Macor®- Glass Ceramics
Total Page:16
File Type:pdf, Size:1020Kb
DECADES OF EXPERTISE IN WORKING WITH MACOR®- GLASS CERAMICS www.manser-ag.com What is Macor® glass ceramics? Macor® is a white, odor- Composition: less material with the 46% Silicon oxide (SiO2) appearance of porcelain 17% Magnesium oxide (MgO) that has no known toxic 16% Aluminum oxide (Al2O3) effects. Unlike ductile 10% Potassium oxide (K2O) materials, it does not 7% Boric oxide (B2O3) warp. 4% Fluorine (F) Top customer benefits Cost-effective machining Complex design shapes Resistant to radiation Low thermal conductivity Very high working temperature Good electrical insulator Non-porous; no outgassing Short lead times No glost firing required 2 Macor® high-performance glass ceramics For decades, we have nation of approx. 55% formance polymer. It is nical advantages it offers specialized in processing mica crystals and 45% also extremely efficient in use make this material both standard materials borosilicate glass. This to machine, with toler- extremely useful for a and special, custom composition enables it to ances of up to 0.01 mm. wide range of products. materials – most notably combine the perfor- Complex shapes made Macor® glass ceramics. mance of a technical to measure, short lead This extraordinary ceramic material with the times, easy machining materials is a combi- versatility of a high-per- and the enormous tech- 3 Did you know? MACOR® in detail Its working temperature for continuous operation is 800°C, with peaks of 1000°C. It can achieve machining tolerances of up to 0.01 mm and a surface quality of less than Ra 0.1. The material has low thermal conductivity, and remains a good thermal insulator even at high temperatures. It is an excellent electrical insulator and has been used successfully in the electronics and semiconductor industry. It is non-porous and does not emit any gases when thoroughly heated in the furnace. This makes it the perfect material for ultra high volume applications. High strength and rigidity. Unlike high-temperature plastics, the material does not creep or warp. It is radiation-resistant, and is thus also used in nuclear and aerospace applications. It can be metallized in thin or thick layers, brazed and bonded with epoxy resin or frits. It is non-wetting, has zero porosity and, unlike ductile materials, does not warp. 4 Electrotechnical properties • High dielectric strength • High specific resistance • Low dissipation factor Thermal properties • High working temperature • Moderate heat conductivity • High thermal expansion coefficient, can be bonded with ordinary glass Chemical properties • Zero water absorption • Good chemical resistance • Is not wetted by molten aluminum, magnesium or tin Stability • High stability • High scratch resistance • Dimensional stability • Isotropic and uniform • 50% higher impact resistance than Pyrex or Pyroceram Vacuum impregnation • Zero porosity • No outgassing • Low helium penetration • Can be hermetically bonded with metals*1, ceramic materials and glass using solder glass Metallization properties • Through vaporization of different metals • Can be sealed and coated • Hermetic sealing through the use of glass solder • Soldered seals on metallized parts 5 *1 e.g. silver, gold, platinum, nickel, titanium Properties I. I.THERMAL THERMAL II. II. MECHANICAL MECHANICAL SI/METRICSI/METRIC IMPERIAIMPERIAL L SI/METRICSI/METRIC IMPERIAIMPERIAL L CoefficientCoefficient of ofexpansio expansion n DensitDensity y 2.522.52 g/cm g/cm3 3 157157 lbs/ft lbs/ft3 3 CTCTE -100E -100 °C °C 25 25 °C °C 8181 x 10 x 10 -7/° -7C/°C 4545 x 10 x 10 -7/° -7F/°F PorosityPorosity 0 %00 %0 % % CTCTE 25E 25 °C °C 300 300 °C °C 9090 x 10 x 10 -7/° -7C/°C 5050 x 10 x 10 -7/° -7F/°F YoYoung'ung's modulus,s modulus, 25 25 °C °C 66.966.9 GP GPa9a9.7 .7x 10 x 106 PS6 PSI I CTCTE 25E 25 °C °C 600 600 °C °C 112112 x 10 x 10 -7/° -7C/°C 6262 x 10 x 10 -7/° -7F/°F CTCTE 25E 25 °C °C 800 800 °C °C 123123 x 10 x 10 -7/° -7C/°C 6868 x 10 x 10 -7/° -7F/°F PoissoPoisson’sn’ ras tioratio 0.290.29 0.290.29 6 6 SpecificSpecific heat, heat, 25 25 °C °C 0.790.79 kJ/kg kJ/kg.°C.°C 0.190.19 Btu/lb Btu/lb.°F.°F ShearShear modulus, modulus, 25 25 °C °C 25.525.5 GP GPa3a3.7 .7x 10 x 10PSPSI I 2 2 TherThermalmal conductivity conductivity, 25, 25 °C °C 1.461.46 W/m W/m.°C.°C10.1610.16 Btu.in/hr Btu.in/hr.ft2.f.°Ft2.°F Hardness,Hardness, Kn Knoop,oop, 100 100 g g 250250 kg/m kg/mm m 7 7 2 2 2 2 ModulusModulus of ofRupture, Rupture, 25 25 °C °C 9494 MP MPa a 1313 600 600 PS PSI I TherThermalmal diffusivity diffusivity, 25, 25 °C °C 7.37.3 x 10 x 10 m m/s/s 0.0280.028 ft /hft r/hr (flexu(flexural strength)ral strength) (Minimum(Minimum specified specified aver averageage value) value) ContinuousContinuous oper operatingating te mpertemperaturature e 800800 °C °C 14721472 °F °F PressurePressure resistanc resistance e 345345 MP MPa a 4949 900 900 PS PSI I (after(after polishing polishing) ) upup to to900 900 MP MPa a 130130 000 000 PS PSI I MaximumMaximum no no load load temper temperaturature e 10001000 °C °C 18321832 °F °F III. III. ELECTRICAL ELECTRICAL IV. IV. CHEMICAL CHEMICAL SI/METRICSI/METRIC IMPERIAIMPERIAL L WEIGHTWEIGHT LOSS LOSS (mg/cm(mg/cm2) 2) DielectricDielectric constant, constant, 25 25 °C °C SOLUTIONSOLUTION pHpH TIMETIME TEMPTEMP.G.GRAVIMETRICRAVIMETRIC 1 kH1 kHz z 6.016.01 6.016.01 5 %5 HC% HCl0l0.1 .1 2424 h9 h95 °C5 °C ~1~10000 8.58.5 GH GHz z 5.645.64 5.645.64 (hydrochloric(hydrochloric acid acid) ) LossLoss Ta Tangent,ngent, 25 25 °C °C 0.0020.002 N HNN HNO3O3 2.822.824 h94 h95 °C5 °C ~0~0,6 ,6 1 kH1 kHz z 0.0040.0040 0 0.0040.0040 0 (nitric(nitric acid ac) id) 8.58.5 GH GHz z 0.0020.0025 5 0.0020.0025 5 0.10.1 N NaHCON NaHCO3 3 8.428.424 h94 h95 °C5 °C ~0~0.3 .3 (sodium(sodium bicarbonate) bicarbonate) DielectricDielectric strength strength (AC)(A C)aver averageage 4545 kV/m kV/mm1m1143143 V/mil V/mil 0.020.02 N NaN Na2CO2CO3 3 10.910.9 6 h96 h95 °C5 °C ~0~0.1 .1 25 °C,25 °C,under under 0.3mm 0.3mm thickness thickness (sodium(sodium carbonate) carbonate) DielectricDielectric strength strength 5 %5 NaOH% NaOH 13.213.2 6 h96 h95 °C5 °C ~1~10 0 (DC(DC), aver), averagage e 129129 kV/m kV/mm3m3277277 V/mil V/mil (sodium(sodium hydroxide) hydroxide) 25 °C,25 °C,under under 0.3mm 0.3mm thickness thickness CHEMICALCHEMICAL RESISTANCE RESISTANCE CLASCLASS S DCDC volume volume resistivit resistivity, y, 2525 °C °C 101017 Oh17 Ohm.mcm.cm 101017 Oh17 Ohm.mcm.cm DINDIN 12111 12111 / NF / NF ISO ISO 719 719 WaWaterter HGB2HGB2 DINDIN 12116 12116 AcidAcid 4 4 DINDIN 52322 52322 / IS / OIS 69O 695 5 AlkalAlkali i A3A3 Macor® component as an electrical insulator in the module. 6 Source: www.corning.com/specialtymaterials/macor Date: May 18, 2018 Manufacturer’s note: Actual properties of specific production batches may vary. The specified general properties reflect the results of regular tests on sample quantities in Corning’s labs. Technical information The general properties of THERMAL EXPANSION YOUNG’S MODULUS Macor® glass ceramic shown 12 70 here10.1 have been measured -3 10 65 during9. 4lab tests performed on x 10 0 8 60 material8.7 samples at Corning. I , PS 6 55 8.0 6 E, GPa Ex10 4 50 7.2 2 45 6.5 Thermal expansion, ∆L/L 0 40 5.8 -100 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 Temperature, °C Temperature, °C THERMALTHERMAL EXPANSIO CONDUCTIVITN Y YOUNG’SMODULUS MODULU OF RUPTURS E 12 1.80THERMAL EXPANSION 70 180YOUNG’S MODULUS 10.1 26 100 12 70 10.1 160 23 200 1.70THERMAL EXPANSION -3 YOUNG’S MODULUS -3 10 65 9.4 °C 12°C 70 10.1 . 10. 65 140 9.4 20 300 x 10 m 1.60 0 x 10 -3 0 120 17 400 108 6560a 9.8.47 1.50 I 8 60 8.7 I x 10 0 14 500 100 I , PS 86 1.40 6055 8.70 6 Minimum specified average value: 11 , PS 600 6 55 80 8.0 6 I 1.30 E, GPa 94 MPa Ex10 E, GPa 8 700 60 , PS 4 Strength, MP Ex10 6 5550 8.7.02 6 4 50 7.2 Strength, PS 1.20 E, GPa 40 5 800 Ex10 42 5045 7.6.25 1.10 2Thermal conductivity, W/ 45 20 6.5 2 900 Thermal expansion, ∆L/L Thermal expansion, ∆L/L 0 20 1.00 4540 0 6.5.58 0 -100 0 0 100100 200200 300300 400400 500500 600600 700 700800 800 40 0 0 100 100200 200 300 300400 400500 500600 600700 700800 5.8008 Thermal expansion, ∆L/L -100 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 Temperature,Temperature, °C °C 40 Temperature,Temperature, °C °C 5.8 -100 0 100 200Temperature,300 400 °C 500 600 700 800 0 100 200 300Temperature,400 °C500 600 700 800 Temperature, °C Temperature, °C THERMAL CONDUCTIVITY MODULUS OF RUPTURE 1.80 THERMAL CONDUCTIVITY 180 MODULUS OF RUPTURE 26 100 1.80 180 26 100 THERMALDC VOLUME CONDUCTIVIT RESISTIVITYY 160 MODULUSLOSS TANGEN OF RUPTURT E 23 200 1.70 160 2623 10200 1.701.80 19 180 12 °C .