Phyllosilicates (Micas, Chlorite, Talc, & Serpentine)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical and Structural Evolution of “Metamorphic Vermiculite” in Metaclastic Rocks of the Betic Cordillera, Málaga, Spain: a Synthesis
249 The Canadian Mineralogist Vol. 44, pp. 249-265 (2006) CHEMICAL AND STRUCTURAL EVOLUTION OF “METAMORPHIC VERMICULITE” IN METACLASTIC ROCKS OF THE BETIC CORDILLERA, MÁLAGA, SPAIN: A SYNTHESIS MARÍA DOLORES RUIZ CRUZ§ Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, E-29071 Málaga, Spain JOSÉ MIGUEL NIETO Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva, Spain ABSTRACT Vermiculite-like minerals from a metamorphic sequence of the Betic Cordillera, near Málaga, southeastern Spain, were investigated in detail by X-ray diffraction, electron-microprobe analysis, and transmission-analytical electron microscopy. Our results reveal that the chlorite-to-biotite transformation is much more complex than previously assumed. In addition to mixed- layer minerals with a mica:chlorite ratio of 2:1 and 1:1, which had previously been identifi ed, mixed-layer phases with very high and very low chlorite:vermiculite ratios have been identifi ed, together with true vermiculite, as intermediate steps in the chlorite-to-biotite transformation. The observed sequence is: chlorite → random to ordered 1:2 mica–chlorite mixed-layer phases → regular 1:1 chlorite–vermiculite mixed-layer phases → Vrm-rich chlorite–vermiculite mixed-layer phases → vermiculite → biotite. This sequence includes a continuous increase of interlayer cation content, and is similar to that described in the smectite- to-illite transformation. The high Na content of most of these phases suggests that in the absence of K-feldspar, two parallel sites of reactants, chlorite + phengite and chlorite + albite, account for the formation of vermiculitic phases, and later, of biotite. Keywords: mixed-layer minerals, metamorphic vermiculite, X-ray diffraction, electron-microprobe analysis, transmission elec- tron microscopy, analytical electron microscopy, Betic Cordillera, Spain. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mapping Phyllosilicates and Aqueous Alteration Products at Tyrrhena Terra, Mars
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1323.pdf MAPPING PHYLLOSILICATES AND AQUEOUS ALTERATION PRODUCTS AT TYRRHENA TERRA, MARS. F. H. Grant1 and J. L. Bishop2, 1University of California, Los Angeles (Los Angeles, CA; [email protected]), 2SETI Institute (Mountain View, CA). Summary: Outcrops of phyllosilicates and small sites of less common aqueous alteration minerals were mapped at Tyrrhena Terra on Mars using CRISM pa- rameters, and CRISM spectral data were collected to more closely analyze the mineralogy in this region. Fe- and Mg-rich smectite and chlorite group phyllosilicates are both detected at Tyrrhena Terra, including sapo- nite, chamosite, and clinochlore. Zeolites and car- bonates are among the rarer alteration minerals also observed at Tyrrhena Terra that further constrain the alteration history in this region. More chlorite than smectite is observed, indicating higher temperature alteration processes occurred at Tyrrhena Terra. Introduction: Tyrrhena Terra is a region in the southern hemisphere of Mars, between the Isidis and Hellas impact basins and south of Libya Montes. The selected study site (Fig. 1) is of particular interest be- cause it has a large concentration of phyllosilicate minerals exposed on the surface, among small outcrops of rarer aqueous alteration minerals [1]. Phyllosilicates are a crucial mineral group to study when striving to understand the aqueous alteration history of a region. Less common aqueous alteration minerals, including zeolite, carbonate, and hydrated sulfates, are also im- portant to further constrain the alteration history of a region [2]. For this research project, we focused pri- marily on identifying the phyllosilicate minerals smec- tite and chlorite. -
Fluid Mixing and the Deep Biosphere of a Fossil Lost City-Type Hydrothermal System at the Iberia Margin
Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin Frieder Kleina,1, Susan E. Humphrisb, Weifu Guob, Florence Schubotzc, Esther M. Schwarzenbachd, and William D. Orsia aDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; cDepartment of Geosciences and Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany; and dDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved August 4, 2015 (received for review March 7, 2015) Subseafloor mixing of reduced hydrothermal fluids with seawater is aging, brucite undersaturated in seawater dissolves and aragonite believed to provide the energy and substrates needed to support recrystallizes to calcite (7). deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., Actively venting chimneys host a microbial community with a serpentinite). However, geosphere-biosphere interactions in serpen- relatively high proportion of methanogenic archaea (the Lost tinite-hosted subseafloor mixing zones remain poorly constrained. City Methanosarcinales), methanotrophic bacteria, and sulfur- Here we examine fossil microbial communities and fluid mixing oxidizing bacteria, whereas typical sulfate-reducing bacteria are processes in the subseafloor of a Cretaceous Lost City-type hydro- rare (8–10). Geochemical evidence for significant microbial sulfate thermal system at the magma-poor passive Iberia Margin (Ocean reduction in basement lithologies and distinct microbial commu- Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assem- nities in Lost City vent fluids and chimneys suggest that subsurface blages precipitated from mixed fluids ca. -
Metamorphic and Metasomatic Kyanite-Bearing Mineral
Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, et al. To cite this version: Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Tre- bus, et al.. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, MDPI, 2019, 10.3390/min9040252. hal-02932247 HAL Id: hal-02932247 https://hal.archives-ouvertes.fr/hal-02932247 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert -
Muscovite Solid Solutions in the System K20-Mgo-Feo-A1203-Sio2-H20: an Experimental Study at 2 Kbar Ph2o and Comparison with Natural Li-Free White Micas
MINERALOGICAL MAGAZINE, JUNE 1986, VOL. 50, PP. 257-66 Muscovite solid solutions in the system K20-MgO-FeO-A1203-SiO2-H20: an experimental study at 2 kbar PH2o and comparison with natural Li-free white micas GILLES MoNIER Laboratoire de P&rologie, Universit6 d'Or16ans, 45046 Orlrans Cedex, France AND JI~AN-LouIs ROBERT Centre de Recherche sur la Synthrse et Chimie des MinSraux, G.I.S.C.N.R.S.-B.R.G.M., 1A rue de la Frrollerie, 45071 Odrans Cedex 2, France ABSTRACT. This paper presents the results of an experi- K EY W OR O S : muscovite, phengite, solid solution, crystal- mental study of muscovite solid solutions in the system chemistry, experimental mineralogy, granites, hydro- K20-M~+O-A1203 SiO2-H20 (HF), with M2+= thermal alteration. Mg 2+ or Fe 2§ in the temperature range 300 700~ under 2 kbar P.~o, Muscovite solid solutions can be described, in this system, as the result of two substitutions. NATURAL lithium-free white micas are generally One is the phengitic substitution (x), which preserves the described as solid solutions between the muscovite pure dioctahedral character of the mica; the second is the end member K(A12R)(Si3AI)Olo(OH)2, where [] biotitic substitution (y), which leads to trioctahedral stands for an octahedral vacant site, and the micas and does not change the composition of the celadonite end member K(AIM z+ [3)Si4010(OH)2, tetrahedral layer Si3AI. The general formula of muscovite with M 2 + = Mg 2., Fe E+, thus, they are considered in this system is K(A12_~_2y/aM2+yOl_y/a)(Sia+~All_x) to belong to the so-called phengitic series. -
DOGAMI Short Paper 8, Strategic and Critical Minerals: a Guide for Oregon
STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 702 Woodlark Building Portland, Oregon G M I SHORT PAPI:R No. 8 STRATEGIC AND CRITICAL MINERALS A GUIDE lOR OREGON PROSPECTORS. By Lloyd w. Staples; Ph.D, A••latant Proteaaor ot Geology University ot Oregon . • STATE GOVIEIIINING BOAIIID W. H. ITRAYIER, CHAIIIMAN . BAKU ALBIEIIIT BURC:H MIEDP'OIID IE MACNAUGHTON ••• PDIIT\.ANO EARL K. NIXON DIIIIIECTOIII PRICIE 15 CIENTI I Oat lORD In noraal tia•• ao1t pro•p•otor• look tor gold, 1inoe that aetal u1ually otter• the �uiok••t reward and i• generally tither •a•1ly reoogn1�•d or the or• 1• •usoept• 1ble or •••Y detera1nat1on. Pro1peotor11 ln general, thus gain llttlt or no experl tno• with other •inerai• who•• peaoetlae aarkttl otter little tnoentlve tor ltaroh tor new depo1it1. Under war oondltion• th••• aineral11 needed tor produotion ot war aat erial•, beooae ot priae iaportanoe and an in1i1tent deaand i1 created tor intoraation oonoernins ooourrenoe11 aineral oharaoteri1tio11 u1e1 and aarket1. fhe Dtpartaent i1 publllhins thil paper to help aeet thil deaand in1otar &I Oreson i1 �ono�rned. Dr. Staple• 11 tlptoially qualititd to write on the lubJeot or 1trateg1o aineral1. In rtoent rear• auoh ot hll work, both 1n private praotioe and 1n teaohing1 hat been oonoerntd with thll tubJeot. It 11 boptd that tht paptr will bt ot aattrial &1111t¬ to Oregon pro1ptotor1 &1 well al to 1aall operator• who have turned their attention troa gold aintns to thole alneral depo1it1 e11ential tor war netdl. It i1 believed that 1ohool1 will al1o t1nd the paper intoraatlve and tiaely. -
Near-Infrared Spectroscopic Study of Chlorite Minerals
Hindawi Journal of Spectroscopy Volume 2018, Article ID 6958260, 11 pages https://doi.org/10.1155/2018/6958260 Research Article Near-Infrared Spectroscopic Study of Chlorite Minerals 1,2 2 2 3 1 3 Min Yang , Meifang Ye, Haihui Han, Guangli Ren, Ling Han, and Zhuan Zhang 1School of Earth Science and Resources, Chang’an University, Xi’an 710061, China 2Xi’an Centre of China Geological Survey, Xi’an 710054, China 3Key Laboratory for Geohazards in Loess Areas, Chinese Ministry of Land and Resources, Xi’an 710054, China Correspondence should be addressed to Min Yang; [email protected] Received 3 September 2017; Accepted 3 December 2017; Published 26 February 2018 Academic Editor: Juan A. Cecilia Copyright © 2018 Min Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the − − twenty samples near 4525, 4440, 4361, 4270, and 4182 cm 1 were observed, and two diagnostic features at 4440 and 4280 cm 1 were recognized. Assignments of the two diagnostic features were made for two combination bands ( ν + δ AlAl O−OH and ν + δ SiAl O−OH) by regression with IR fundamental absorptions. -
Experimental Investigations of the Reaction Path in the Mgo–CO2
Available online at www.sciencedirect.com Applied Geochemistry Applied Geochemistry 23 (2008) 1634–1659 www.elsevier.com/locate/apgeochem Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation Yongliang Xiong *, Anna Snider Lord Sandia National Laboratories, Carlsbad Programs Group, 4100 National Parks Highway, Carlsbad, NM 88220, USA1 Received 26 June 2007; accepted 25 December 2007 Editorial handling by Z. Cetiner Available online 9 February 2008 Abstract The reaction path in the MgO–CO2–H2O system at ambient temperatures and atmospheric CO2 partial pressure(s), especially in high-ionic-strength brines, is of both geological interest and practical significance. Its practical importance lies mainly in the field of nuclear waste isolation. In the USA, industrial-grade MgO, consisting mainly of the mineral peri- clase, is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) for defense-related transuranic waste. The German Asse repository will employ a Mg(OH)2- based engineered barrier consisting mainly of the mineral brucite. Therefore, the reaction of periclase or brucite with car- bonated brines with high-ionic-strength is an important process likely to occur in nuclear waste repositories in salt forma- tions where bulk MgO or Mg(OH)2 will be employed as an engineered barrier. The reaction path in the system MgO–CO2– H2O in solutions with a wide range of ionic strengths was investigated experimentally in this study. The experimental results at ambient laboratory temperature and ambient laboratory atmospheric CO2 partial pressure demonstrate that hyd- romagnesite (5424) (Mg5(CO3)4(OH)2 Á 4H2O) forms during the carbonation of brucite in a series of solutions with differ- ent ionic strengths. -
List of Abbreviations
List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote -
Brucite Mg(OH)2 C 2001-2005 Mineral Data Publishing, Version 1
Brucite Mg(OH)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32/m. Crystals tabular {0001}, to 19 cm, in platy or foliated masses and rosettes; also fibrous, to 50 cm; granular, massive. Physical Properties: Cleavage: {0001}, perfect. Tenacity: Sectile; separable plates are flexible, fibers are elastic. Hardness = 2.5 D(meas.) = 2.39 D(calc.) = 2.368 Pyroelectric. Optical Properties: Transparent. Color: White, pale green, blue, gray; honey-yellow to brownish red and deep brown in manganoan varieties; colorless in transmitted light. Streak: White. Luster: Waxy, pearly on cleavage surfaces. Optical Class: Uniaxial (+); anomalously biaxial. ω = 1.56–1.59 = 1.58–1.60 2V(meas.) = Small. Cell Data: Space Group: P 3m1..a = 3.142(1) c = 4.766(2) Z=1 X-ray Powder Pattern: Synthetic. 2.365 (100), 4.77 (90), 1.794 (55), 1.573 (35), 1.494 (18), 1.373 (16), 1.310 (12) Chemistry: (1) (2) (3) Fe2O3 0.10 1.95 FeO 9.57 MnO 0.84 MgO 68.29 60.33 69.11 H2O 30.74 28.60 30.89 Total 99.97 100.45 100.00 (1) Wood’s Chrome mine, Pennsylvania, USA; corresponds to (Mg0.99Fe0.01)Σ=1.00(OH)2. (2) Asbestos, Canada; after deduction of Fe2O3 impurity, corresponds to 2+ (Mg0.93Fe0.08)Σ=1.01(OH)2. (3) Mg(OH)2. Mineral Group: Brucite group. Occurrence: A common alteration of periclase in marble; a low-temperature hydrothermal vein mineral in metamorphic limestones and chlorite schists; formed during serpentinization of dunites. -
Granasen, a Dolomite-Brucite Deposit with Potential for Industrial Development
NGU -BULL 436, 2000 - PAGE 75 Granasen, a dolomite-brucite deposit with potential for industrial development ODD 0VERENG 0vereng, O. 2000: Granasen, a do lomite-brucite deposi t wi th pote ntial for indust rial develo pm ent. Norges geolog iske und ersekelse Bulletin 436, 75-84. Granasen, situated close to Mo sjoen in north ern Norway, is a deposit containing several milli on tonn es of dolomite and brucite. The deposit has been investig ated and characte rised in preparati on fo r future deve lopment and exploitation. The ore consists of dol omi te and brucite . Brucite has fo rmed as a result of hydro th ermal alte rat ion associated with intrusion of gabbro. Tests have been carried out to evaluate the com mercial value of the dolom ite resources. A variet y of different bene ficiation met hods were investigated to achieve co mmerc ial concent rates of brucite . The most successful result was obtai ned by selective flocculat ion , w hich up-gr ades th e ore to a maximum gra de of 95.5 % brucite, with a recovery of 80 %. As an alte rnative, or by-product of bru cite concent rate produ ction, th e deposit cou ld also be w orked for dolomite. Odd 0vereng, Norgesgeologi ske undersekelse,N-749 1 Trondh eim, Norw ay. of th e Granasen dol om it e marble (Faye & 0 vereng 1979). Introduction Extensive mi neralogical and geo log ical investigat ions, Since the beg inning of the 1970s, the Geologica l Survey of including diamond drill ing, were carried out in 1979 and Norway (NGU) has investigated a large number of indu strial 1980 (0 vereng 1981), and confirmed th e interpretation th at min eral occurrence s.