Mineral Index

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Index Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU, T.58,T.22S), T.42S, T.60S Alumino-tschermakite T.159, T.555 Armalcolite (VoU, T.52,T.22S),T.27S, T.60S Alurnino-winchite T.159, T.555 Armangite T.146, T.53S Alunite T.115, T.45S Arrojadite T.166, T.58S Amblygonite T.115, T.40S, T.60S Arsendescloizite T.116, T.40S Ameghinite T.74, T.42S Arsenoclasite T.75, T.38S Amesite-2H T.146, T.425 Arsenocrandallite T.166, T.57S Amesite-6R T.146, T.42S Arsenoflorencite-(Ce) T.116, T.46S Aminoffite T.115, T.48S Arsenogoyazite T.166, T.585 Ammonioalunite T.115, T.455 Arsenohauchecornite T.75, T.355 Ammoniojarasite T.116, T.45S Arsentsumebite T.159, T.56S Ammonioleucite T.74, T.31S Asbecasite T.146, T.53S 139 140 Asisite T.75, T.35S Bertossaite T.147, T.53S Astrophyllite T.116, T.47S Bertrandite T.77, T.36S, T.60S Atelestite T.116, T.41S Beryl T.77, T.37S, T.60S Atlasovite T.166, T.58S Beryllonite T.78, T.27S, T.60S Augelite T.75, T.41S Berzeliite T.117, T.36S Augite (VoU, T.64, T.22S), T.30S Betafite T.78, T.32S Aurichalcite T.75, T.39S Beudantite T.117, T.45S Austinite T.116, T.40S Beyerite T.117, T.45S Azoproite T.116, T.42S Bicchulite T.117, T.45S Azurite T.75, T.44S, T.61S Bideauxite T.78, T.35S Bilibinskite T.117, T.59S Babefphite T.117, T.40S Bindheimite T.78, T.32S Babingtonite T.146, T.55S Biotite T.118, T.44S Bafertisite T.146, T.52S Biphosphammite T.78, T.31S Baghdadite T.117, T.46S Bismutite T.78, T.35S Bahianite T.76, T.39S Bismutoferrite T.118, T.52S Baileychlore T.76, T.54S Bismutomicrolite T.78, T.32S Balangeroite T.76, T.37S, T.60S Bityite T.166, T.57S Balipholite T.166, T.58S Bjarebyite T.147, T.53S Balkanite T.76, T.35S B1atterite T.118, T.42S Banalsite T.117, T.45S Bobfergusonite T.147, T.52S Bandylite T.76, T.28S Beggildite T.147, T.53S Baotite T.146, T.458 Boleite T.118, T.48S Baratovite T.159, T.55S Boltwoodite T.147, T.50S Barbosalite T.76, T.37S, T.60S Bonaccordite T.118, T.43S Barentsite T.147, T.53S Bonshtedtite T.147, T.51S Barroisite T.166, T.57S, T.61S Boracite (high) T.78, T.45S Bartelkeite T.76, T.31S Boracite (low) T.78, T.45S Bartonite T.76, T.34S Borcarite T.159, T.55S Barylite T.76, T.32S, T.60S Bornemanite T.167, T.58S Barysilite T.76, T.34S Bournonite T.78, T.27S, T.60S Barytocalcite T.76, T.30S Brabantite T.78, T.31S Barytolamprophyllite T.159, T.55S Bradleyite T.147, T.51S Bastnasite-K'e) T.76, T.288 Brammallite T.118, T.44S Bastnasite-fl.a) T.76, T.28S Brannockite T.118, T.46S Bastnasite-IY) T.77, T.288 Braunite (VoU, T.58, T.22S), T.29S, T.60S Batisite T.117, T.45S Braunite II T.78, T.31S Baumhauerite T.77, T.38S Brazilianite T.118, T.45S Bavenite T.117, T.47S Bredigite T.118, T.45S Bazirite T.77, T.31S Brenkite T.78, T.34S Bazzite T.77, T.37S Brianite T.118, T.42S Beaverite T.147, T.52S Briartite T.78, T.29S Bellite T.77, T.32S Brindleyite T.79, T.38S Belovite-(Ce) T.147, T.51S Britholite-(Ce) T.79, T.32S Bementite T.77, T.38S Britholite-(Y) T.118, T.45S Benavidesite T.77, T.35S Brochantite T.79, T.34S Benitoite T.77, T.30, T.60S Buchwaldite T.79, T.28S Benjaminite T.117, T.47S Buergerite T.167, T.57S Benleonardite T.77, T.35S Bukovite T.79, T.35S Benstonite T.117, T.458 Burbankite T.79, T.398 Bergslagite T.117, T.40S Burkeite T.118, T.438 Berryite T.77, T.39S Bustamite T.79, T.31S Berthierine-1H T.77, T.39S Biitschliite T.79,T.34 Berthierine-1M T.77, T.39S 141 Cahnite T.118, T.42S Chlorophoenicite T.120, T.45S Calciborite (VoU, T.48,T.22S),T.28S Chlorothionite T.120, T.42S Calciovolborthite T.119, T.40S Chloroxiphite T.120, T.45S Calcjarlite T.79, T.35S Chondrodite T.81, T.36S, T.60 Calcybeborosilite-(Y) T.119, T.48S Christite T.81, T.28S Calderite T.79, T.36S Chromdravite T.167, T.57S Caledonite T.159, T.56S Clinochlore T.81, T.54S, T.61S Calzirtite T.79, T.44S, T.61S Clinochrysotile T.81, T.38S Canasite T.147, T.54S Clinoclase T.81 , T.35S Cancrinite T.147, T.54S, T.61S Clinoenstatite (VoU, T.35, T.22S),DOS Cappelenite-(Y) T.147, T.53S Clinoferrosilite (VoU, T.35,T.22S), DOS Caracolite T.119, T.44S Clinoholmquistite T.120, T.47S Carbocernaite T.79, T.31S Clinohumite T.81,T.36S, T.60S Carboirite T.119, T.43S Clinojimthompsonite T.81, T.39S Carbonate-fluorapatite T.79,T.32S Clinokurchatovite T.81 , T.31S Carbonate-hydroxylapatite T.148, T.54S Clinophosinaite T.148, T.51S Carminite T.119, T.46S Clinozoisite T.159, T.51S, T.61S Carpholite T.119, T.45S Clintonite T.121, T.45S Caryinite T.148, T.51S Cobaltaustinite T.121 , T.40S Caryopilite T.80, T.37S Coffinite T.81, T.59S Cascandite T.119, T.51S Colquiriite T.81, T.28S Cebaite-(Ce) T.119, T.48S Colusite T.82, T.38S Cebollite T.119, T.48S Combeite T.82, T.39S Cechite T.119, T.40S Congolite T.82, T.35S Celadonite T.148, T.51S Conichalcite T.121, T.40S Celsian T.80, T.34S Cookeite T.121, T.54S Ceriopyrochlore-(Ce) T.80, T.32S Cordierite T.82,T.37S, T.60S Cerite-(Ce) T.167, T.45S Cordylite-(Ce) T.121, T.46S Cernyite T.80, T.29S Corkite T.159, T.56S Cerotungstite-(Ce) T.80, T.35S Cornetite T.82, T.35S Cervandonite-(Ce) T.80, T.35S Cornubite T.82, T.39S Cesanite T.119, T.44S, T.61S Cornwallite T.82, T.39S Cesarolite T.80, T.35S Crandallite T.167, T.52S Cesium Kupletskite T.148, T.54S Criddleite T.121, T.46S Cesplumtantite T.80, T.39S Cronstedtite-IH T.82, T.38S, T.60S Cesstibtantite T.80, T.32S Cronstedtite-IM T.121, T.45S Chabourneite T.80, T.39S Cronstedtite-2H T.121, T.45S Chalcothallite T.80,T.35S Cronstedtite-2M T.121, T.45S Chambersite T.80,T.45S Cronstedtite-3R T.121 , T.45S Chamosite T.80, T.54S Cronstedtite-6R T.121, T.45S Chantalite T.119, T.42S Cronstedtite-9R T.121, T.45 Chapmanite T.120, T.52S, T.61S Crossite T.121 , T.47S Chatkalite T.80, T.34S Cryolite (VoU , T.59, T.22S), T.29S Chayesite T.120, T.43S Cryolithionite T.82, T.36S Chenite T.120, T.46S Cumengite T.82,T.39S Chernykhite T.120, T.44S Cummingtonite T.82, T.47S Chesterite T.80, T.38S Cupropavonite T.122, T.52S Chestermanite T.120, T.42 Cuprorivaite T.82, T.31S Chevkinite-(Ce) T.120, T.47S Curetonite T.148, T.53S Chkalovite T.81, T.34S Cuspidine T.82,T.36S, T.60S Chlorapatite T.81, T.32S Cylindrite T.122, T.45S Chlorellestadite T.81, T.32S Chloritoid (monoclinic) T.120, T.42S D'Ansite T.122, T.46S Chloritoid (triclinic) T.120, T.42S Dadsonite T.83, T.34S 142 Dalyite 'I83, 'I34S Ellenbergerite T.149, T.53S Danalite 'Il22; 'I44S Elpasolite 'I84, T.29S, T.60S Danburite 'I83 , 'I34S Elyite T.123,T.43S Dannemorite 'I122, 'I47S Emeleusite 'I123 , 'I42S Daqingshanite-(Ce) 'Il48, 'I52S Enstatite (VoU, 'I35 , T.22S), T.30S, 'I60S Darapiosite 'Il48, 'I52S Ephesite T.160, 'I55S Datolite 'Il22, 'I40S Epididymite 'Il23, T.41S Davanite 'I83 ,'I34S Epidote 'Il68, 'I52S, 'I61S Davidite-(Ce) 'I83, 'I42S Ericaite 'I84, T.45S Davidite-(La) 'I83 , 'I42S Ericssonite 'I160 , T.56S Davidite-(Y) (VoU , 'I59, 'I22S), 'I34S Erlianite T.84, T.39S Davreuxite 'I122, 'I46S Ernstite T.123, 'I41S Davyne 'I122, 'I48S Eskimoite T.84, 'I39S Dawsonite 'I122 , 'I41S Esperite 'I123, 'I46S Deerite 'I148, 'I54S Esseneite T.123, T.30S Delindeite 'I148, 'I54S Euchlorine 'I149, T.51S Dellaite 'I83, 'I39S Euclase 'I123 , 'I40S Denisovite 'I122, 'I42S Eucryptite 'I84, T.28S Denningite T.83, T.31S Eudialyte 'Il68, T.57S Derbylite 'I122, T.42S Eveite 'I85, T.40S Derriksite 'Il48, T.45S Ewaldite 'I85, T.31S Descloizite 'Il22, 'I40S Eylettersite 'Il24, 'I48S Diaboleite T.83, T.32S, T.60S Diaphorite T.83, T.38S Fabianite T.85, T.41S Dickinsonite 'Il67, 'I58S Fairchildite 'I85 , T.34S Dickite T.83, 'I37S Fedorovskite T.124, T.48S Dietzeite 'I123, T.51S Fedotovite 'I124, T.46S Diopside T.83, T.30S, T.60S Fenaksite 'Il24, T.41S Dixenite 'I167, 'I58S Fermorite 'I85, 'I32S Djerfisherite 'Il23, 'I42S Ferri-annite T.124, T.44S Dolerophanite T.83, T.31S Ferri-barroisite 'I168 , T.57S Dollaseite-(Ce) 'I167, 'I55S Ferridravite 'I168, 'I57S Dolomite T.84, T.305, T.605 Ferri-katophorite T.168, T.575 Donbassite T.159, T.56S Ferrisicklerite T.85, T.27S Donpeacorite T.84, T.30S Ferri-taramite T.168, T.57S Dorrite T.148, T.51S Ferri-tschermakite T.160, T.55S Dravite T.167, T.57S Ferri-winchite T.160, T.55S Drugmanite 'Il67, T.52S Ferro-actinolite T.124, T.47S Duftite
Recommended publications
  • Geology and Mineral Deposits of the James River-Roanoke River Manganese District Virginia
    Geology and Mineral Deposits of the James River-Roanoke River Manganese District Virginia GEOLOGICAL SURVEY BULLETIN 1008 Geology and Mineral ·Deposits oftheJatnes River-Roanoke River Manganese District Virginia By GILBERT H. ESPENSHADE GEOLOGICAL SURVEY BULLETIN 1008 A description of the geology anq mineral deposits, particularly manganese, of the James River-Roanoke River district UNITED STAT.ES GOVERNMENT, PRINTING. OFFICE• WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS· Page Abstract---------------------------------------------------------- 1 Introduction______________________________________________________ 4 Location, accessibility, and culture_______________________________ 4 Topography, climate, and vegetation _______________ .,.. _______ ---___ 6 Field work and acknowledgments________________________________ 6 Previouswork_________________________________________________ 8 GeneralgeologY--------------------------------------------------- 9 Principal features ____________________________ -- __________ ---___ 9 Metamorphic rocks____________________________________________ 11 Generalstatement_________________________________________ 11 Lynchburg gneiss and associated igneous rocks________________ 12 Evington groUP------------------------------------------- 14 Candler formation_____________________________________ 14 Archer Creek formation________________________________
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Download the Scanned
    JOURNAL MINERALOGICAL SOCIETY OF AMERICA 193 Boyle, Blank, Biernbaum, Clay, Frankenfield, Gordon, Oldach, Knabe, and Trudell. At Branchville, albite crystals, beryl, margarodite, spodumene, and cyrnatolite were obtained; at East Hampton, golden beryl; at White Rocks, masses of pink and greenish tourmaline; at Strickland's quarry' green tourmaline, albite, beryl, and spoctumene. Ihe report was illustrated with lantern slides of photographs taken on the trip, and exhibits of specimens. Mr. George Vaux, Jr. described a trip to Franklin, N. J. with Mr. Gordon, where some exceptionally 6ne specimens were obtained, including the following minerals: apatite, copper, rhodonite, datolite, willemite, glaucochroite, Ieuco- phoenicite, hancockite, wernerite, franklinite, and arsenopyrite. Seuurr, G. Goroon, SecretarY, BOOK REVIEW A LIST OF NEW CRYSTAL FORMS OF MINERALS. Hnnstnr P Wurrrocr. Bur,retrn ol Tnr: Auenlcau Museunr ol NATURAT-Ifrsronv, Vor. xrvr, Ant. II, pp.89-278,1[ewYorh,1922. In July 1910, the author published. in The Sthool of Mines Quarterl,L (Vol. 31, No. 4 and VoI. 32, No. 1) a list of new crystal forms which had been recorded in the literature since the appearance of Goldschmidt's Index der Krystallformen der Mineralien (1336_91). The present bulletin includes the former data and extends the compilation to 1920, thus furnishing crystallographers with a most useful reference work covering a period of thirty years (1890-1920). References prior to 1890 being available in Goldschmidt's "Index." Where a new orientation of a species has been proposed and accepted, forms previously cited have been transposed to correspond with the new axial elements In such cases the elements used are given at the head of the species.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Titanite Ores of the Khibiny Apatite-Nepheline- Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis
    minerals Article Titanite Ores of the Khibiny Apatite-Nepheline- Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis Lidia G. Gerasimova 1,2, Anatoly I. Nikolaev 1,2,*, Marina V. Maslova 1,2, Ekaterina S. Shchukina 1,2, Gleb O. Samburov 2, Victor N. Yakovenchuk 1 and Gregory Yu. Ivanyuk 1 1 Nanomaterials Research Centre of Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184209, Russia; [email protected] (L.G.G.); [email protected] (M.V.M.); [email protected] (E.S.S.); [email protected] (V.N.Y.); [email protected] (G.Y.I.) 2 Tananaev Institute of Chemistry of Kola Science Centre, Russian Academy of Sciences, 26a Fersman Street, Apatity 184209, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-815-557-9231 Received: 4 September 2018; Accepted: 10 October 2018; Published: 12 October 2018 Abstract: Geological setting and mineral composition of (apatite)-nepheline-titanite ore from the Khibiny massif enable selective mining of titanite ore, and its processing with sulfuric-acid method, without preliminary concentration in flotation cells. In this process flow diagram, titanite losses are reduced by an order of magnitude in comparison with a conventional flotation technology. Further, dissolution of titanite in concentrated sulfuric acid produces titanyl sulfate, which, in turn, is a precursor for titanosilicate synthesis. In particular, synthetic analogues of the ivanyukite group minerals, SIV, was synthesized with hydrothermal method from the composition based on titanyl-sulfate, and assayed as a selective cation-exchanger for Cs and Sr.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]