An Improved Approach to Crystal Symmetry and the Derivation And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paralaurionite Pbcl(OH) C 2001-2005 Mineral Data Publishing, Version 1
Paralaurionite PbCl(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are thin to thick tabular k{100}, or elongated along [001], to 3 cm; {100} is usually dominant, but may show many other forms. Twinning: Almost all crystals are twinned by contact on {100}. Physical Properties: Cleavage: {001}, perfect. Tenacity: Flexible, due to twin gliding, but not elastic. Hardness = Soft. D(meas.) = 6.05–6.15 D(calc.) = 6.28 Optical Properties: Transparent to translucent. Color: Colorless, white, pale greenish, yellowish, yellow-orange, rarely violet; colorless in transmitted light. Luster: Subadamantine. Optical Class: Biaxial (–). Pleochroism: Noted in violet material. Orientation: Y = b; Z ∧ c =25◦. Dispersion: r< v,strong. Absorption: Y > X = Z. α = 2.05(1) β = 2.15(1) γ = 2.20(1) 2V(meas.) = Medium to large. Cell Data: Space Group: C2/m. a = 10.865(4) b = 4.006(2) c = 7.233(3) β = 117.24(4)◦ Z=4 X-ray Powder Pattern: Laurium, Greece. 5.14 (10), 3.21 (10), 2.51 (9), 2.98 (7), 3.49 (6), 2.44 (6), 2.01 (6) Chemistry: (1) (2) (3) Pb 78.1 77.75 79.80 O [3.6] 6.00 3.08 Cl 14.9 12.84 13.65 H2O 3.4 3.51 3.47 insol. 0.09 Total [100.0] 100.19 100.00 (1) Laurium, Greece. (2) Tiger, Arizona, USA. (3) PbCl(OH). Polymorphism & Series: Dimorphous with laurionite. Occurrence: A secondary mineral formed through alteration of lead-bearing slag by sea water or in hydrothermal polymetallic mineral deposits. -
Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Its Crystal Structure and Relationship to A-Pbf2
American Mineralogist, Volume 81, pages 1277-1281, 1996 Laurelite: Its crystal structure and relationship to a-PbF2 STEFANO MERLINO,! MARCO PASERO,! NATALE PERCHIAZZI,! AND ANrHONY R. KAMPF2 lDipartimento di Scienze della Terra, UniversitA di Pisa, via S. Maria 53, 1-56126 Pisa, Italy 2Mineralogy Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ABSTRACT Laurelite, Pb7F12CI2, from the Grand Reefmine, Graham County, Arizona, is hexagonal, Po, with a = 10.267(1) and c = 3.9844(4) A and Z = 1. The crystal structure was solved by direct methods and refined to R = 0.035 and RW2= 0.089 for 693 measured reflections (Fo > 9O'Fo)' The structure is related to that of a-PbF2. Both are based upon ninefold-coordinated Pb as tricapped trigonal prisms (TCTPs), which share edges and faces. The two structures can be described with respect to the face-sharing linkages of their TCTPs. The structure of a-PbF2 consists of corrugated sheets of face-sharing TCTPs that interlock by edge-sharing perpendicular to the c axis. In laurelite, the Pb2 TCTPs form three-membered face-sharing clusters about the threefold axis that are propagated into trigonal cylinders by sharing faces in the direction of the c axis. The Pb 1 and Pb3 TCTPs are linked by face-sharing into a three-dimensional framework with corresponding cylindrical voids. Asymmetric coordi- nations about Pbl and Pb2 are attributed to the stereoactive lone-pair effect. Although the coordinations about the anions appear to disallow substitution of OH for F, stacking defects along the c axis provide a mechanism for accommodating limited OH or H20 for F substitution. -
List of New Mineral Names: with an Index of Authors
415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis. -
108. the Crystal Structure O F Axinite Revised
490 Proc. Japan Acad., 45 (1969) [Vol. 45, 108. The Crystal Structure o f Axinite Revised By Tei-ichi ITO, M.J.A., Yoshio TAKEUCHI,*' Toru OzAWA,*' Takaharu ARAKI,**',fi' Tibor ZOLTAI,**' and J. J. FINNNEY***' (Comm. June 10, 1969) The crystal structure of axinite, H (Fe, Mn) Ca2A12BSi4016, was investigated by Ito and Takeuchi (1952) on the assumption that boron atoms in the structure form separate B03 groups like tourma- line (Ito, 1950; Ito and Sadanaga, 1951; vide Buerger et al., 1962). The structure then deduced by taking account of Patterson projec- tions consists of separate Si4012 and B03 groups bound together by Fe, Al and Ca atoms. Although the structure was crystallo-chemically reasonable, the residual R could not be reduced to less than 0.35 for all the reflections observed. Since axinite is one of those common silicate minerals whose crystal structure has not been refined, it has been thoroughly reinvestigated using modern techniques. The specimens used are from Woodlake, California (Type collec- tion #9620, Colorado School of Mines). Chemical analysis by an electron microprobe gives the Fe to Mn ratio of the specimen to be approximately unity. The lattice constants of the triclinic crystal are a=7.1566+0.0015, a=91.75°+0.83 b=9.1995±0.0020, 9=98.14° + 0.02 c=8.9585±0.0022, T=77.30° + 0.02 and the unit cell contains two formula units. Three dimensional intensities were collected by a scintillation counter using an equi- inclination single-crystal diffractometer, MoKa radiation and a pair of balanced Zr-Y filters. -
Ferroaxinite Ca2fe2+Al2bsi4o15(OH)
2+ Ferroaxinite Ca2Fe Al2BSi4O15(OH) c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Triclinic. Point Group: 1: Crystals typically °attened, axe-head-shaped, to 20 cm; granular, massive. Physical Properties: Cleavage: Good on 100 , poor on 001 , 110 , and 011 . Fracture: Uneven to conchoidal. Tenacity: Brfittleg. Hardnessf = 6g.5{f7 Dg (measf.) =g3.25{3.28 D(calc.) = [3.33] Optical Properties: Transparent to translucent. Color: Clove-brown, brown, plum-blue, pearl-gray; colorless to pale brown or blue in thin section. Luster: Vitreous. Optical Class: Biaxial ({). ® = 1.674{1.682 ¯ = 1.682{1.690 ° = 1.685{1.693 2V(meas.) = 65±{75± Cell Data: Space Group: P 1: a = 7.1437(4) b = 9.1898(6) c = 8.9529(4) ® = 91:857(6)± ¯ = 98:188(5)± ° = 77:359(4)± Z = 2 X-ray Powder Pattern: Isµere, France. 2.812 (100), 3.16 (90), 3.46 (80), 6.30 (70), 3.68 (60), 3.28 (60), 2.998 (60) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 43.14 41.97 42.16 ZnO 0.04 TiO2 0.10 MgO 1.34 0.66 B2O3 6.12 [6.14] 6.11 CaO 19.76 19.18 19.67 Al2O3 16.70 17.24 17.88 Na2O 0.36 Fe2O3 1.28 K2O 0.23 + FeO 7.12 10.41 12.60 H2O 1.56 [1.57] 1.58 MnO 1.66 2.61 Total 99.41 [99.78] 100.00 (1) Durango, Mexico. (2) Rosebery district, Tasmania, Australia; by electron microprobe, B2O3 interpolated from end members, H2O calculated from stoichiometry. -
Minerals of the Axinite Group from Norwegian Localities
Minerals of the axinite group from Norwegian localities Fred Steinar Nordrum, Alf Olav Larsen og Muriel Erambert Introduction The mineral known today as axinite was first described by Schreiber in 1781, but thought to be a variety of schorl. During the next two decades the mineral was referred to under different names: violet schorl, yanolite, thumerstein, thumite and glasschorl. The name axinite was first applied by Hauy in 1799, in reference to the common axe-like shape of the crystals. The axinite group minerals are complex cyclosilicates. The three Ca-dominant end-members are ferroaxinite, manganaxinite and magnesia-axinite, named after the second most abundant cations, and with the general formula Ca4(Fe,Mn,Mg),AI4B2Sia030(OH),. Tinzenite has a Ca deficiency, compensated by an excess of Mn, and with the formula Ca2Mn.A14B2Sia030(OH),. The definition of ferroaxinite, manganaxinite and tinzenite was established by Sanero & Gollardi (1968), while magnesio-axinite was described by Jobbins et al. (1975). Axinite from Norway was first described by Schumacher (1801) who reported the mineral both from the silver deposits at Kongsberg and from Torbjlilrnsbo iron mine at Arendal. Keilhau (1838) mentioned axinite from Nikkerud iron mine near Drammen. Goldschmidt (1911) thoroughly described axinite from Arvoll near Oslo, and his chemical analysis showed that the mineral was close to the manganaxinite end member. He also mentioned another axinite locality at Arvoll, as well as Nikkerud (Aserud) near Drammen. Munster (1883) mentioned axinite from the Kongsberg silver deposits, while Neumann (1944) described axinite from several localities within the Kongsberg silver deposits, and published the chemical composition of an axinite from Golles Hulfe in der Noth mine (358 m level). -
American Journal of Science
1 'Ui J}-_) 3J/ e~,. ~r1Vlv~ J. HE AMERICAN JOURNAL OF SCIENCE. EDITOR: EDWARD S. DANA. ASSOCIATE EDITORS PROFESSORS GEO. L. GOODALE, JOHN TROWBRIDGE, H. P. BOWDITCH AND W. G. F ARLO'V, OF CAMBRIDGE, PROFESSORS O. C. MARSH, A. E. VERRILL AND H. S. WILLIAMS, OF NEW HAVEN, PROFESSOR GEORGE F. BARKER, OF PHILADELPHIA, PROFESSOR H. A. RO'VLAND, OF BALTIMORE, MR. J. S. DILLER, OF WASHINGTON. FOURTH SERIES. YOLo III-[WHOLE NUMBER, CLIIL] Nos. 13-18. JANUARY '1'0 JUNE, 1897. WITH SEVEN PLATES• • ># •.'" , • .' ,_'_._,9_._;~: ", ~ • oJ " ... • ... ~ ~ • NEW HAYEN, CONNECTICUT. 1897. ,Sf- Penfield and Jioote-Rmblhlgite, a new Silicate. 413 ART. XLII.-On Rmblingite, a new Silicate from Franklin Furnace, N. J., containing Sulphur Dio;:cide and Lead; by S, L. PENFIELD and H. W. FOOTE, MR. FRANK L. NASON, who has been especially interested in the geology and mineralogy of the zinc deposits of Frank lin, New Jersey, has recently brought to our attention a mineral from the Parker shaft of the New Jersey Zinc Com pany, which owing' to its unusual chemical composition is of especial interest. The mineral occurs in dense, white, compact masses, which consist of an aggregate of minute prismatic crystals. These when examined with the microscope show parallel extinction and a weak double refraction, but they are so minute that the system of crystallization could not be deter mined. The specific gravity is 3'433; hardness a trifle under 3. A chemical analysis of this material by Foote gave the following resnlts : 1. II. Average. Ratio, SiO. __ . -
Contributions to the Mineralogy of Norway A
NORSK GEOLOGISK TIDSSKRIFT CONTRIBUTIONS TO THE MINERALOGY OF NORWAY No. 32. Axinite in the Norwe�ian Caledonides BY HARALD CARSTENS (Norges Geologiske Undersi:ikelse, Postboks 3006, Trondheim) Abstract. Axinite appears to be a rather common mineral in the Norwegian Caledonides, and it forms a major or minor constituent in veins enclosed in metavolcanics (mainly greenstones), greywackes?, metagabbros, and amphib olites of doubtful origin. Associated minerals include quartz, calcite, albite, epidote, actinolite, chlorite, tourmaline, prehnite, apophyllite, muscovite, biotite, pyrite, pyrrhotite, chalcopyrite, and zincblende. Same veins simply represent filled open fissures, whereas others are of nondilational nature and made room for themselves by replacement. Axinitization of country rock sometimes occurred concurrently with the vein formation. The Caledonian axinites are character ized by high Fe + Mg/Mn ratios. The formation of the veins is considered to be an important part of the general process of host rock alteration, the veins con sisting of mobilized alteration products. Axinite is closely related to epidote in its made of occurrence. Introduction A notable feature of low- to medium-grade Caledonian metamorphic rocks is the abundance of epigenetic veins, the major constituents of which are quartz and/or calcite. The quartz-calcite veins around the Trondheim fjord have recently been described by RAMBERG (1960). According to this author, the veins may also contain chlorite, albite, biotite, muscovite, tourmaline, epidote, actinolite, and a few ore minerals. During a study of epidote, I found that this mineral was associated with axinite in veins at several localities around Trondheim (Fig. 1). A short visit to Western Norway disclosed that axinite also occurs with epidote in that part of the Caledonides. -
Mineral Index
Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU, -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).