Alphabetical List

Total Page:16

File Type:pdf, Size:1020Kb

Alphabetical List LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst silica minerals birnessite oxides amosite bischofite chlorides analbite framework silicates bismuthinite sulfides analcime zeolite group bixbyite oxides anatase oxides boehmite oxides andalusite nesosilicates bohdanowiczite sulfides andesine plagioclase boracite borates and chlorides andradite garnet group borax borates anglesite sulfates bornite sulfides anhydrite sulfates borosilicates silicates anilite sulfides boulangerite sulfosalts ankerite carbonates bournonite sulfosalts annite mica group brannerite oxides anorthite plagioclase braunite nesosilicates anorthoclase alkali feldspar bravoite sulfides anthophyllite orthoamphibole briartite sulfides antigorite serpentine group britholite phosphates and britholite antiperthite feldspar group group apatite phosphates brochantite sulfates apophyllite sheet silicates bromellite oxides aquamarine ring silicates brookite oxides aragonite carbonates brucite oxides arfvedsonite clinoamphibole brushite phosphates argentite sulfides buergerite tourmaline group armalcolite oxides buserite oxides arsenopyrite arsenides and sulfides bustamite wollastonite group arsenosulfides sulfides bytownite plagioclase artinite carbonates cacoxenite phosphates asbestos silicates calaverite tellurides 2 LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name calcite carbonates corundum oxides cancrinite carbonates and framework cosalite sulfosalts silicates covellite sulfides canfieldite sulfosalts crandallite phosphates carbonado native elements cristobalite silica minerals carbonate apatite phosphates crocidolite clinoamphibole carnallite chlorides crocoite chromates carnelian silica minerals cronstedtite serpentine group carnotite vanadates crossite clinoamphibole carpholite chain silicates cryolite fluorides carrollite sulfides cryptomelane oxides cassiterite oxides cryptoperthite alkali feldspar cattierite sulfides cubanite sulfides celadonite mica group cummingtonite clinoamphibole celestine sulfates cuprite oxides celsian feldspar group cylindrite sulfosalts cerolite sheet silicates cymrite sheet silicates cerussite carbonates cyrtolite nesosilicates chabazite zeolite group dahllite carbonates and phosphates chalcanthite sulfates danburite framework silicates chalcedony silica minerals datolite datolite group chalcocite sulfides dawsonite carbonates chalcopyrite sulfides deerite chain silicates chalcostibite sulfosalts delafossite oxides chamosite chlorite group descloizite vanadates chaoite native elements diamond native elements charoite chain silicates diaspore oxides chevkinite chevkinite group dickite clay minerals chkalovite chain silicates digenite sulfides chlorapatite phosphates diopside clinopyroxene chlorite chlorite group djurleite sulfides chloritoid nesosilicates dolomite carbonates chlorophaeite silicates dravite tourmaline group chondrodite nesosilicates dufrenoysite sulfosalts chrome diopside clinopyroxene dumortierite nesosilicates chrome spinel oxides dyscrasite antimonides chromite oxides edenite clinoamphibole chrysoberyl oxides edingtonite zeolite group chrysocolla clay minerals ekanite sheet silicates chrysoprase silica minerals elbaite tourmaline group chrysotile serpentine group electrum alloys cinnabar sulfides ellenbergerite nesosilicates clinochlore chlorite group emerald ring silicates clinoenstatite clinopyroxene emplecitite sulfosalts clinohumite nesosilicates and fluorides enargite sulfosalts clinohypersthene clinopyroxene enstatite orthopyroxene clinoptilolite zeolite group eosphorite phosphates clinozoisite epidote group epidote epidote group clintonite sheet silicates epistilbite zeolite group cobaltite arsenides and sulfides epsomite sulfates coesite silica minerals erionite zeolite group coffinite zircon group eskebornite selenides cohenite carbides ettringite sulfates colemanite borates euclase nesosilicates coloradoite tellurides eucryptite phenakite group columbite niobates eudialyte chlorides and ring silicates conichalcite arsenates euxenite niobates and tantalates cookeite chlorite group famatinite sulfosalts cooperite sulfides fassaite clinopyroxene copiapite sulfates faujasite zeolite group copper minerals fayalite olivine group copper sulfides sulfides feldspathoids silicates coquimbite sulfates ferberite tungstates cordierite ring silicates fergusonite niobates coronadite oxides ferrierite zeolite group corrensite sheet silicates ferrihydrite oxides LIST L - MINERALS - ALPHABETICAL LIST 3 Specific mineral Group name Specific mineral Group name ferrimolybdite molybdates hausmannite oxides ferrocarpholite chain silicates hauyne sodalite group ferrohastingsite clinoamphibole heazlewoodite sulfides ferropericlase oxides hectorite clay minerals ferropseudobrookite oxides hedenbergite clinopyroxene ferrosilicon silicides hedleyite tellurides and alloys ferrosilite orthypyroxene helvite sodalite group and sulfides florencite phosphates hematite oxides fluoborite borates and fluorides hemihedrite chromates fluor-phlogopite mica group fluorapatite phosphates hemimorphite sorosilicates fluorite fluorides hercynite oxides fluosilicates halides herderite phosphates foitite tourmaline group herzenbergite sulfides forsterite olivine group hessite tellurides francolite phosphates heterogenite oxides franklinite oxides heteromorphite sulfosalts freibergite sulfosalts heulandite zeolite group freieslebenite sulfosalts hexahydrite sulfates froodite bismuthides hibonite oxides fuchsite mica group hibschite hydrogarnet fullerene native elements hinsdalite phosphates and sulfates gadolinite datolite group hisingerite clay minerals gahnite oxides hoegbomite oxides galena sulfides hollandite oxides galenobismutite sulfosalts holmquistite orthoamphibole garnierite silicates hornblende clinoamphibole garrelsite nesosilicates howieite chain silicates garronite zeolite group hulsite borates gaylussite carbonates humite nesosilicates and fluorides gedrite orthoamphibole huntite carbonates gehlenite melilite group hureaulite phosphates geikielite oxides hyalite silicates genthelvite sodalite group and sulfides hyalophane feldspar group geocronite sulfosalts hydrobiotite sheet silicates germanates oxides hydroboracite borates germanite sulfosalts hydrogarnet garnet group gersdorffite arsenides and sulfides hydrogoethite oxides gibbsite oxides hydrogrossular garnet group gillespite sheet silicates hydromagnesite carbonates glauberite sulfates hydromica sheet silicates glauconite mica group hydrosodalite sodalite group glaucophane clinoamphibole hydrotalcite carbonates gmelinite zeolite group hydroxides oxides goethite oxides hydroxylapatite phosphates goyazite phosphates hypersthene orthopyroxene graftonite phosphates Iceland spar carbonates grandidierite nesosilicates idaite sulfides graphite native elements ikaite carbonates gratonite sulfosalts illite sheet silicates greenockite sulfides ilmenite oxides greigite sulfides ilvaite sorosilicates grossular garnet group imogolite clay minerals groutite oxides innelite sorosilicates grunerite clinoamphibole iron hydroxides oxides gudmundite sulfides iron minerals gustavite sulfosalts iron oxides oxides gypsum sulfates iron silicates silicates gyrolite sheet silicates iron sulfides sulfides haidingerite arsenates ixiolite niobates and tantalates halite chlorides jacobsite oxides halloysite clay minerals jade chain silicates halotrichite sulfates jadeite clinopyroxene hammarite sulfosalts jamesonite sulfosalts harkerite nesosilicates jarosite sulfates harmotome zeolite group jasper silica minerals hastingsite clinoamphibole joaquinite ring silicates 4 LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name johannsenite clinopyroxene lollingite arsenides jordanite sulfosalts lonsdaleite native elements jordisite sulfides loparite niobates joseite tellurides and sulfides ludwigite borates josephinite alloys luzonite sulfosalts jouravskite sulfates mackinawite sulfides julgoldite pumpellyite group magadiite sheet silicates
Recommended publications
  • Article Is Available On- Cu2 Site Is More Difficult, Certainly Due to the Small Size Line At
    Eur. J. Mineral., 32, 449–455, 2020 https://doi.org/10.5194/ejm-32-449-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Luxembourgite, AgCuPbBi4Se8, a new mineral species from Bivels, Grand Duchy of Luxembourg Simon Philippo1, Frédéric Hatert2, Yannick Bruni2, Pietro Vignola3, and Jiríˇ Sejkora4 1Laboratoire de Minéralogie, Musée National d’Histoire Naturelle, Rue Münster 25, 2160 Luxembourg, Luxembourg 2Laboratoire de Minéralogie, Université de Liège B18, 4000 Liège, Belgium 3CNR-Istituto di Geologia Ambientale e Geoingegneria, via Mario Bianco 9, 20131 Milan, Italy 4Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 9, Prague, Czech Republic Correspondence: Frédéric Hatert ([email protected]) Received: 24 March 2020 – Revised: 30 June 2020 – Accepted: 15 July 2020 – Published: 12 August 2020 Abstract. Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Lux- embourg. The mineral forms tiny fibres reaching 200 µm in length and 5 µm in diameter, which are deposited on dolomite crystals. Luxembourgite is grey, with a metallic lustre and without cleavage planes; its Mohs hard- ness is 3 and its calculated density is 8.00 g cm−3. Electron-microprobe analyses indicate an empirical formula Ag1:00.Cu0:82Ag0:20Fe0:01/61:03Pb1:13Bi4:11.Se7:72S0:01/67:73, calculated on the basis of 15 atoms per formula unit. A single-crystal structure refinement was performed to R1 D 0:0476, in the P 21=m space group, with 3 a D 13:002.1/, b D 4:1543.3/, c D 15:312.2/Å, β D 108:92.1/◦, V D 782:4.2/Å , Z D 2.
    [Show full text]
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • 19660017397.Pdf
    .. & METEORITIC RUTILE Peter R. Buseck Departments of Geology and Chemistry Arizona State University Tempe, Arizona Klaus Keil Space Sciences Division National Aeronautics and Space Administration Ames Research Center Mof fett Field, California r ABSTRACT Rutile has not been widely recognized as a meteoritic constituent. show, Recent microscopic and electron microprobe studies however, that Ti02 . is a reasonably widespread phase, albeit in minor amounts. X-ray diffraction studies confirm the Ti02 to be rutile. It was observed in the following meteorites - Allegan, Bondoc, Estherville, Farmington, and Vaca Muerta, The rutile is associated primarily with ilmenite and chromite, in some cases as exsolution lamellae. Accepted for publication by American Mineralogist . Rutile, as a meteoritic phase, is not widely known. In their sunanary . of meteorite mineralogy neither Mason (1962) nor Ramdohr (1963) report rutile as a mineral occurring in meteorites, although Ramdohr did describe a similar phase from the Faxmington meteorite in his list of "unidentified minerals," He suggested (correctly) that his "mineral D" dght be rutile. He also ob- served it in several mesosiderites. The mineral was recently mentioned to occur in Vaca Huerta (Fleischer, et al., 1965) and in Odessa (El Goresy, 1965). We have found rutile in the meteorites Allegan, Bondoc, Estherville, Farming- ton, and Vaca Muerta; although nowhere an abundant phase, it appears to be rather widespread. Of the several meteorites in which it was observed, rutile is the most abundant in the Farmington L-group chondrite. There it occurs in fine lamellae in ilmenite. The ilmenite is only sparsely distributed within the . meteorite although wherever it does occur it is in moderately large clusters - up to 0.5 mn in diameter - and it then is usually associated with chromite as well as rutile (Buseck, et al., 1965), Optically, the rutile has a faintly bluish tinge when viewed in reflected, plane-polarized light with immersion objectives.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
    nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Marinellite, a New Feldspathoid of the Cancrinite-Sodalite Group
    Eur. J. Mineral. 2003, 15, 1019–1027 Marinellite, a new feldspathoid of the cancrinite-sodalite group ELENA BONACCORSI* and PAOLO ORLANDI Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, I-56126 Pisa, Italy * Corresponding author, e-mail: [email protected] Abstract: Marinellite, [(Na,K)42Ca6](Si36Al36O144)(SO4)8Cl2·6H2O, cell parameters a = 12.880(2) Å, c = 31.761(6) Å, is a new feldspathoid belonging to the cancrinite-sodalite group. The crystal structure of a twinned crystal was preliminary refined in space group P31c, but space group P62c could also be possible. It was found near Sacrofano, Latium, Italy, associated with giuseppettite, sanidine, nepheline, haüyne, biotite, and kalsilite. It is anhedral, transparent, colourless with vitreous lustre, white streak and Mohs’ hardness of 5.5. The mineral does not fluoresce, is brittle, has conchoidal fracture, and presents poor cleavage on {001}. Dmeas is 3 3 2.405(5) g/cm , Dcalc is 2.40 g/cm . Optically, marinellite is uniaxial positive, non-pleochroic, = 1.495(1), = 1.497(1). The strongest five reflections in the X-ray powder diffraction pattern are [d in Å (I) (hkl)]: 3.725 (100) (214), 3.513 (80) (215), 4.20 (42) (210), 3.089 (40) (217), 2.150 (40) (330). The electron microprobe analysis gives K2O 7.94, Na2O 14.95, CaO 5.14, Al2O3 27.80, SiO2 32.73, SO3 9.84, Cl 0.87, (H2O 0.93), sum 100.20 wt %, less O = Cl 0.20, (total 100.00 wt %); H2O calculated by difference. The corresponding empirical formula, based on 72 (Si + Al), is (Na31.86K11.13Ca6.06) =49.05(Si35.98Al36.02)S=72O144.60(SO4)8.12Cl1.62·3.41H2O.
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Action of Ammonium Chloride Upon Silicates
    Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._
    [Show full text]
  • NEW MINERALS It Is Proposed Hereafter to Indicate In.A General Way the Classification of All New Minerals Recoided in This Department
    JOURNAL MINERALOGICAL SOCIETY OF AMENICA 63 Dr. Kunz then spoke of the various city localities and the minerals found therein. He stated that the East Side, from 37 to 110 St., probably afforded the most specimens. The various tunnels and their minerals were spoken of. Capt. Miller called attention to the fine collection of Brooklyn Drift Minerals and Rocks in the collection of the Long Island Historical Society. Ife abo mentioned the occurrence of monazite and xenotime crystals, on the Speedway,Harlem River. Dr. Kunz emphasizedthe irnportance of complete records being kept of all finds. Tnou,q,s L Mrr,r,nn, SecretaryPro, Tem. NEW MINERALS It is proposed hereafter to indicate in.a general way the classification of all new minerals recoided in this department. Subdivision will be first into "families," of which nine may be recognized,as listed in the January number (Am. Min.6 (1), 12,1921). Eachfamilywillbe separatedinto "subfamilies " based on special features of composition. This arrangement is tentative and open to modification, and criticism of it will be welcome, [Eo.] FAMILY 2. SULFIDES, ETC. SosreMrr,v 3. Doust,u suLFrDEs oF METALSAND sEMr-METAr,s. I'LTRABASITE V. Rosrcxf and J. Srnnse-Btinu. Ultrabasit, ein neues Mineral aus Freiberg in Sachsen. (Ultrabasite, a new mineral from Freiberg, Saxony). Rozpr.Eeslcd Ako,il. Prag,25, No. 45, 1916;Z. Krgst. Min., 55,43H39, 1920, Neun: From its extremely basic chemical composition. Pnrsrcar, Pnopnnrrus Color black, somewhat grayish; luster metallic; streak black; cleavage none; fracture scaly, with somewhat greasy luster on the surface. H. : 5; sp. gr.
    [Show full text]