Volume 66, 1981*

Total Page:16

File Type:pdf, Size:1020Kb

Volume 66, 1981* INDEX, VOLUME 66, 1981* Ab jnixio M0 calculations 819,1237 Analyses, cont. Analyses,cont. 'l233 974 Achondrite, oriented olivine ec1og i ie 459 zoisite, Cr epi dote, Cr 974 ANDERS0N,C.S. and S.t^l. BAILEY: ACKERMAND,DIETRICH see pattern FRANZ,GERHARD 872 eugsteri te A newcation ordering 185 Acrofanite, newmineral (abstr) I'r00 fayal i te 95 in amesite-2az Adu.laria,analyses 484 Fe dolomite 51? ANDERSON,J.B. sEeSHOEMAKER, 485 forsteri te 498 G.L. 169 Aegirine, analyses genesis 938 Afghanite, structure 777 fri edeli te I 061 Andesite,experirnental garnet 463,7lI ,743,1027 Anilite, Cu-Sbond 813 Ajoite, newdata 201 phase AKIZUKI,MIZUHIK0: Investigation glasses, Na 547 Anorthite, equilibria ll83 of phase transition of natural graphitic sulfidic schists 916 Antaractica greenali te az5 meteoriticolivine I 233 ZnSminerals by high resolu- '1006 to22 tion electron microscopy halloysite r 004 surinamite,etc. 480 Antigorite, dissolution 801 _: Origin of optical heulandi te variation in analcime 403 hypersthene 75,337 Apatite Albi te i I menite 95,728,978 analyses 670 analys es 484 iron formation 89,51 1 inclusionin Cr diopside 347 heat capacity 1202 jonsomervilleite 834 Apuanite, microstructure I 073 Aldermanite,new mineral (abstr) 1099 kanoite 128 Aragonite,oolite 789 ARAKI.TAKAHARU and P.B. M00RE: Alforsite, newmineral 1050 kaolinite rock I 004 - Alkali diffusion, EPMA 547 kar'l i te 875 Diieni te, cul+Mn?tFe3l(oH)6 kornerupine 743 (Asrt03)5(Si lr04J i(Asr+04 ) : Alkali feldspars, thennodynamic t+; functi ons 1202 kutnahorite 280 metallic (AslrCu clusters Alkremite, Utah 741 kyani te 706 in an oxide matrix 1263 ALLARD,L.F. see GORDON,l^J.A. 127 I epi dol i te I ZL+ ---X-a2caand ;.Fi11owite, Almandine,analyses I eucite 669 (lln,FeTf*(PoA)6:- i ts Almbosite, newmineral (abstr) 878 I herzol i te 448 crystal struCture 827 Alpine peridotite, Alps 443 I udwigi te 875 , seeM00RE, P.B. I 034 Al umophannacosiderite, new magnetite 95,337,729 mlliA, M. see KUEHNER,s.M. 563 mineral (abstr) I 099 margarite 215 Arizona,ajoite 201 Amesite-2H2,structure and meta-autunite I 070 Arrojadite, structure I 034 oroerr ng 185 metakaolin nodule I 004 Arsenohauchecornite, new (abstr) +JO AMOURIC,MARC see MELLINI, microcl i ne mineral minnesotai te 517 Asbecasite,bond angle 819 MARCELLO I 073 (abstr) Amphibole,analyses 94 rnuscovite 55,75,215,710,9.l3Ashanite,new mineral 217 Anphiboles, India 625 Naamphibole 464 Augite, dispersion 987 Analbite, heat capacity 1202 natroapophyllite 414 Australi a Analcime,optical variation 403 ol i vi ne 337,526 ,665 '450 '978 bannisteri te 1063 Andalusite, analyses 706 orthopyroxene 75,337,451,526 halloysite fromkaolinite 997 Analyses,chemical 729,967 iron fonnation 87,507 I ub6 adulari a 484 parascholzite 848 rneta-autunite aegiri ne 485 perovskite 670 pyrrhoti te 1254 phlogopite 347,668,1.l58 ti vanite 866 ajoite 203 872 al bi te 484 plagioclase 75 Austria, kar'li te a l forsi te 1052 pleonaste 337 Axinite, structure 428 almandine 57,96 potassic lavas 671 amesite-2s2 I 86 prehnite 913 amphibo1 e 94,627 pyrophylI i te-1 rc 351 B-MgzSioa,structure 558 andalusite 706 pyroxenes 31,92 Backlscaiteredelectron anti gori te 802 pyroxmangite 281 detector 362 apati te 347,670 ri ebeckite 517 BAILEY,S.l^l. see ANDERS0N, C.S. 185 axi ni te 429 rhodonite 281 seeWEISS, ZDENEK 56] bannisteri te 1065 sapphirine,Be 1029 BTRER-;D.R. see SEKINE, bartoni te 371 schallerite 1056 TOSHIMORI 938 bayldonite 149 serpent'ine 347 BALTATZIS,EMM. and C. KATAGAS: biotite 56,75,96,359,7.I0,913 si derite 515 Margarite pseudonnrphs biotite, Si-rich 587 si I I imanite 706 after kyanite :in Glen Esk, brucite 802 spinel 670,729,743 Scotland 213 Ca amphibole 465 stauroli te 59,712 Balydkinite, newmineral calcite 504,5.|2 ster'linghiIlite 183 (abstr) 436 caryopi1ite 1060 sti lpnonelane 516 BAMBAUER,H. -U. SCCKROLL' chlori te 60,75,71I,9.l 3 surinamite 1026 HERBERT 763 chl ori toi d 7l I taaffeite 1029 Bannisteri te, empiri cal chromite, Mn l0l 5 taic 498,50I'802 fornulae ]063 c l i nopyroxene 128,337,452,666 ,728 theophrasti te 1021 BARGAR,K.E. ANdM.H. BEESON: cordierite 60,75,711,1030 ti tanomagnetjte 754 Hydrothermalalteration in corundum 743 ti vani te bo/ researchdrill hole Y-2, Low- Cr diopside 347 tremol i te 498,501 er GeyserBasin, Yellowstone Cr spinel 347 wai raki te 481 National Park, WYoming 473 dacfii ardi te 48.l wi nchi te oat BARRONNET,ALAIN see MELLINI, diopside 498 wonesi te 102 MARCELLO 1068 doloni te 347 yugawarali te 481 *Prepared by Michael J. Holdaway and Nazlee Coburn, Southern Methodist University, Dallas, Texas. Czechoslovaki l2E3 Bartonite Caamphibole, newmineral 369 analyses 465 Clinopyroxene,cont. structure Caoxalate trihydrate 859 analyses,synthetic 227 376 CABRI ution Basalt,olivine in vugs 980 , L.J . : Newmi neral names exsol 127 537,1099 ,127 4 magmagenesis 938 BAUER,J.F^ andSCLAR, C.B.: partitioning The"104 phase" in the Calcariousmetannrphi cs, REE 242 Scotland 49] Coesite, hi gh-pressure systemMg0-Si02-H20 576 Bayldonite, Calcite structure 324 formuTaa-nd structure 148 peridotite BEES0N,M.H. see BARGAR, analyses 504,512 Colorado, nodule 334 K.E. 473 decarbonation BENEKE,KLAUS and GERHARD LAGALY: equilibria ll35 Colquiriite, newmineral ool i (abstr) Krautite, MnHAsOa.H20- an te 789 879,1099 i ntracrystalI ine reactive California Combustionmetamorohism 997 alforsite mineral 432 1050 Connecticut BENNETT,C.E.G. and J. GMHAM: bartonite 369 di ckinsoni te I 034 Newobservations depositson olivine 980 fillowite 827 on natural phosphate pyrrhotites: magnetictransi- santaclari te I 54 Copper hydrate tion in hexagonalpyrrhotite Calderite, newdata (abstr) 1290 structure 169 1254 CAMERON,MARYELLEN polymorphism BENNETT,J.M. seeSMITH, J.V. 777 and J.J. 176 Bentorite, newmineral (abstr) PAPIKE:Structural and Copper-sulfurbond lengths 807 637 chernicalvariations in Cordierite, analyses BERG,J.H. andS.A. MORSE: pyroxenes Dispersionmethod I 60,75,711,1030 for olivine, Cancrinite, orthopyroxeneand augite structure 777 Corundum,ana lyses 743 985 Carbonates,North Cu-Sbond 813 Bergenite,new data (abstr) ll02 Carolina 278 Covellite, BERKLEY,J.L. ANDKEIL, CARPENTER,l',|.A.: A "conditional Crete, Mgcarpholite 1080 KLAUS: spinodal" peris- 0livine orientationin the within the Cristobalite, from combustion997 ALHA77005 terite miscibility gapof Crystal growth,diopside 223 achondrite 1233 plagioclase Beryl, l4alagasy 885 feldspars 553 Crystal structure Beryllium sil icates, M0 Carpholite,Mg, structure i080 amesi te-242 185 calculations Carrollite, M0calculations 1250 arrojadite- I 034 819 Caryopilite, BESANC0N,J.R.: Rateof cation crystal chemistry 1054 axini te 428 Cathophorite,new mineral oq 561 disorderingin ortho- (abstr) 9-Mszli pyroxenes 965 878 Daronr[e J/O plagioclase 3do Bessmertnovite,new mineral Cationordering, 553 biotite, Si-rich CATTI,MICHELE, (abstr) 878 GIOVANNIFERMRIS bol twoodi te 612 Bioti te and GABRIELLAIVALDI: The Ca oxalate trihydrate 859 crystal structure picro- i analyses 56,75,710,9.l3 of carphol te I 080 pharrnacoli te, CaaMg(HAs0a)z chalcocite, lov{ 808 radiohaloes 358 (As0a)2.11H20 - Si-rich, structure 586 385 chukhrovite, syntheti c 392 BISH,D.L.: Cationordering in Chabazii,ei str;cture 777 cl i nopyroxene 128 synthetic and natural CHAKOUMAKOS,8.C.,R.J. HILL and coesite, high pressure 324 Ni- phosphate Mgol ivine 770 G.V.GIBBS: A molecular copper hydrate, orbital studyof rings in tov _ andR.F. GIESE, JR.: QPM Interiayer IIb silicates andsi loxanes 1237 di cki nsoni te l034 bondingof pressure chlori te t2t6 Chalococite,low, structure 808 diopside, high 315 Bismutohauchecornite,new Chalcopyrite,Cu-S bond 813 di xeni te 1263 mineral(abstr) 436 CHAO,G.Y.: Ajoite, newdata 201 dj url ei te 808 Blueschist, : Newmineral narnes 217,878 fillowite 8?7 Aips 443 jagoi B0ETTCHER,A.L. see B0HLEN, efi-arnockite,origin 1164 te 852 s.R. 951 Chertnodules, metamorphic in kanoite 128 seeFARMER, G.L. I,|54 dolostone 491 heulandi te-Ca/NH4 309 B0HLEN,S.R. andA.L. B0ETTCHER: Chlori te kanonaite 56r Experimentali nvesti gations analyses 60,75,913 1epi dol i te 1221 andgeological applications IIb, interlayer bonding 1216 liebenbergite (Ni-Mg of orthopyroxenegeo- Chloritoid, analyses 711 olivine) 770 (abstr) .l099 barometry 95] Choloalite,new nineral natroapophylI i te 4.l6 Boltwoodite,structure 612 CHRIST,C.L,, memorialof 649 nukundamite, synthetic 398 Bookreviews 221,440,880,1104Chromiandiopside, kimberlite 347 pi cropharmacoli te 385 pseudonal Bondcalculations 819,1237 Chromianspinel, inclusion in ach i te polymorphs 176 Bonddistances, Cr diopside 347 pyrophyllite-lzc 350 oxyanionsof pyroxenes Be,B, C, N 601 Chromite,zoned Mn-rich l0l3 I Bornite,Cu-S bond 813 Chukhrovite-(Ce),new data santacla ri te 154 (abstr) soddyi te 621 Brabantite, newmineral (abstr) 878 879 Chukhrovi ti vani te 868 Brazil, pyrophyllite- lrc 350 te, structure, BR0WN,P.E. seeGORDON, W.A. 127 synthesis 392 uranophane 612 CLARK, i te 620 Brucite, dissolution 801 J.R. seeCZAMANSKE, c.K. 369 v'leeks Crystais, largest 885 BRUSECK,P.R. see VEBLIN, D.R. 1.l07 _ see EVANSH.T., JR. 376 _ seeGARRELS, R.M. 649 Cyanophyil1ite, newmineral Buserite, intercalation by (abstr) dodecylamnoniumchl ori de, CLARK,R.S., JR., reviewof rhe 1274 synthesis 424 Sciences of l4inetaTs in Xhe CZAMANSKE,G.K., R.C. ERD, B.F. BUTT,C.R.M. and J. GRAHA|4: Aqe of Jeffetson (Greene LEONARDand J.L. CLARK: Sodianpotassian hydroxian and Burke) 441 Bartonite, a newpotassium meta-autunite:first Classification,of pyroxenes 2,40 iron sulfide mineral 369 natural occurrenceof an CLEMENCY,C.V. seeLIN, F.C. 801 CzechosI ova ki a internediate Clinochal comeni te, new I epidol i te 12?1 memberof a (abstr) predictedsolid solution mineral 217 sphalerite ]006 series 1068 C1i nopyroxene analyses 452,666,728 1284 Decarbonation Decarbonationequilibria ll35 Eclogite,quartz 938 pentlandite and DEGANELLO,SERGIO, A.R.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Marinellite, a New Feldspathoid of the Cancrinite-Sodalite Group
    Eur. J. Mineral. 2003, 15, 1019–1027 Marinellite, a new feldspathoid of the cancrinite-sodalite group ELENA BONACCORSI* and PAOLO ORLANDI Dipartimento di Scienze della Terra, Universita` di Pisa, Via S. Maria 53, I-56126 Pisa, Italy * Corresponding author, e-mail: [email protected] Abstract: Marinellite, [(Na,K)42Ca6](Si36Al36O144)(SO4)8Cl2·6H2O, cell parameters a = 12.880(2) Å, c = 31.761(6) Å, is a new feldspathoid belonging to the cancrinite-sodalite group. The crystal structure of a twinned crystal was preliminary refined in space group P31c, but space group P62c could also be possible. It was found near Sacrofano, Latium, Italy, associated with giuseppettite, sanidine, nepheline, haüyne, biotite, and kalsilite. It is anhedral, transparent, colourless with vitreous lustre, white streak and Mohs’ hardness of 5.5. The mineral does not fluoresce, is brittle, has conchoidal fracture, and presents poor cleavage on {001}. Dmeas is 3 3 2.405(5) g/cm , Dcalc is 2.40 g/cm . Optically, marinellite is uniaxial positive, non-pleochroic, = 1.495(1), = 1.497(1). The strongest five reflections in the X-ray powder diffraction pattern are [d in Å (I) (hkl)]: 3.725 (100) (214), 3.513 (80) (215), 4.20 (42) (210), 3.089 (40) (217), 2.150 (40) (330). The electron microprobe analysis gives K2O 7.94, Na2O 14.95, CaO 5.14, Al2O3 27.80, SiO2 32.73, SO3 9.84, Cl 0.87, (H2O 0.93), sum 100.20 wt %, less O = Cl 0.20, (total 100.00 wt %); H2O calculated by difference. The corresponding empirical formula, based on 72 (Si + Al), is (Na31.86K11.13Ca6.06) =49.05(Si35.98Al36.02)S=72O144.60(SO4)8.12Cl1.62·3.41H2O.
    [Show full text]
  • 26 May 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino The crystal structure of sacrofanite, the 74 Å phase of the cancrinite–sodalite supergroup This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/90838 since Published version: DOI:10.1016/j.micromeso.2011.06.033 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 05 October 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in MICROPOROUS AND MESOPOROUS MATERIALS, 147, 2012, 10.1016/j.micromeso.2011.06.033. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • New Mineral Names*
    AmericanMineralogM, Volume66, pages 1099-l103,IgEI NEW MINERAL NAMES* LouIs J. Cetnt, MrcHeer FtnrscHnn AND ADoLF Pnssr Aldermanlter Choloallte. I. R. Harrowficl4 E. R. Segnitand J. A. Watts (1981)Alderman- S. A. Williams (1981)Choloalite, CuPb(TeO3)z .HrO, a ncw min- ite, a ncw magnesiumalrrminum phosphate.Mineral. Mag.44, eral. Miaeral. Mag. 44, 55-51. 59-62. Choloalite was probably first found in Arabia, then at the Mina Aldermanite o@urs as minute, very thin" talc-likc crystallitcs La Oriental, Moctczuma, Sonora (the typc locality), and finally at with iuellite and other secondaryphosphates in the Moculta rock Tombstone, Arizona. Only thc Tombstone material provides para- phosphatc deposit near thc basc of Lower Cambrisn limestone genetic information. In this material choloalite occurs with cerus- close to Angaston, ca. 60 km NE of Adelaide. Microprobc analy- site, emmonsite and rodalquilarite in severcly brecciated shale that si.q supplcmented by gravimetric water determination gave MgO has been replaced by opal and granular jarosite. Wet chcmical E.4,CaO 1.2, AJ2O328.4, P2O5 25.9, H2O 36.1%,(totat 100),lead- analysisofcholoalitc from the type locality gave CuO 11.0,PbO ing to the formula Mg5Als2(POa)s(OH)zz.zH2O,where n = 32. 33.0,TeO2 50.7, H2O 3.4,total 98.1%,correspolding closcly to thc Thc powder diffraction pattern, taken with a Guinier camera, can formula in the titlc. Powder pattems of thc mineral from thc three be indexed on an orthorhombic. ccll with a = 15.000(7), D = localities can bc indexcd on the basis of a cubic ccll with a : 8.330(6),c - 26.60(l)A, Z = 2,D alc.2.15 from assumedcell con- l2.5l9A for the material from Mina La Oriental, Z: l2,D c,alc.
    [Show full text]
  • Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon
    American Mineralogist, Volume 101, pages 889–906, 2016 Carbon mineral ecology: Predicting the undiscovered minerals of carbon ROBERT M. HAZEN1,*, DANIEL R. HUMMER1, GRETHE HYSTAD2, ROBERT T. DOWNS3, AND JOSHUA J. GOLDEN3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Calumet, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT Studies in mineral ecology exploit mineralogical databases to document diversity-distribution rela- tionships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium.
    [Show full text]
  • Italian Type Minerals / Marco E
    THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests.
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Sabinaite, a New Anhydrous Zirconium.Bearing
    eanadian Mineralogist Vol. 18, pp. 25-29 (1980) SABINAITE,A NEWANHYDROUS ZIRCONIUM.BEARING CARBONATE MINERAL FROMMONTREAL ISLAND, OUEBEC J.L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontalio KIA 0G1 B.D. STURMAN Departrnentof Mineralogy and Geology, Royal Ontario Museum,Toronto, Ontario MsS 2C6 G.C. WEATHERLY Departmentol Metallurgt and Materials Science, University of Toronto, Toronto, Ontario MSS 1A4 Ansrnecr rant au maximum 0.01 x 0.001 mm. Biaxe nEgative, 2y 85o, a 1.74Q), p 1.80(2), v 1.85(1), X presque Fine-grained, white, powdery coatings and chalky perpendiculaire aux plaquettes. L'analyse donne aggregatesof sabinaite occur in vugs in a dawsonite- NazO 20.7, CaO 0.2, ZrO,39.l, HfO, 0.47. TiO, rich silicocarbonatite sill at Montreal Island, Qu6- 12.0, CO,27.1, total 99.57 (poids). La sabinaite bec. The mineral is platy, roughly pseudohexagonal, est anhydre; sa teneur en fluor est n6gligeable; with maximum dimensions 0.01 x 0.001 mm, biaxial sa formule est (Na,Ca)a.ra(Zr,Hf)o.2oTit.nrO".rn negative with 2V 85", c 1.74(2), P 1.80(2), v (COi)8.10 soit, idfulement, Nalra+JirO"(CO.)6, r 1.85(1), X nearly normal to the plates. Analyses - O.25. Elle ne r6agit pas avec les acides froids, gave NarO 20,7, CaO 0.2, ZrOz 39.1, IIfOn O.47. mais est soluble avec effervescencedans HCI chaud. TiO12.0, CO2 nJ, total 99.57 wt. Vo. Sabinaite La sabinaite est monoclinique; les dimensions de is anhydrous and has low or neelieible F.
    [Show full text]
  • General Index Lep – Lil
    GENERAL INDEX LEP – LIL SABINAITE Zaire Michigan Canada Shinkolobwe mine 8:(390), 9:33, 20:284 Isle Royale lode, Houghton County (various Québec SALESITE mines) (after clinochlore) 23:M68 Keweenaw Peninsula (several localities listed) Mt. St-Hilaire (tabular, micaceous to 6 mm) Chile (massive) 14:224 21:333–334p,d,c 9: 9: Chuquicamata 325h,d,c, 326p Laurium mine, Houghton County: after clino- SABUGALITE SAMARSKITE chlore; also primary acicular 23:M68; with Brazil Metamict 4:218 kinoite 14:224 Minas Gerais United States Mass mine, Ontonagon County (acicular) Córrego Frio mine, near Linópolis (spots in Colorado 14:224 scorzalite) 14:233 Pikes Peak region 16:228n “SAPPHIRE” Italy Texas See Corundum Sardinia Clear Creek pegmatite, Burnet County (small Arcu su Linnarbu, near Capoterra 18:183 masses) 8:90 SAPPHIRINE Spain SAMPLEITE Australia Pedro Alvaro, Salamanca region 9:(113) Northern Territory Chile SACROFANITE Harts Range, northeast of Alice Springs Chuquicamata 8:(390), 8:(517), 9:330d,c Italy 15:100–101c,p,q SAMSONITE Lazio Canada Sacrofano quarry (1 cm crystals) 23:434n Germany Northwest Territories Mt. Walker, Somerset Island (tabular crystals SAFFLORITE Niedersachsen St. Andreasberg 17:(9) to 3 cm) 22:386n Canada SANBORNITE Resolute (south of), Somerset Island 18:362n Northwest Territories Greenland Port Radium (safflorite-rammelsbergite) Canada Fiskenæsset (Qeqertarsuatsiaat) region 24:G12– 20:(207) Yukon 13p,h Germany Gunn claim, near MacMillan Pass 17:340n Madagascar Halle SANIDINE Androy: rounded, to 15 mm 24:50n; to 4 cm Mansfeld Kupferschiefer 17:(10) Bulgaria 24:230 Obersachsen Kyustendil (twins) 22:459n SARABAUITE Schneeberg 17:(13) Canada Malaysia Odenwald British Columbia Mackenheim 8:305 Sarabau mine, Sarawak: 9:(113); announced Beaverdell (near) (euhedral to 5 cm, some 9:116h Rheinland-Pfalz Carlsbad twins) 23:428n Angelika mine, Nieder-Beerbach 17:(7) Québec SARCOPSIDE Mexico Mt.
    [Show full text]
  • Karlite, Mgr(Bor)3 (OH,Cl)S a New Borate Mineral and Associatedludwigite from the Eastern Alps
    American Mineralogist, Volume 66, pages 872-877, 1981 Karlite, Mgr(BOr)3 (OH,Cl)s a new borate mineral and associatedludwigite from the Eastern Alps GBRHIRo FRANZ Institut fiir AngewandteGeophysik, Petrolo gie und Lagerstiittenforschung TechnischeUniversitiit Berlin, EB 310,StraBe des 17. Juni 135 D 1000Berlin 12. WestGermanv DTETRTcHAcrnRuaNo I nstitutJilr Mineralogie der Univ ersitiit Kiel Olshausenstr.40-60,D 2300Kiel, WestGermany eNo EporB Kocu Mineralogisch-petrographisches Institut der Universitiit Basel Bernoullistr. 30, CH 4056 Basel, Switzerland Abstract Karlite, a new borate mineral with the idealized formula Mgr(BOr)r(OH,Cl), occurs in a clinohumite-chlorite marble associated with ludwigite at Schlegeistal, Zillertaler Alpen, Austria. The mineral is white to light green and has a silky luster. It occursas aggregatesof minute needlesand prisms elongatedparallel to c, as much as l0 mm long, which sometimes have rosette-likeforms. Karlite is biaxial negativewith a mean 2v of 24o, a: 1.589,F: 1.632,y = 1.634,y - d: 0.045,X: c, Y : b,Z: a; and is colorlessin thin section.The (001) cleavageis perfect. The two most common forms are {ll0} and {100}. Hardnessis 5.5. Streak is colorless. Karliteis orthorhombic,Y2r2,2r, with a: 17.929(5),b: 17.600(5),c: 3.102(l)A,Z:4, G*" : 3.02, G-.* : 2.80 to 2.85. The six strongestlines of the X-ray pattern (4 in A, in- tensity, hkl) are 2.21,100,810,740,441;2.83,92,620;2.25,87,251; 2.7g,92,260,221,540; 12.53,76,11o;an.d2.89,68, 160,221,121.
    [Show full text]