Scandiobabingtonite, a New Mineral from the Baveno Pegmatite

Total Page:16

File Type:pdf, Size:1020Kb

Scandiobabingtonite, a New Mineral from the Baveno Pegmatite American Mineralogist, Volume 83, pages 1330-1334, 1998 Scandiobabingtonite,a new mineral from the Bavenopegmatite, Piedmont, Italy Ploro ORl.tNnIrr'* Ma,nco PasERorr and GrovlNNa Vn,zzllrNr2 rDipartimento di Scienzedella Terra, Universitd di Pisa, Via S. Maria 53,1-56126 Pisa, Italy '?Dipartimento di Scienzedella Terra, Universitd di Modena, Via S Eufemia 19, I-41 100 Modena, Italy Ansrntcr Scandiobabingtonite,ideally Ca,(Fe,*,Mn)ScSi,O,o(OH) is the scandium analogue of babingtonite; it was found in a pegmatitic cavity of the Baveno granite associatedwith orthoclase, albite, muscovite, stilbite, and fluorite. Its optics are biaxial (+) with 2V : : ^v: 64(2)",ct 1.686(2),P: 1.694(3), 1.709(2).D-"." : 3.24(5)slcm3, D.",.:3.24 sl cm3, and Z : 2. Scandiobabingtoniteis colorless or pale gray-green, transparent,with vitreous luster. It occurs as submillimeter sized, short, tabular crystals, slightly elongated on [001],and characterizedby the associationof forms {010}, {001}, {110}, {110}, and {101}. It occurs also as a thin rim encrustingsmall crystals of babingtonite.The strongest lines in the X-ray powder pauern are at2.969 (S), 2.895 (S), 3.14 (mS), and 2.755 (mS) 4. fn" mineralis triclinic, ipu.. g.oup PT, with a : 7.536(2),b : 1L734(2),c : 6.t48(Z) A, : 91.10(2), : 93.86(2), : lO+.S:(2)'. Scandiobabingtoniteis isostructural " B r with babingtonite, with Sc replacing Fe3* in sixfold coordination, but no substitution of Fer* by Sc takes place. Due to the lack of a suitably large crystal of the new species, such a replacementhas been confirmed by refining the crystal structure of a Sc-rich babingtonite (final R : O.O47)using single-crystal X-ray diffraction (XRD) data. INrnolucrroN mica (probably zinnwaldite) on which scandiobabington- This paper describes the new mineral species scan- ite crystals were emplanted (Fig. 1). Platy crystals of diobabingtonite.Both the mineral and its name were ap- scandiobabingtonitewere also found in epitaxial inter- proved by the IMA Commission on New Minerals and growth as a thin rim around green-blackprismatic crys- Mineral Names. Scandiobabingtoniteis the sixth scandi- tals of babingtonite (Fig. 2). The few crystals of scan- um mineral found in nature after bazzite, cascandite,jer- diobabingtonite studied here came from one sample. visite, kolbeckite, and thortveitite. Two other Sc minerals Scandiobabingtoniteis transparent,with vitreous luster were recently discovered: the scandium-dominant ana- and pale gray-greencolor. Scandiobabingtoniteoccurs as logue of xenotime-(Y) (IMA no. 96-024) and the scan- submillimeter-sized, short, prismatic crystals, slightly dium-dominant analogue of overite and segelerite(IMA elongated on [001] and characterizedby the association no. 96-060) (Mandarino and Grice 1997). of theforms {010}, {001}, {110}, {110}, and{101}, as Baveno is the type locality for bazzite (Artini 1915), shown in Figure 3. The faces were indexed using a two- cascandite,and jervisite (Mellini et al. 1982). Recently circle optical goniometer,in conjunction with X-ray sin- thortveitite (Orlandi 1990) was found in this classic lo- gle-crystal study, to overcome problems associatedwith cality; therefore, the only scandiummineral not found to a slight distortion and opacity of the faces from a thin date at Baveno is kolbeckite. Due to this peculiarity, the crust of mica. pegmatiticgranite of Bavenois unique. Two small crystals used in the optical and chemical The type material is preserved in the Museo di Storia study showed a very small black core and a large gray- Naturale e del Territorio, University of Pisa.A small crys- green transparentrim. It appearsthat the two crystals of tal is also stored in the Royal Ontario Museum, Univer- scandiobabingtonitegrew starting from a green seedcrys- sity of Toronto. tal of babingtonite (Fig. 4). Babingtonite, normally as- sociated with minute lamellar crystals of hematite, is a OccunnnNcE, pHysICAL, AND oprrcAI, pRopERTTES common mineral in the pegmatitic cavities of the Baveno Scandiobabingtonitewas found in the "Montecatini" granite. The color of scandiobabingtonite(light gray- granite quarry near Baveno (Novara, Piedmont, Italy), green) is however easily distinguishable from that of within a 10 x 10 x 20 cm cavity, associatedwith snow- babingtonite. like orthoclasecrystals, smoky qvafiz, light sky-blue al- Scandiobabingtoniteis brittle and shows {001} and bite, stilbite, fluorite, and light green-yellow rosettes of {110} perfect cleavage;its hardnessis 6. The measured density, obtained by the heavy liquid method on a zoned * E-mail: [email protected] crystal, is 3.24(5) g/cm3;the calculatedvalue for the pure 0003-004x/98/1I l2-1330$05 00 | 1330 ORLANDI ET AL.: SCANDIOBABINGTONITE 1331 aa,/ o Frcunt 1. SEM photo of scandiobabingtonitecrystals on l- : micafrom Baveno,Piedmont, Italy. Scalebar 0 1 mrn. F Sc and Fe3* end-membersis 3.22 and 3.29 glcm., respectively. Optically, scandiobabingtoniteis biaxial positive, shows a 2V(meas) of 64(2)' and a strong dispersion (r > Frcunn3. Drawingof a singlecrystal of scandiobabingtonite v); pleochroism is strong with colors from pink (f') to green (a'). Refractive indices for Na light are: ct : r.686(2);p : r.694(3);1 : 1.7o9(2). voltage 15 kV, sample current 20 nA, beam size 15 pm. An evaluation of the optical orientation was done on a The elementsmeasured were Si, Sn, Sc, Fe, Ca, Mn, and thin plate cut perpendicularto [001] with a crystal section Na. All other elements,including REE and Y, were below delimitedby (110),(010), (110), (110), (010), and (110) detection limit. Spessartine(for Fe and Mn), kaersutite faces,where an evidentcleavage (110) was also present; (for Ca, Na, Si), metallic Sn (for Sn), and synthetic an extinction angle of approximately 6'was measuredon NaScSirOu(for Sc) were used as standards. (Il0). Z:$ : -250, p = 47"; Y:$ : 146, p = 751'X:6 The crystal examined shows a sudden transition from : 42", p : 47'. Figure 5 shows the relationship between a core with a composition essentiallyequal to scandium- optical and crystallographic axes in scandiobabingtonite free babingtonite to a rim with a high and homogeneous from Baveno. scandium content and a composition typical of scandio- babingtonite. These data show that whenever the Fe con- CnnlrrcAr, nar.l tent is high the Sc content is low and vice-versa,whereas Electron microprobe analyses(Table 1) were collected the Mn content remains constant acrossthe two zones. using a wavelength dispersive ARL-SEMQ instrument The HrO content could not be directly determinedbe- under the following operating conditions: accelerating cause of the scarcity of material, but it was inferred to Frcunn 2. Epitaxial growth of tabular scandiobabingtonite FrcunB 4. Thin section approximatelyon (001) of a submil- crystals on a shorl prismatic crystal of babingtonite SEM photo limeter sized crystal showing a gray core of babingtonite and a Scalebar : 0.1 mm. light rim of scandiobabingtonite. | -)-)L ORLANDI ET AL : SCANDIOBABINGTONITE -t'lo Taele 1. Chemicaldata for scandiobabingtonite(average of 7'io,-' three analyses) ,.7 Weightpercent Range sio, 55 26 54.61-55.62 SnO, 12'l 1 09-1.34 xX Sc,O" 1132 1101-11 51 FeO. 893 7.74-9 91 , ,/, CaO 1733 17 14-17 69 t MnO 411 3 43-5 18 , I l0lO Naro 140 1 37-1 43 -l 2\ X H,Ot too 010 I xI I : 101 24 t l, " Total Fe: This was recalculatedas FeO 8.48 and Fe,O30.50. l, t :,:i I t Constrainedto give t hydroxylpfu i'-.- -_--1- I y 1 is. \i Sc-rich crystals were unsuitable for a structural study. \l Therefore, a zoned crystal was used. ilj, ro Operating conditions were: 48 kV 28 mA, graphite- rioX monochromatedMoKa radiation (I : 0.71069A;. Ze-* Frcunn 5. Stereographicprojection of the optical(X, Y, D with respect to the crystallographic(x, y, z) axes tn Taele 2. X-raypowder diffraction pattern for scandiobabingtonite. scandiobabingtonite -t1 possessone (OH) group per 14 O, as in the chemical m 37 1134 010 formula of babingtonite. Fe was recalculatedas FeO and MW 696 698 110 666 672 001 FerO. basedon stoichiometry. On these grounds,the em- 509 515 120 pirical formula of scandiobabingtonite,recalculated on 514 101 the basis of a total of 15 O, is (Ca,,,Naorr)r,nu(Fefr{, 474 4 to 101 474 111 Mnor)ro r, (Scon,Sno ooFefij.)>o nrsi, .nO,o -(OH), oo.The sim- 444 445 111 plified formula is: Ca.(Fe,*,Mn)ScSi,O,"(OH),and thus MW 411 411 121 scandiobabingtonite is the scandium analogue 374 375 210 of m 348 349 220 babingtonite. 329 3.30 131 mS 3.14 J. tc 102 X-nay cRysrALLocRApHy m 3.03 3.04 221 S 2.969 2.974 112 Preliminary X-ray single-crystalWeissenberg measure- J 2 895 2.903 140 ments indicate that scandiobabingtonite,similarly to ba- mS 2.755 2.760 220 2 680 2 684 141 bingtonite, is triclinic with space group Pl or pl. The 2.679 122 unit-cell parameters, refined at the four-circle z 056 2 648 141 diffractometer,are'. a:7.536(2) A, U : 11.734(2),c : 2 579 I CAI 212 : 2 483 2 484 122 6.148(2),a 9r.70(2)", I : 93.86(2),1 : 104.53(2). 2 458 2 467 320 The X-ray powder pattern (Table 2), collected with Gan- 2 286 2296 311 2 244 2 247 141 dolfi camera and FeKct radiation on a small frasment se- 2 216 2.219 013 lected from the rim of a zoned crystal, is almosiidentical 2 184 2 191 250 to that of babingtonite. 2 190 103 z tJo 2.158 231 Chemical dishomogeneityand rhe evident distortion of 2.120 2.120 023 some crystals, displayed also by a light curvature of the mw 2.O84 2.089 311 faces of the crystals, caused 2.083 251 all diffracted reflections of 2.040 2 046 322 the single crystal to be rather broad.
Recommended publications
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
    American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Examples from NYF Pegmatites of the Třebíč Pluton, Czech Republic
    Journal of Geosciences, 65 (2020), 153–172 DOI: 10.3190/jgeosci.307 Original paper Beryllium minerals as monitors of geochemical evolution from magmatic to hydrothermal stage; examples from NYF pegmatites of the Třebíč Pluton, Czech Republic Adam ZACHAŘ*, Milan NOVÁK, Radek ŠKODA Department of Geological Sciences, Faculty of Sciences, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic; [email protected] * Corresponding author Mineral assemblages of primary and secondary Be-minerals were examined in intraplutonic euxenite-type NYF peg- matites of the Třebíč Pluton, Moldanubian Zone occurring between Třebíč and Vladislav south of the Třebíč fault. Primary magmatic Be-minerals crystallized mainly in massive pegmatite (paragenetic type I) including common beryl I, helvite-danalite I, and a rare phenakite I. Rare primary hydrothermal beryl II and phenakite II occur in miarolitic pockets (paragenetic type II). Secondary hydrothermal Be-minerals replaced primary precursors or filled fractures and secondary cavities, or they are associated with ,,adularia” and quartz (paragenetic type III). They include minerals of bohseite-ba- venite series, less abundant beryl III, bazzite III, helvite-danalite III, milarite-agakhanovite-(Y) III, phenakite III, and datolite-hingganite-(Y) III. Chemical composition of the individual minerals is characterized by elevated contents of Na, Cs, Mg, Fe, Sc in beryl I and II; Na, Ca, Mg, Fe, Al in bazzite III; REE in milarite-agakhanovite-(Y) III; variations in Fe/Mn in helvite-danalite and high variation of Al in bohseite-bavenite series. Replacement reactions of primary Be- -minerals are commonly complex and the sequence of crystallization of secondary Be-minerals is not defined; minerals of bohseite-bavenite series are mostly the latest.
    [Show full text]
  • Epitaxy of Hedenbergite Whiskers on Babingtonite in Alpine Fissures at Arvigo, Val Calanca, Grisons, Switzerland
    Epitaxy of hedenbergite whiskers on babingtonite in Alpine fissures at Arvigo, Val Calanca, Grisons, Switzerland Autor(en): Armbruster, Thomas / Stalder, Hans Anton / Gnos, Edwin Objekttyp: Article Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie Band (Jahr): 80 (2000) Heft 3 PDF erstellt am: 02.10.2021 Persistenter Link: http://doi.org/10.5169/seals-60967 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Palermo Zanazziite (Pdf)
    A Palermo Mineral Identification Search Tom Mortimer Forward: Mineral collectors take great satisfaction in placing accurate labels on their specimens. This article follows my 22 year quest to identify a self-collected Palermo specimen. I have recently narrowed my initial choices to the most plausible species. However my investigation illustrates that even those collectors with access to modern tools of mineral ID such as EDS, they may still be left with ambiguities. This is the forth re-write of this article. My thanks to Jim Nizamoff and Bob Wilken for their most helpful reviews. Background: Locality: Palermo #1 Mine, N. Groton, NH Specimen Size: 2.8 cm specimen Field Collected: Tom Mortimer - 1997 Catalog No.: # 217 Notes: This specimen was in my NH Species Display as fairfieldite for several years. It was visually identified by Bob Whitmore as fairfieldite. I understood that this was the spherical form of fairfieldite referred to in Bob Whitmore's book, The Pegmatite Mines Known as Palermo. The Story: A goal of my New Hampshire mineral species web site and display is to confirm species with analytic testing. This is particularly true for uncommon species and specimens where a visual identification is problematic. A 2017 investigation of NH fairfieldite and messelite revealed that my specimen #217 was not fairfieldite. A first polished grain Energy Dispersive Analysis (EDS) (BC77a – set 6) indicated a Ca, Mg, Fe, phosphate with a Ca:Fe:Mg:P ratio of about 2:1:1.4:5. No Mn was detected, 2+ 2+ essential for fairfieldite. Fairfieldite chemistry is: Ca2(Mn ,Fe )(PO4)2 · 2H2O .
    [Show full text]
  • A New Mineralspeciesfromthe Tip Top Pegmatite, Custer County, South Dakota, and Its Relationship to Robertsite'
    Canadian Mineralogist Vol. 27, pp. 451-455 (1989) PARAROBERTSITE, Ca2Mn~+(P04h02.3H20, A NEW MINERALSPECIESFROMTHE TIP TOP PEGMATITE, CUSTER COUNTY, SOUTH DAKOTA, AND ITS RELATIONSHIP TO ROBERTSITE' ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA OE8 B. DARKO STURMAN Departmentof Mineralogy,Royal OntarioMuseum, Toronto, OntarioM5S 2C6 PETE J. DUNN Departmentof MineralSciences,SmithsonianInstitution,Washington,D.C. 20560,U.S.A. WILLARD L. ROBERTS* South DakotaSchoolof Minesand Technology,Rapid City, South Dakota57701,U.S.A. ABSTRACT SOMMAIRE Pararobertsite is rare, occurring as thin red transparent La pararobertsite, espece rare, se presente sous forme single plates, or clusters of plates, on whitlockite at the Tip de plaquettes isolees minces et rouge transparent, ou en Top pegmatite, Custer County, South Dakota. Associated agregats de telles plaquettes, situees sur la whitlockite dans minerals are carbonate-apatite and quartz. Individual crys- la pegmatite de Tip Top, comte de Custer, Dakota du Sud. tals are tabular on {100}, up to 0.2 mm long and are less Lui sont associes apatite carbonatee et quartz. Les plaquet- than 0.02 mm in thickness. The streak is brownish red; tes, tabulaires sur {IOO}, atteignent une longueur de 0.2 luster vitreous; brittle; cleavage on {I oo} perfect; indiscer- mm et moins de 0.02 mm en epaisseur. La rayure est rouge nible fluorescence under long- or short-wave ultraviolet brunatre, et l' eclat, vitreux; cassante; clivage {100} par- light; hardness could not be determined, but the mineral fait; fluorescence non-discernable en lumiere ultra-violette apparently is very soft; D (meas.) 3.22 (4), D (calc.) 3.22 (onde courte ou longue); la durete, quoique indeterminee, (for the empirical formula) or 3.21 g/cm3 (for the ideal- semble tres faible; Dmes 3.22(4), Deale 3.22 (formule empi- ized formula).
    [Show full text]
  • Winter 2003 Gems & Gemology
    Winter 2003 VOLUME 39, NO. 4 EDITORIAL _____________ 267 Tomorrow’s Challenge: CVD Synthetic Diamonds William E. Boyajian FEATURE ARTICLES _____________ 268 Gem-Quality Synthetic Diamonds Grown by a Chemical Vapor Deposition (CVD) Method Wuyi Wang, Thomas Moses, Robert C. Linares, James E. Shigley, Matthew Hall, and James E. Butler pg. 269 Description and identifying characteristics of Apollo Diamond Inc.’s facetable, single-crystal type IIa CVD-grown synthetic diamonds. 284 Pezzottaite from Ambatovita, Madagascar: A New Gem Mineral Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adolf Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty A look at the history, geology, composition, and properties of this new cesium-rich member of the beryl group. 302 Red Beryl from Utah: A Review and Update James E. Shigley, Timothy J. Thompson, and Jeffrey D. Keith A report on the geology, history, and current status of the world’s only known occurrence of gem-quality red beryl. pg. 299 REGULAR FEATURES _____________________ 314 Lab Notes • Chrysocolla “owl” agate • Red coral • Coated diamonds • Natural emerald with nail-head spicules • Emerald with strong dichroism • High-R.I. glass imitation of tanzanite • Large clam “pearl” • Blue sapphires with unusual color zoning • Spinel with filled cavities 322 Gem News International • Comparison of three historic blue diamonds • Natural yellow diamond with nickel-related optical centers
    [Show full text]
  • Goosecreekite Caal2si6o16 ² 5H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    Goosecreekite CaAl2Si6O16 ² 5H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2: As equant euhedral crystals, highly curved, to 4 cm; in polycrystalline aggregates. Physical Properties: Cleavage: 010 , perfect. Hardness = 4.5 D(meas.) = 2.21 D(calc.) = 2.23 f g » Optical Properties: Transparent. Color: Colorless to white. Streak: White. Luster: Vitreous to pearly on crystal faces. Optical Class: Biaxial ({). Orientation: Y = b; Z c = 46±. ® = 1.495(2) ¯ = 1.498(2) ^ ° = 1.502(2) 2V(meas.) = 82(5)± Cell Data: Space Group: P 21: a = 7.401(3) b = 17.439(36) c = 7.293(3) ¯ = 105:44(4)± Z = 2 X-ray Powder Pattern: Goose Creek quarry, Virginia, USA. 4.53 (100), 7.19 (50), 5.59 (50), 4.91 (50), 3.350 (40), 3.526 (25), 3.277 (25) Chemistry: (1) SiO2 59.3 Al2O3 17.2 CaO 9.3 H2O 15.0 Total 100.8 (1) Goose Creek quarry, Virginia, USA; by electron microprobe, H2O by DTA-TGA analysis; corresponding to Ca1:01Al2:05Si6O16:09 ² 5:06H2O: Polymorphism & Series: Dimorphous with epistilbite. Mineral Group: Zeolite group. Occurrence: A late-stage mineral in vugs and fractures in a Triassic diabase (Goose Creek quarry, Virginia, USA); in cavities in basalt (Nasik, India). Association: Prehnite, actinolite, chlorite, epidote, babingtonite, quartz, titanite, stilbite, albite, apophyllite (Goose Creek quarry, Virginia, USA); quartz (Nasik, India). Distribution: In the Goose Creek quarry, Leesburg, Loudoun Co., Virginia, USA. Exceptional crystals from the Pandulena quarry, Nasik, Maharashtra, India. In the OberbaumuÄhle quarry, Windischeschenbach, Bavaria, Germany. Name: For the initially described occurrence in the Goose Creek quarry, Virginia, USA.
    [Show full text]