions play a critical bone bonding capability. role in the required glass degradation by acid attack as Glass ionomer cements (GIC) have been used in well as in GIC mechanical stability. Magnesium ions have restorative dentistry as filler or luting materials for been used as an alternative for aluminium in the glass decades [7, 8]. They are formed by an acid-base reaction component, but so far no systematic study has looked into between a polymeric acid and an acid-degradable fluoro- the actual role of magnesium ions.
    [Show full text]
  • Quintessence Journals
    pyr Co igh Alle Rechte vorbehaltent b y Q u in t An In Vitro Study on the Adhesion of Quartz Fiber Postsesse nz to Radicular Dentin Angelo Putignanoa/Giada Poderib/Antonio Ceruttic/Alvaro Curyd/Francesca Monticellie/ Cecilia Goraccif/Marco Ferrarig Purpose: To evaluate in vitro the bond strength at the adhesive interface between a quartz fiber post, different adhe- sive systems, and different composite cements. Materials and Methods: Thirty extracted single-rooted teeth were endodontically treated and divided into three groups (n = 10). Quartz fiber posts (DT Light-Post) were cemented with the following materials: group I: Prime & Bond NT + Self Cure Activator, and Calibra as luting cement; group II: Prime & Bond NT + Self Cure Activator, and UniFil Core; group III: UniFil Bond in combination with Unifil Core. The specimens were processed for the push-out test to evaluate bond strength at the root dentin-cement-post interface. They were sectioned along the long axis of the post into 1-mm-thick slices. A total of 60 sections was obtained from group I. Group II provided 67 slices, while group III provided 69. Load- ing was performed at a crosshead speed of 0.5 mm/min until the post segment was dislodged from the root section. Results: There was no statistically significant difference between the three experimental groups. The mean bond strength obtained for group I was 9.81 ± 5.40 MPa. For group II it was 12.06 ± 6.25 MPa, and 9.80 ± 5.01 MPa for group III. Conclusion: All the materials tested were similar in terms of providing satisfactory bond strength when used for luting fiber posts.
    [Show full text]
  • Biology Chemistry III: Computers in Education High School
    Abstracts 1-68 Relate to the Sunday Program Biology 1. 100 Years of Genetics William Sofer, Rutgers University, Piscataway, NJ Almost exactly 100 years ago, Thomas Hunt Morgan and his coworkers at Columbia University began studying a small fly, Drosophila melanogaster, in an effort to learn something about the laws of heredity. After a while, they found a single white-eyed male among many thousands of normal red-eyed males and females. The analysis of the offspring that resulted from crossing this mutant male with red-eyed females led the way to the discovery of what determines whether an individual becomes a male or a female, and the relationship of chromosomes and genes. 2. Streptomycin - Antibiotics from the Ground Up Douglas Eveleigh, Rutgers University, New Brunswick, NJ Antibiotics are part of everyday living. We benefit from their use through prevention of infection of cuts and scratches, control of diseases such as typhoid, cholera and potentially of bioterrorist's pathogens, besides allowing the marvels of complex surgeries. Antibiotics are a wondrous medical weapon. But where do they come from? The unlikely answer is soil. Soil is home to a teeming population of insects and roots, plus billions of microbes - billions. But life is not harmonious in soil. Some microbes have evolved strategies to dominate their territory; one strategem is the production of antibiotics. In the 1940s, Selman Waksman, with his research team at Rutgers University, began the first ever search for such antibiotic producing micro-organisms amidst the thousands of soil microbes. The first antibiotics they discovered killed microbes but were toxic to humans.
    [Show full text]
  • Glass-Ionomer Cements in Restorative Dentistry: a Critical Appraisal Mohammed Almuhaiza
    JCDP Glass-ionomer Cements in Restorative10.5005/jp-journals-10024-1850 Dentistry: A Critical Appraisal REVIEW ARTICLE Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal Mohammed Almuhaiza ABSTRACT make them useful as restorative and luting materials. Glass-ionomer cements (GICs) are mainstream restorative Glass-ionomer (GI) material was introduced by Wilson materials that are bioactive and have a wide range of uses, such and Kent in 1972 as a “new translucent dental filling as lining, bonding, sealing, luting or restoring a tooth. Although material” recommended for the restoration of cervical the major characteristics of GICs for the wider applications in lesions. It consists of a powdered fluoroaluminosilicate dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to glass and a polyalkenoic acid. Polyacrylic acid is often moisture, inherent opacity, long-term wear and strength are incorporated into the powder in its dehydrated form, not as adequate as desired. They have undergone remarkable leaving the liquid to consist of water or an aqueous changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed solution of tartaric acid. The positive characteristics of the to improve their physical properties and diversified their use as GICs include chemical adhesion to enamel and dentin in a restorative material of great clinical applicability. The light- the presence of moisture, resistance
    [Show full text]
  • A Practical Guide to the Use of Luting Cements a Peer-Reviewed Publication Written by John O
    Earn 4 CE credits This course was written for dentists, dental hygienists, and assistants. 1992 1850s Early 1900s 1972 Resin- Zinc oxide 1900s Zinc Glass modified eugenol Zinc poly- ionomers glass phosphate carboxylate ionomers Early 2000s Self- adhesive cements A Practical Guide To The Use Of Luting Cements A Peer-Reviewed Publication Written by John O. Burgess, DDS, MS and Taneet Ghuman, BDS PennWell is an ADA CERP Recognized Provider Go Green, Go Online to take your course This course has been made possible through an unrestricted educational grant. The cost of this CE course is $59.00 for 4 CE credits. Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing. Educational Objectives a clinical success. The first change increased the strength Overall goal: The purpose of this article is to provide dental of the mixed material, allowing it to be used for permanent professionals with information on the selection and applica- cementation, and the second produced an easy-to-mix tion of luting cements. paste-paste system for provisional cementation that is still Upon completion of this course, the clinician will be able in use today.2,3 While the cement had an obtunding effect to do the following: on pulp, its disadvantages, including a high film thickness, 1. List the types of luting cements and their chemical have limited its use.4 The physical properties of dental ce- composition. ments appear in Table 1. 2. List the physical properties that affect the performance of luting cements.
    [Show full text]
  • Effect of Polymerization and Type of Glass-Ionomer Cement on Thermal Behaviour
    International Journal of Applied Science and Technology Vol. 2 No. 10; December 2012 Effect of Polymerization and Type of Glass-Ionomer Cement on Thermal Behaviour Kosmas TOLIDIS Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece. Tiverios VAIMAKIS Section of Industrial and Food Chemistry Department of Chemistry School of Sciences University of Ioannina 45110, Ioannina, Greece. Christina BOUTSIOUKI Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece. Paris GERASIMOU Department of Operative Dentistry School of Dentistry Aristotle University of Thessaloniki University Campus, 54124, Thessaloniki, Greece Abstract The purpose of this study was to evaluate the effect of type of glass-ionomer cement (GIC), extrinsic energy offer and light intensity of the curing device, on thermal behavior. Ketac Molar, 3M-ESPE, USA (KM), Diamond Rapid Set Capsules, Kemdent, Wiltshire, UK (D) and Ketac N100, 3M-ESPE, USA (KN), being all different types of GIC. o Measurements of coefficient of thermal expansion (CTE) were performed at 20-60 C and thermal behavior was evaluated in lower and higher temperatures. KM exhibits lower CTE values (p<0.001). D exhibits significant differences (p<0.001), showing greater CTE values. KN exhibits great differences (p<0.001) in higher temperatures. Qualitative differences were also noted in CTE diagrams, diversifying between expansion and contraction, as temperature raised. Type of GIC and light intensity of curing device affect thermal behavior. Extrinsic energy offer had no important effect on CTE values. Keywords: Coefficient of Thermal Expansion, Glass-Ionomer Cements, Dilatometer, Temperature, Polymerization 1.
    [Show full text]
  • Compressive and Flexural Strengths of High-Strength Glass Ionomer Cements: a Systematic Review Ridyumna Garain1, Mikayeel Abidi2, Zain Mehkri3
    REVIEW ARTICLE Compressive and Flexural Strengths of High-strength Glass Ionomer Cements: A Systematic Review Ridyumna Garain1, Mikayeel Abidi2, Zain Mehkri3 ABSTRACT Objective: To perform a systematic review of test methodologies of high-strength restorative glass ionomer cement (GIC) materials for compressive (CS) and flexural strengths (FS) to compare the results between different GICs. Materials and methods: Screening of titles and abstracts, data extraction, and quality assessment was conducted in search for in vitro studies, which reported on CS and/or FS properties of high-strength GIC. PubMed/Medline (US National Library of Medicine—National Institutes of Health), EBSCO, and ProQuest databases were searched for the relevant literature. Results: A total of 123 studies were found. These were then assessed based on preestablished inclusion and exclusion criteria. Of the selected studies, two studies of fair quality tested CS, while none tested FS. The CS of experimental groups in both studies was less than their respective control groups. Discussion: It was observed that many studies reported following the International Standards Organization (ISO) recommendations for testing but with modifications. Additionally, in absence of guidelines for testing other parameters that may be potentially advantageous, authors have used differing experimental techniques. These disparities make it difficult to draw comparisons between different studies. Conclusion: Only two studies of fair quality showed lower CS of experimental groups compared to their respective control groups. Lack of adherence to guidelines and lack of guidelines for potentially better test methodologies make it difficult to scrutinize and compare the validity of the research being conducted. Keywords: Compressive strength, Flexural strength, Glass ionomer cement, High strength GIC, Materials testing, Review, Standards.
    [Show full text]
  • Glass Ionomer Cement
    09-17-002 V1 GLASS IONOMER CEMENT INSTRUCTIONS FOR USE: RECOMMENDED INDICATIONS: IOS Glass Ionomer Cement represents an advanced, fluoride-releasing glass ionomer formulation designed for a broad scope of uses: 1. Cementation of metal or porcelain fused to metal crowns, bridges, inlays. 2. Cementation of stainless steel crowns or cementation of orthodontic bands. 3. Base or liner. CONTRAINDICATIONS: Pulp capping and sensitive teeth. COMPOSITION: Alumino silicate glass Polyacrylic acid PRODUCT PRESENTATION: Regular Kit (15gm Powder/15ml Liquid) # 17-211-102 Economy Kit (100gm Powder/60ml Liquid) # 17-211-103 INSTRUCTIONS FOR USE: 1. Prepare tooth cavity and base as required. 2. Clean and dry enamel and dentin thoroughly. 3. Shake powder bottle to uniformly blend the special powders. 4. Dispense 1 full scoop of powder to a mixing pad or glass slab. 5. Dispense 2 drops of liquid into the mixing pad or glass slab. When dispensing liquid, hold the dropper vertically. 6. Incorporate powder into liquid in small increments. Total mixing time should not exceed 30 seconds 7. Apply the material, without delay, in a uniform layer. 8. Placement of mixed cement should be done immediately while mix is still glossy; approximately 1& 1/2 to 2 minutes working time. If cement becomes dull, it should be discarded and a new mixture prepared. If a longer working time is needed, mix the cement on a cold, dry slab. 9. Keep restoration free from saliva or water for 5 minutes. Important Information: Excess cement should be removed with a cotton roll immediately, before it sets, and should be cleaned from all surrounding areas such as gingiva and adjacent teeth before final set.
    [Show full text]
  • The Effect of Dentine Pre-Treatment Using Bioglass And/Or Polyacrylic
    Journal of Dentistry 73 (2018) 32–39 Contents lists available at ScienceDirect Journal of Dentistry journal homepage: www.elsevier.com/locate/jdent The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on T the interfacial characteristics of resin-modified glass ionomer cements ⁎ Salvatore Sauroa,b, , Timothy Watsonb, Agustin Pascual Moscardóc, Arlinda Luzia, Victor Pinheiro Feitosad, Avijit Banerjeeb,e a Dental Biomaterials, Preventive & Minimally Invasive Dentistry, Departamento de Odontologia, CEU Carndenal Herrera University, Valencia, Spain b Tissue Engineering and Biophotonics Research Division, King’s College London Dental Institute, King’s College London, United Kingdom c Departamento de Odontologia, Universitat de Valencia, Valencia, Spain d Paulo Picanço School of Dentistry, Fortaleza, Ceará, Brazil e Department of Conservative & MI Dentistry, King’s College London Dental Institute, King’s College London, United Kingdom ARTICLE INFO ABSTRACT Keywords: Objective: To evaluate the effect of load-cycle aging and/or 6 months artificial saliva (AS) storage on bond Air-abrasion durability and interfacial ultramorphology of resin-modified glass ionomer cement (RMGIC) applied onto den- Bioactive glass tine air-abraded using Bioglass 45S5 (BAG) with/without polyacrylic acid (PAA) conditioning. Bonding Methods: RMGIC (Ionolux, VOCO) was applied onto human dentine specimens prepared with silicon-carbide Dentine pre-treatment abrasive paper or air-abraded with BAG with or without the use of PAA conditioning. Half of bonded-teeth were Polyacrylic acid submitted to load cycling (150,000 cycles) and half immersed in deionised water for 24 h. They were cut into Resin-modified glass ionomer cements matchsticks and submitted immediately to microtensile bond strength (μTBS) testing or 6 months in AS im- mersion and subsequently μTBS tested.
    [Show full text]
  • GLASS and GLASS SEALANTS AS BIOCERAMICS INDU BALA Roll No
    GLASS AND GLASS SEALANTS AS BIOCERAMICS Thesis submitted in partial fulfillment of the requirement for The award of the degree of Master of Technology In MATERIALS SCIENCE AND ENGINEERING Submitted by INDU BALA Roll No.60602008 Under the guidance of Dr. Kulvir Singh School of Physics & Material Sciences Thapar University, Patiala Patiala - 147001 June-2008 Dedicated to my loving parents ABSTRACT The optimization of bioactive glasses requires a proper understanding of chemical, physical mechanical and biological properties. The formation of a hydroxyapatite layer on silica based bioactive glasses has already been investigated by many researchers. In the present investigation, calcium based glasses of different composition have been synthesized by taking appropriate proportion of each oxide composition. The samples are charatererized by using the various techniques viz, X-ray diffraction (XRD), UV-Visible spectroscopy, and FT-IR, density and solubility measurements. The entire samples were dipped in simulated body fluid (SBF) solution for different time duration. Sample AS1 and AS3 show the formation of hydroxyapatite layer. On the other hand, samples AS2 and AS4 were not formed the hydroxyapatite layer. Apart from this, AS1 and AS3 samples also exhibit higher durability as compared to other two samples (AS2 and AS4). LIST OF TABLES Table2.1 Ceramics used in biomedical applications Table 2.2 Properties of alumina ceramics Table 2.3 Mechanical properties of commercially available zirconia Table 2.4 Composition of common bioactive glasses
    [Show full text]
  • A Castor Oil-Containing Dental Luting Agent: Effects RIF\FOLFORDGLQJDQGVWRUDJHWLPHRQÀH[XUDO Strength
    www.scielo.br/jaos http://dx.doi.org/10.1590/1678-775720140069 A castor oil-containing dental luting agent: effects RIF\FOLFORDGLQJDQGVWRUDJHWLPHRQÀH[XUDO strength Juliana dos Reis DERCELI1, Laiza Maria Grassi FAIS2, Lígia Antunes Pereira PINELLI2 1- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil. 2- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil. Corresponding address: Lígia Antunes Pereira Pinelli - Rua Humaitá, 1680 - Centro - Araraquara - SP - Brazil - 14801-903 - Phone: +55 (16) 3301-6413 - Fax: +55 (16) 3301-6406 - e-mail: [email protected] 6XEPLWWHG)HEUXDU\0RGL¿FDWLRQ-XO\$FFHSWHG$XJXVW ABSTRACT avorable results in the use of castor oil polyurethane (COP) as pulp capping, membrane Fmaterial, sealer, mouthwash and in bone repair, associated with the fact that Ricinus communis is not derived from petroleum and it is abundant in Brazil, encourage researches LQWKHGHYHORSPHQWRIOXWLQJDJHQWV2EMHFWLYHV7KLVVWXG\FRPSDUHGWKHÀH[XUDOVWUHQJWK (FS) of a castor oil-containing dental luting agent with a weight percentage of 10% (wt%) of calcium carbonate (COP10) with RelyX ARC (RX) after mechanical cycling (MC) and distilled water storage. Material and Methods: Sixty-four specimens (25x2x2 mm) were fabricated and divided into two groups, COP10 and RX (control). Each group was divided into 4 subgroups (n=8) according to the storage time, 24 hours (24 h) or 60 days (60 d), and the performance (MC+FS) or not (only FS) of the mechanical cycling test. The FS (10 kN; 0.5 mm/min) and MC tests (10,000 cycles, 5 Hz, 0.5 mm/min) were carried out using an MTS-810 machine.
    [Show full text]