26 May 2021 Aperto
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal Behavior of Afghanite, an ABABACAC Member of the Cancrinite Group
American Mineralogist, Volume 97, pages 630–640, 2012 Thermal behavior of afghanite, an ABABACAC member of the cancrinite group PAOLO BALLIRANO1,2,* AND FERDINANDO BOSI1,3 1Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185, Roma, Italy 2CNR-IGAG, Istituto di Geologia Ambientale e Geoingegneria, Sede di Roma, Via Bolognola 7, I-00138 Roma, Italy 3CNR-IGG Istituto di Geoscienze e Georisorse, Sede di Roma, P.le A. Moro, 5, I-00185 Roma, Italy ABSTRACT Thermal behavior of afghanite, (Na15K5Ca11)Σ31[Si24Al24O96](SO4)6Cl6, P31c, a = 12.7961(7) Å, c = 21.4094(13) Å, an eight-layer member of the cancrinite group, has been investigated by combined electron microprobe analysis, X-ray single-crystal diffraction, and high-temperature X-ray powder diffraction. Non-ambient X-ray powder diffraction data were collected in the 323–1223 K thermal range on a specimen from Case Collina, Latium, Italy. Structural refinement and site assignment based on the bond-valence analysis, performed on room-temperature single-crystal X-ray diffraction data, provided more accurate site allocation of cations than the available model in the literature. The results show that the cancrinite cages alternating with the liottite cages are more compressed along the c-axis than the remaining ones. As a result the chlorine atom, located at the center of the cages, is driven off-axis to release the steric strain due to the cage compression. Thermal expansion shows a discontinuity at 448 K for both a and c unit-cell parameters, a feature previously reported for other cancrinite-like minerals. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Marinellite, a New Feldspathoid of the Cancrinite-Sodalite Group
Eur. J. Mineral. 2003, 15, 1019–1027 Marinellite, a new feldspathoid of the cancrinite-sodalite group ELENA BONACCORSI* and PAOLO ORLANDI Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, I-56126 Pisa, Italy * Corresponding author, e-mail: [email protected] Abstract: Marinellite, [(Na,K)42Ca6](Si36Al36O144)(SO4)8Cl2·6H2O, cell parameters a = 12.880(2) Å, c = 31.761(6) Å, is a new feldspathoid belonging to the cancrinite-sodalite group. The crystal structure of a twinned crystal was preliminary refined in space group P31c, but space group P62c could also be possible. It was found near Sacrofano, Latium, Italy, associated with giuseppettite, sanidine, nepheline, haüyne, biotite, and kalsilite. It is anhedral, transparent, colourless with vitreous lustre, white streak and Mohs’ hardness of 5.5. The mineral does not fluoresce, is brittle, has conchoidal fracture, and presents poor cleavage on {001}. Dmeas is 3 3 2.405(5) g/cm , Dcalc is 2.40 g/cm . Optically, marinellite is uniaxial positive, non-pleochroic, = 1.495(1), = 1.497(1). The strongest five reflections in the X-ray powder diffraction pattern are [d in Å (I) (hkl)]: 3.725 (100) (214), 3.513 (80) (215), 4.20 (42) (210), 3.089 (40) (217), 2.150 (40) (330). The electron microprobe analysis gives K2O 7.94, Na2O 14.95, CaO 5.14, Al2O3 27.80, SiO2 32.73, SO3 9.84, Cl 0.87, (H2O 0.93), sum 100.20 wt %, less O = Cl 0.20, (total 100.00 wt %); H2O calculated by difference. The corresponding empirical formula, based on 72 (Si + Al), is (Na31.86K11.13Ca6.06) =49.05(Si35.98Al36.02)S=72O144.60(SO4)8.12Cl1.62·3.41H2O. -
Action of Ammonium Chloride Upon Silicates
Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._ -
Information Clearance Review and Release Approval
INFORMATION CLEARANCE REVIEW AND RELEASE APPROVAL Part I: Background Information Title: TEST RESULTS FOR CAUSTIC DEMAND MEASUREMENTS Information Category: ON TANK 241-AX-101 AND TANK 241-AX-103 ARCHIVE SAMPLES 0 Abstract 0 Journal Article 0 Summary 0 Internet 0 Visual Aid 0 Software Publish to OSTI? 0 Yes □ No 0 Full Paper 0 Report 0 Other Yes NA Trademark/Copyright “Right to Use” Information or Permission Documentation O 0 Document Number: WRPS-1602862 Revision 0 Date: July 2016 Author: Doll, Stephanie R Part II: External/Public Presentation Information Conference Name: Sponsoring Organization(s): WRPS Date of Conference: Conference Location: Will Material be Handed Out? □ Yes 0 No Will Information be Published? □ Yes 0 No ^formatinstuctfons/guidance^1106 Part III: WRPS Document Originator Checklist Description Yes N/A Print/Sign/Date Information Product meets requirements in TFC-BSM-AD-C-01? o 0 Document Release Criteria in TFC-ENG-DESIGN-C-25 completed? 0 (Attach checklist) o If product contains pictures, safety review completed? 0 o Lindberg, Chandy IDMS Data File att. Part IV: WRPS Internal Review Function Organization Date Print Name/Signature/Date Subject Matter Expert WRPS 10/04/2016 Doll, Stephanie R IDMS Data File att. Responsible Manager WRPS 08/08/2016 Cooke, Gary A IDMS Data File att. Other: Part V: IRM Clearance Services Review Description Yes No Print Name/Signature Document Contains Classified Information? o H If Answer is “Yes,” ADC Approval Required Print Name/Signature/Date Document Contains Information Restricted by DOE Operational o 0 Reviewer Signature: Security Guidelines? Print Name/Signature/Date Document is Subject to Release Restrictions? o H Document contains: If theanswer is “Yes, ” please mark category at right and describe 0 Applied Technology 0 Protected CRADA limitation or responsible organization below: 0 Personal/Private 0 Export Controlled 0 Proprietary 0 Procurement - Sensitive 0 Patentable Info. -
New Mineral Names*
AmericanMineralogM, Volume66, pages 1099-l103,IgEI NEW MINERAL NAMES* LouIs J. Cetnt, MrcHeer FtnrscHnn AND ADoLF Pnssr Aldermanlter Choloallte. I. R. Harrowficl4 E. R. Segnitand J. A. Watts (1981)Alderman- S. A. Williams (1981)Choloalite, CuPb(TeO3)z .HrO, a ncw min- ite, a ncw magnesiumalrrminum phosphate.Mineral. Mag.44, eral. Miaeral. Mag. 44, 55-51. 59-62. Choloalite was probably first found in Arabia, then at the Mina Aldermanite o@urs as minute, very thin" talc-likc crystallitcs La Oriental, Moctczuma, Sonora (the typc locality), and finally at with iuellite and other secondaryphosphates in the Moculta rock Tombstone, Arizona. Only thc Tombstone material provides para- phosphatc deposit near thc basc of Lower Cambrisn limestone genetic information. In this material choloalite occurs with cerus- close to Angaston, ca. 60 km NE of Adelaide. Microprobc analy- site, emmonsite and rodalquilarite in severcly brecciated shale that si.q supplcmented by gravimetric water determination gave MgO has been replaced by opal and granular jarosite. Wet chcmical E.4,CaO 1.2, AJ2O328.4, P2O5 25.9, H2O 36.1%,(totat 100),lead- analysisofcholoalitc from the type locality gave CuO 11.0,PbO ing to the formula Mg5Als2(POa)s(OH)zz.zH2O,where n = 32. 33.0,TeO2 50.7, H2O 3.4,total 98.1%,correspolding closcly to thc Thc powder diffraction pattern, taken with a Guinier camera, can formula in the titlc. Powder pattems of thc mineral from thc three be indexed on an orthorhombic. ccll with a = 15.000(7), D = localities can bc indexcd on the basis of a cubic ccll with a : 8.330(6),c - 26.60(l)A, Z = 2,D alc.2.15 from assumedcell con- l2.5l9A for the material from Mina La Oriental, Z: l2,D c,alc. -
New Minerals Approved Bythe Ima Commission on New
NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI. -
Nucleation and Growth Process of Sodalite and Cancrinite from Kaolinite-Rich Clay Under Low-Temperature Hydrothermal Conditions
Materials Research. 2013; 16(2): 424-438 © 2013 DOI: 10.1590/S1516-14392013005000010 Nucleation and Growth Process of Sodalite and Cancrinite from Kaolinite-rich Clay under Low-temperature Hydrothermal Conditions Carlos Alberto Ríos Reyesa*, Craig Williamsb, Oscar Mauricio Castellanos Alarcónc aEscuela de Geología, Universidad Industrial de Santander, Carrera 27 Calle 9, Ciudad Universitaria, Bucaramanga, Colombia bSchool of Applied Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, England cPrograma de Geología, Universidad de Pamplona, Ciudad Universitaria, Pamplona, Colombia Received: October 28, 2011; Revised: August 24, 2012 The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O–Al2O3–SiO2–H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) and thermogravimetric analysis (TGA). Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase) occurring as a minor phase, compared with the presence of sodalite and cancrinite. Keywords: synthesis, low-silica, hydrothermal, kaolinite, transformation 1. Introduction The Bayer process is the principal industrial means positively charged species to neutralise them3. Cations can of refining bauxite to produce alumina (Al2O3), which enter these porous materials to balance the charge of their must be purified before it can be refined to aluminium structural frameworks6. -
High-Pressure Study of a Natural Cancrinite
American Mineralogist, Volume 97, pages 872–882, 2012 High-pressure study of a natural cancrinite PAOLO LOTTI,1 G. DIEGO GATTA,1,2,* NICOLA ROTIROTI,1,2 AND FERNANDO CÁMARA3 1Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy 2CNR, Istituto per la Dinamica dei Processi Ambientali, Via M. Bianco 9, 20131 Milano, Italy 3Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy ABSTRACT The high-pressure elastic behavior and the P-induced structure evolution of a natural cancrinite from Cameroun {Na6.59Ca0.93[Si6Al6O24](CO3)1.04F0.41·2H2O, a = 12.5976(6) Å, c = 5 .1168(2) Å, space group: P63} were investigated by in situ single-crystal X-ray diffraction under hydrostatic conditions up to 6.63(2) GPa with a diamond-anvil cell. The P-V data were fitted with an isothermal Birch-Murnaghan type equation of state (BM EoS) truncated to the third order. Weighted fit (by the 3 uncertainty in P and V) gave the following elastic parameters: V0 = 702.0(7) Å , KV0 = 51(2) GPa, and KV´ = 2.9(4). A linearized BM EoS was used to fit the a-P and c-P data, giving the following refined parameters: a0 = 12.593(5) Å, Ka0 = 64(4) GPa, Ka´ = 4.5(9), for the a-axis, and c0 = 5.112(3) Å, Kc0 = 36(1) GPa, K´c = 1.9(3) for the c-axis (elastic anisotropy: Ka0:Kc0 = 1.78:1). A subtle change of the elastic behavior appears to occur at P > 4.62 GPa, and so the elastic behavior was also described on the basis of BM EOS valid between 0.0001–4.62 and 5.00–6.63 GPa, respectively. -
Crystal Chemistry of Cancrinite-Group Minerals with an Ab-Type Framework: a Review and New Data
1151 The Canadian Mineralogist Vol. 49, pp. 1151-1164 (2011) DOI : 10.3749/canmin.49.5.1151 CRYSTAL CHEMISTRY OF CANCRINITE-GROUP MINERALS WITH AN AB-TYPE FRAMEWORK: A REVIEW AND NEW DATA. II. IR SPECTROSCOPY AND ITS CRYSTAL-CHEMICAL IMPLICATIONS NIKITA V. CHUKANOV§ Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow Oblast, Russia IGOR V. PEKOV, LYUDMILA V. OLYSYCH, NATALIA V. ZUBKOVA AND MARINA F. VIGASINA Faculty of Geology, Moscow State University, Leninskie Gory, 119992 Moscow, Russia ABSTRACT We present a comparative analysis of powder infrared spectra of cancrinite-group minerals with the simplest framework, of AB type, from the viewpoint of crystal-chemical characteristics of extra-framework components. We provide IR spectra for typical samples of cancrinite, cancrisilite, kyanoxalite, hydroxycancrinite, depmeierite, vishnevite, pitiglianoite, balliranoite, davyne and quadridavyne, as well as the most unusual varieties of cancrinite-subgroup minerals (Ca-deficient cancrinite, H2O-free cancrinite, intermediate members of the series cancrinite – hydroxycancrinite, cancrinite–cancrisilite, cancrinite– kyanoxalite, K-rich vishnevite, S2-bearing balliranoite). Samples with solved crystal structures are used as reference patterns. Empirical trends and relationships between some parameters of IR spectra, compositional characteristics and unit-cell dimensions 2– are obtained. The effect of Ca content on stretching vibrations of CO3 is explained in the context of the cluster approach. The existence of a hydrous variety of quadridavyne is demonstrated. Keywords: cancrinite, cancrisilite, kyanoxalite, hydroxycancrinite, depmeierite, vishnevite, pitiglianoite, balliranoite, davyne, quadridavyne, cancrinite group, infrared spectrum, crystal chemistry. SOMMAIRE Nous présentons une analyse comparative des spectres infrarouges obtenus à partir de poudres de minéraux du groupe de la cancrinite ayant la charpente la plus simple, de type AB, du point de vue des caractéristiques cristallochimiques des composantes externes à la charpente. -
Winter 2003 Gems & Gemology
Winter 2003 VOLUME 39, NO. 4 EDITORIAL _____________ 267 Tomorrow’s Challenge: CVD Synthetic Diamonds William E. Boyajian FEATURE ARTICLES _____________ 268 Gem-Quality Synthetic Diamonds Grown by a Chemical Vapor Deposition (CVD) Method Wuyi Wang, Thomas Moses, Robert C. Linares, James E. Shigley, Matthew Hall, and James E. Butler pg. 269 Description and identifying characteristics of Apollo Diamond Inc.’s facetable, single-crystal type IIa CVD-grown synthetic diamonds. 284 Pezzottaite from Ambatovita, Madagascar: A New Gem Mineral Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adolf Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty A look at the history, geology, composition, and properties of this new cesium-rich member of the beryl group. 302 Red Beryl from Utah: A Review and Update James E. Shigley, Timothy J. Thompson, and Jeffrey D. Keith A report on the geology, history, and current status of the world’s only known occurrence of gem-quality red beryl. pg. 299 REGULAR FEATURES _____________________ 314 Lab Notes • Chrysocolla “owl” agate • Red coral • Coated diamonds • Natural emerald with nail-head spicules • Emerald with strong dichroism • High-R.I. glass imitation of tanzanite • Large clam “pearl” • Blue sapphires with unusual color zoning • Spinel with filled cavities 322 Gem News International • Comparison of three historic blue diamonds • Natural yellow diamond with nickel-related optical centers -
Italian Type Minerals / Marco E
THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests.