The New IMA List of Minerals – a Work in Progress – Updated: March 2020

Total Page:16

File Type:pdf, Size:1020Kb

The New IMA List of Minerals – a Work in Progress – Updated: March 2020 The New IMA List of Minerals – A Work in Progress – Updated: March 2020 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). CNMMN/CNMNC approved formula : it is the chemical formula of the mineral. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p. (special procedure): it refers to the year in which a specific action (redefinition and/or renaming) took place, and was approved by IMA. This may be related to the approval of a report by a dedicated subcommittee on a given group of minerals. Country : it is the country in which the mineral was discovered for the first time (according to the national boundaries as of today). First reference : it is the original reference for each mineral. Second reference : it is the most recent or most complete reference for each mineral, possibly including a crystal structure study. Caveat (IMPORTANT): the list includes selected information on the 5575 currently valid species; inevitably there will be mistakes in it. We will be grateful to all those who will point out errors of any kind, including typos. Please email your corrections to [email protected] . Acknowledgments : The following persons, listed in alphabetic order, gave their contribution to the building and the update of the IMA List of Minerals: Malcolm Back, William D. Birch, Michel Blondieau, Hans-Peter Bojar, Jerry Carter, Marco E. Ciriotti, Jeffrey de Fourestier, Dmitry Dolivo-Dobrovolsky, Robert T. Downs, Lorenza Fascio, Cristiano Ferraris, Giovanni Ferraris, Joan Garcia, Robert Gault, Athanasios Godelitsas, Joshua Golden, Edward S. Grew, Ulf Hålenius, Frank C. Hawthorne, László Horváth, Tomas Husdal, Christian R. Imark, Jordi Lluis Justo del Campo, Anthony R. Kampf, Frank Keutsch, Erika Kiechle, Johan Kjellman, Uwe Kolitsch, Ruslan I. Kostov, Vladimir G. Krivovichev, Łukasz Kruszewski, Jacques Lapaire, Lotte Melchior Larsen, Andrzej Manecki, María Florencia Márquez-Zavalía, Robert F. Martin, Tania Martins, Florias Mees, Silvio Menchetti, Stuart J. Mills, Owen Missen, Dieter Nickolay, Roberta Oberti, Mikhail Ostrooumov, Robert E. Pedersen, Herwig Pelckmans, Gerald A. Peters, Jakub Plášil, Olav Revheim, Arnold P. Ritte, André Robbemond, Andrew C. Roberts, Megan M. Rost, Mike Rousseau, Stefan Schorn, Benjamin N. Schumer, Jason Schuminski, Simon Spürgin, Patrick Stanco, Chris J. Stanley, Roy Starkey, Danka Szekv őlgyiová, Pavel Uher, Luc Vandenberghe, Ivan Vighetto, Pietro Vignola, Jianxiong Wang, Jeff Weissman, Thomas Witzke, Luminita Zaharia. Distribution terms and conditions : This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ . IMA IMA No. / Name CNMMN/CNMNC approved formula Country First reference Second reference Status Year European Journal of Mineralogy 29 Abellaite NaPb (CO ) (OH) A 2014-111 Spain 2 3 2 (2017), 915 Abelsonite NiC31H32N4 A 1975-013 USA American Mineralogist 63 (1978), 930 American Mineralogist 102 (2017), 1129 Abenakiite-(Ce) Na26Ce6(Si6O18)(PO4)6(CO3)6(SO2)O A 1991-054 Canada Canadian Mineralogist 32 (1994), 843 Abernathyite K(UO2)(AsO4)·3H2O G 1956 USA American Mineralogist 41 (1956), 82 American Mineralogist 49 (1964), 1578 2+ Abhurite Sn 21O6(OH)14Cl16 A 1983-061 Saudi Arabia Canadian Mineralogist 23 (1985), 233 Canadian Mineralogist 41 (2003), 659 Zapiski Rossiyskogo Abramovite Pb2SnInBiS7 A 2006-016 Russia Mineralogicheskogo Obshchestva 136(5) (2007), 45 Neues Jahrbuch für Mineralogie Abswurmbachite Cu2+Mn3+ O (SiO ) A 1990-007 Greece 6 8 4 Abhandlungen 163 (1991), 117 Journal of Mineralogical and Petrological Abuite CaAl (PO ) F A 2014-084 Japan 2 4 2 2 Sciences 112 (2017), 109 Annalen der Physik und Chemie 95 Zeitschrift für Kristallographie 110 Acanthite Ag S G 1855 Czech Republic 2 (1855), 462 (1958), 136 Zapiski Vsesoyuznogo Journal of Physical Chemistry 96 Acetamide CH CONH A 1974-039 Ukraine Mineralogicheskogo Obshchestva 104 3 2 (1992), 668 (1975), 326 2+ Achalaite Fe TiNb2O8 A 2013-103 Argentina Canadian Mineralogist 54 (2016), 1043 Boletin de la Facultad de Ciencias Exactas, Fisicas y Naturales, Neues Jahrbuch für Mineralogie Achávalite FeSe Rn 1939 Argentina Universidad Nacional de Cordoba 2 Monatshefte (1972), 276 (1939), 73 CNMNC Newsletter 43 - Mineralogical 3+ Achyrophanite (K,Na)3(Fe ,Ti,Al,Mg)5O2(AsO4)5 A 2018-011 Russia Magazine 82 (2018), 779; European Journal of Mineralogy 30 (2018), 647 2+ Acmonidesite (NH4,K,Pb,Na)9Fe 4(SO4)5Cl8 A 2013-068 Italy Mineralogical Magazine 83 (2019), 137 Elements of Mineralogy, 2nd ed., vol. 1. Actinolite ☐Ca (Mg Fe2+ )Si O (OH) Rd 2012 s.p. unknown American Mineralogist 83 (1998), 458 2 4.5-2.5 0.5-2.5 8 22 2 Elmsly, London (1794), 167 Denmark Neues Jahrbuch für Mineralogie Zeitschrift für Kristallographie 194 Acuminite SrAlF (OH)·H O A 1986-038 4 2 (Greenland) Monatshefte (1987), 502 (1991), 221 Journal of Mineralogical and Petrological Adachiite CaFe2+ Al (Si AlO )(BO ) (OH) (OH) A 2012-101 Japan 3 6 5 18 3 3 3 Sciences 109 (2014), 74 Comptes Rendus Hebdomadaires des Adamite Zn2(AsO4)(OH) G 1866 Chile Séances de l'Académie des Sciences 62 American Mineralogist 61 (1976), 979 (1866), 692 Adamsite-(Y) NaY(CO3)2·6H2O A 1999-020 Canada Canadian Mineralogist 38 (2000), 1457 CNMNC Newsletter 53 - Mineralogical 4+ Adanite Pb2(Te O3)(SO4) A 2019-088 USA Magazine 84 (2020), 159; European Journal of Mineralogy 32 (2020), 209 Algeria Addibischoffite Ca Al Al O A 2015-006 American Mineralogist 102 (2017), 1556 2 6 6 20 (meteorite) Geologiska Föreningen i Stockholm Experimental Mineralogy, Petrology and Adelite CaMg(AsO )(OH) G 1891 Sweden 4 Förhandlingar 13 (1891), 781 Geochemistry Meeting (2002), 30 (abstr.) Tschermaks Mineralogische und Crystal Structure Communications 5 Admontite MgB O ·7H O A 1978-012 Austria Petrographische Mitteilungen 26 (1979), 6 10 2 (1976), 433 69 Adolfpateraite K(UO2)(SO4)(OH)(H2O) A 2011-042 Czech Republic American Mineralogist 97 (2012), 447 Adranosite (NH4)4NaAl2(SO4)4Cl(OH)2 A 2008-057 Italy Canadian Mineralogist 48 (2010), 315 Adranosite-(Fe) (NH4)4NaFe2(SO4)4Cl(OH)2 A 2011-006 Italy Canadian Mineralogist 51 (2013), 57 Mexico Adrianite Ca (Al Mg Si )O Cl A 2014-028 American Mineralogist 103 (2018), 1329 12 4 3 7 32 6 (meteorite) Neues Jahrbuch für Mineralogie, 3+ Aegirine NaFe Si2O6 A 1998 s.p. Norway Geognosie, Geologie und American Mineralogist 93 (2008), 1829 Petrefaktenkunde (1835), 184 Mikroskopische Physiographie der 3+ 2+ Aegirine-augite (Ca,Na)(Fe ,Mg,Fe )Si2O6 Rd 1988 s.p. Russia Petrographisch Wichtigen Mineralien (1892) 510 Denmark Berg- und Hüttenmännische Zeitung 24 European Journal of Mineralogy 20 Aenigmatite Na [Fe2+ Ti ]O [Si O ] A 1967 s.p. 4 10 2 4 12 36 (Greenland) (1865), 397 (2008), 983 (Ca,Na) (Fe3+,Fe2+,Mg,Al) (Al,Mg) Si O Neues Jahrbuch für Mineralogie (1876), European Journal of Mineralogy 21 Aerinite 6 4 6 12 36 Rd 1988 s.p. Spain (OH)12(CO3)·12H2O 352 (2009), 233 Journal für Praktische Chemie 75 Aerugite Ni (AsO ) As5+O Rd 1965 s.p. Germany Acta Crystallographica B45 (1989), 201 8.5 4 2 8 (1858), 239 Jahres-Bericht über die Fortschritte der Doklady Akademii Nauk SSSR 142 Aeschynite-(Ce) (Ce,Ca,Fe,Th)(Ti,Nb) (O,OH) Rn 1987 s.p. Russia Physischen Wissenschaften 9 (1830), 2 6 (1962), 181 182 Aeschynite-(Nd) (Nd,Ln ,Ca)(Ti,Nb)2(O,OH)6 A 1987 s.p. China Scientia Geologica Sinica (1982), 424 Skrifter udgivne af Videnskabs- European Journal of Mineralogy 11 Aeschynite-(Y) (Y,Ln ,Ca,Th)(Ti,Nb) (O,OH) Rn 1987 s.p. Norway 2 6 Selskabet i Christiania 6 (1906), 1 (1999), 1043 Bulletin de la Société Française de European Journal of Mineralogy 9 Afghanite (Na,K) Ca (Si Al )O (SO ) Cl A 1967-041 Afghanistan Minéralogie et de Cristallographie 91 22 10 24 24 96 4 6 6 (1997), 21 (1968), 34 European Journal of Mineralogy 23 Afmite Al (OH) (H O) (PO )(PO OH)·H O A 2005-025a France 3 4 2 3 4 3 2 (2011), 269 Spectrochimica Acta A227 (2020), Afwillite Ca [SiO (OH)] ·2H O G 1925 South Africa Mineralogical Magazine 20 (1925), 277 3 3 2 2 117688 2+ 6+ Agaite Pb3Cu Te O5(OH)2(CO3) A 2011-115 USA American Mineralogist 98 (2013), 512 Agakhanovite-(Y) YCa☐2KBe3Si12O30 A 2013-090 Norway American Mineralogist 99 (2014), 2084 Physics and Chemistry of Minerals 45 Agardite-(Ce) CeCu2+ (AsO ) (OH) ·3H O A 2003-030 Germany Aufschluss 55 (2004), 17 6 4 3 6 2 (2018), 39 Zeitschrift für Naturforschung B75 Agardite-(La) LaCu2+ (AsO ) (OH) ·3H O A 1980-092 Greece Lapis 9 (1984), 22 6 4 3 6 2 (2020), 191 2+ Agardite-(Nd) NdCu 6(AsO4)3(OH)6·3H2O A 2010-056 Greece Journal of Geosciences 57 (2011), 249 Bulletin de la Société Française de 2+ Agardite-(Y) YCu 6(AsO4)3(OH)6·3H2O Rn 1987 s.p.
Recommended publications
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • AND THORIAN SYNCHYSITE-(Ce) from the NIEDERBOBRITZSCH GRANITE, ERZGEBIRGE, GERMANY: IMPLICATIONS for the DIFFERENTIAL MOBILITY of the LREE and Th DURING ALTERATION
    67 The Canadian Mineralogist Vol. 38, pp. 67-79 (2000) CERITE-(Ce) AND THORIAN SYNCHYSITE-(Ce) FROM THE NIEDERBOBRITZSCH GRANITE, ERZGEBIRGE, GERMANY: IMPLICATIONS FOR THE DIFFERENTIAL MOBILITY OF THE LREE AND Th DURING ALTERATION HANS-JÜRGEN FÖRSTER§ GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany ABSTRACT A detailed survey of accessory minerals in the poorly to moderately differentiated F-poor biotite granites from Niederbobritzsch, Erzgebirge, Germany, reveals the presence of various, late magmatic to postmagmatic secondary rare-earth (REE) minerals, including cerite-(Ce), thorian synchysite-(Ce), synchysite-(Ce), and an unidentified Th-rich REE fluorocarbonate(?). Cerite-(Ce) is a REE silicate that, to date, has been found in only half a dozen occurrences worldwide. It had not previously been described from a granite. The composition of cerite-(Ce) from Niederbobritzsch is characterized by lower bulk REE contents but higher abundances of Si, Al, Ca, and F than that from other occurrences. Dissolution of thorian monazite- (Ce) during interaction with a F-, CO2- and Ca-bearing fluid gave rise to the formation of thorian synchysite-(Ce) containing up to 18.1 wt% ThO2. Previously reported contents of Th in synchysite-(Ce) did not exceed 1.6 wt% ThO2. The spatial relations between the secondary REE minerals and their precursor attest to a differential mobility of the LREE and Th during fluid–rock interaction. Under the prevailing PTX-conditions, the LREE were more soluble and, thus, mobilized further away from their site of removal relative to Th, which tended to be reprecipitated next to its precursor. Virtually unchanged whole-rock REE budgets and continuous, unfractionated chondrite-normalized LREE patterns of the secondary REE minerals, however, imply that the lanthanides were transported over distances of millimeters or centimeters only.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • New Occurrence of Kruťaite and Petříčekite at the Former Uranium Mine Slavkovice, Western Moravia, Czech Republic
    250 Bull Mineral Petrolog 26, 2, 2018. ISSN 2570-7337 (print); 2570-7345 (online) PŮVODNÍ PRÁCE/ORIGINAL PAPER New occurrence of kruťaite and petříčekite at the former uranium mine Slavkovice, western Moravia, Czech Republic Tomáš FLÉGR1)*, Jiří SeJkora2), Pavel Škácha2,3) and Zdeněk dolníček2) 1)Department of Geology, Masaryk University, Kotlářská 267/2, 611 37 Brno; *e-mail:[email protected] 2)Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 3)Mining Museum Příbram, Hynka Kličky place 293, 261 01 Příbram VI Flégr T, SeJkora J, Škácha P, dolníček Z (2018) New occurrence of kruťaite and petříčekite at the former uranium mine Slavkovice, western Moravia, Czech Republic. Bull Mineral Petrolog 26(2): 250-258. ISSN 2570-7337 Abstract Two rare copper diselenides, kruťaite and petříčekite, were found in two museum samples of vein fillings from the uranium mine Slavkovice, western Moravia (Czech Republic). Kruťaite occurs as small isometric isolated euhedral to subhedral zoned crystals enclosed and partly replaced by umangite. Petříčekite forms small elongated or isometric inclusions enclosed by kruťaite and other Cu-selenides. Optical data, Raman spectra and chemical composition of both phases are specified in this paper. Kruťaite contains elevated contents of Co (up to 0.15apfu ) and Ni (up to 0.09 apfu), whereas petříčekite is Ni-Co free and enriched in Fe (up to 0.25 apfu). Both phases seem to be the oldest selenides in the given assemblage, and are associated with umangite, athabascaite, eskebornite, klockmannite, bukovite, urani- nite, chalcopyrite, calcite and hematite. The studied ore assemblage originated at temperature not exceeding ca.
    [Show full text]
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • Tyrrellite (Cu, Co, Ni)3Se4 C 2001-2005 Mineral Data Publishing, Version 1
    Tyrrellite (Cu, Co, Ni)3Se4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Rounded grains and subhedral cubes. Physical Properties: Cleavage: {001}, poor. Fracture: Conchoidal. Tenacity: Brittle. Hardness = ∼3.5 VHN = 343–368 (100 g load). D(meas.) = n.d. D(calc.) = 6.6(2) Optical Properties: Opaque. Color: Pale bronze; pale brassy bronze in reflected light. Streak: Black. Luster: Metallic. R: (400) 41.8, (420) 42.6, (440) 43.5, (460) 44.4, (480) 45.0, (500) 45.5, (520) 45.9, (540) 46.3, (560) 46.5, (580) 46.8, (600) 47.0, (620) 47.3, (640) 47.5, (660) 47.6, (680) 47.8, (700) 48.0 Cell Data: Space Group: Fm3m. a = 10.005(4) Z = 8 X-ray Powder Pattern: Ato Bay, Canada. 1.769 (10), 2.501 (9), 2.886 (7), 3.016 (6), 1.926 (6), 5.780 (4), 3.537 (4) Chemistry: (1) (2) Cu 12.7 13.7 Co 17.7 11.6 Ni 6.9 12.0 Se 62.4 62.0 Total 99.7 99.3 (1) Beaverlodge district [sic; Goldfields district], Canada; by electron microprobe, corresponding to Cu1.01Co1.52Ni0.60Se4.00. (2) Hope’s Nose, England; by electron microprobe; corresponding to Cu1.10Ni1.04Co1.00Se4.00. Mineral Group: Linnaeite group. Occurrence: With other selenides, as the youngest hydrothermal replacements and open space fillings in sheared Precambrian rocks, which also contain uraninite deposits (Goldfields district, Canada). Association: Umangite, klockmannite, clausthalite, pyrite, hematite, chalcopyrite, chalcomenite (Ato Bay, Canada); berzelianite, eucairite, crookesite, ferroselite, bukovite, kruˇtaite, athabascaite, calcite, dolomite (Petrovice deposit, Czech Republic).
    [Show full text]
  • Download the Scanned
    T Hn AMERICax M INERALoGIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol. 25 JUNE, 1940 No.6 DEPOSITS OF RADIOACTIVE CERITE NEAR JAMESTOWN, COLORADO* Elwnr N. Gonoann aNn Jnwnu J. Gr-ass, IL S. GeologicalSuraey, Washington, D.C. CONTENTS Abstract 381 Introduction 382 Geological occurrence 383 Mineralogy 385 Occurrence.. 385 Northern group 386 Southern group, 391 List of minerals. 393 Cerite... 393 Allanite. 397 Brown epidote 399 Tijrnebohmite 400 Fluorite 4.00 Bastniisite 401 Monazite 401 Uraninite 4Ol Sulphides 402 Comparisons with other deposits of cerite 402 Radioactivity 403 Age determination 404 Assrnecr Cerite, a rare silicate of the cerium metals, occurs in small deposits in the pre-Cambrian rocks of the Front Range near Jamestolvn, colorado. They are near the north border of a stock of Silver Plume granite, to which they are genetically related. Numerous lenticular schist masses in the granite suggest proximity to the roof. The cerite rock containing about 75 per cent of cerite occurs as irregular lenses,one- fourth of an inch to 15 inches wide, in narrow aplite-pegmatite zones along the borders of small schist areas. Narrow veinlets of black allanite border the cerite rock and minute grains of uraninite (pitchblende) and pyrite are localiy present. Microscopic examination of the cerite rock shows it to be finely intergrown with * Published by permission of the Director, Geological Survey, United States Depart- ment of the Interior, the Colorado Geological Survey Board, and the Colorado Metal Mining Fund. 381 E. N, GODDARD AND T. I. GLASS varying amounts of allanite, brown epidote, tdrnebohmite, fluorite, bastniisite, monazite, uraninite, and quartz.
    [Show full text]
  • Minerals Named After Scientists
    Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 1 MINERALS NAMED AFTER PEOPLE AND PLACES © Dr. John Andraos, 2003-2011 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ PEOPLE MINERAL PERSON OR PLACE DESCRIPTION Abelsonite ABELSON, Philip Hauge (1913 - ?) geochemist Abenakiite ABENAKI people, Quebec, Canada Abernathyite ABERNATHY, Jess Mine operator American, b. ? Abswurmbachite ABS-WURMBACH, IRMGARD (1938 - ) mineralogist German, b. ? Adamite ADAM, Gilbert Joseph Zn3(AsO3)2 H2O (1795 - 1881) mineralogist French, b. ? Aegirine AEGIR, Scandinavian god of the sea Afwillite WILLIAMS, Alpheus Fuller (1874 - ?) mine operator DeBeers Consolidated Mines, Kimberley, South Africa Agrellite AGRELL, Stuart O. (? - 1996) mineralogist British, b. ? Agrinierite AGRINIER, Henri (1928 - 1971) mineralogist French, b. ? Aguilarite AGUILAR, P. Superintendent of San Carlos mine, Guanajuato, Mexico Mexican, b. ? Aikenite 2 PbS Cu2S Bi2S5 Andersonite ANDERSON, Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 2 Andradite ANDRADA e Silva, Jose B. Ca3Fe2(SiO4)3 de (? - 1838) geologist Brazilian, b. ? Arfvedsonite ARFVEDSON, Johann August (1792 - 1841) Swedish, b. Skagerholms- Bruk, Skaraborgs-Län, Sweden Arrhenite ARRHENIUS, Svante Silico-tantalate of Y, Ce, Zr, (1859 - 1927) Al, Fe, Ca, Be Swedish, b. Wijk, near Uppsala, Sweden Avogardrite AVOGADRO, Lorenzo KBF4, CsBF4 Romano Amedeo Carlo (1776 - 1856) Italian, b. Turin, Italy Babingtonite (Ca, Fe, Mn)SiO3 Fe2(SiO3)3 Becquerelite BECQUEREL, Antoine 4 UO3 7 H2O Henri César (1852 - 1908) French b. Paris, France Berzelianite BERZELIUS, Jöns Jakob Cu2Se (1779 - 1848) Swedish, b.
    [Show full text]
  • Revision 2 of Ms. 5419 Page 1 Time's Arrow in the Trees of Life And
    Revision 2 of Ms. 5419 Time’s Arrow in the Trees of Life and Minerals Peter J. Heaney1,* 1Dept. of Geosciences, Penn State University, University Park, PA 16802 *To whom correspondence should be addressed: [email protected] Page 1 Revision 2 of Ms. 5419 1 ABSTRACT 2 Charles Darwin analogized the diversification of species to a Tree of Life. 3 This metaphor aligns precisely with the taxonomic system that Linnaeus developed 4 a century earlier to classify living species, because an underlying mechanism – 5 natural selection – has driven the evolution of new organisms over vast timescales. 6 On the other hand, the efforts of Linnaeus to extend his “universal” organizing 7 system to minerals has been regarded as an epistemological misfire that was 8 properly abandoned by the late nineteenth century. 9 The mineral taxonomies proposed in the wake of Linnaeus can be 10 distinguished by their focus on external character (Werner), crystallography (Haüy), 11 or chemistry (Berzelius). This article appraises the competition among these 12 systems and posits that the chemistry-based Berzelian taxonomy, as embedded 13 within the widely adopted system of James Dwight Dana, ultimately triumphed 14 because it reflects Earth’s episodic but persistent progression with respect to 15 chemical differentiation. In this context, Hazen et al.’s (2008) pioneering work in 16 mineral evolution reveals that even the temporal character of the phylogenetic Tree 17 of Life is rooted within a Danan framework for ordering minerals. 18 19 Page 1 Revision 2 of Ms. 5419 20 INTRODUCTION 21 In an essay dedicated to the evolutionary biologist Ernst Mayr, Stephen Jay 22 Gould (2000) expresses his indignation at the sheer luckiness of Carolus Linnaeus 23 (1707-1778; Fig.
    [Show full text]
  • Eskebornite, Two Canadian Occurrences
    ESKEBORNITE,TWO CANADIAN OCCURRENCES D.C. HARRIS* am E.A.T.BURKE *r, AssrRAcr The flnt Canadian occurrenceof eskebomitefrom Martin Lake and the Eagle Groug Lake Athabaskaare4 Northern Saskatchewanis reported.Electron microprobe agalysesshow that the formula is cuFese2.The r-ray powdet difiraction pattems are identical to that of eskebornitefrom Tilkerode, Germany,the type locality, Eskeborniteocrurs as island remnantsin, and replac'edby,'u,rnangite'which occurs in pitchblendeores in t}le basa.ltof the Martin formaiion and in granitizedmafic rocls of the Eaglegroup. The mineral can be readily synthesizedat 500"e from pure elements in evacuatedsilica glasstubes, Reflectance and micro-indentationhardness in."r*u**o are given. IlvrnonucttoN Eskebomite, a copper iron selenide, was first discovered and namd by P. Ramdohr in 1949 while studying the selenide minerals from dre Tilkerode area, Harz Mountain, Germany. The mineral has also been reported from Sierra de Cacheuta and Sierra de lJmango, Argentina (Tischendorf 1960). More recentlyo other occurrences of eskebornite have been described: by Kvadek et al. (1965) in the selenide paragenesis at the slavkovice locality in the Bohemian and Moravian Highlands, czecho- slovakia; and by Agrinier et aI. (1967) in veins of pitchblende at Cha- m6anq Puy-de-D6me, France. Earley (1950) and Tischendorf (195g, 1960) made.observations on eskebornite from the Tilkerode locality, but, even today, certain data are still lacking in the characterization of eskebomitg in particular its crystal- lographic symmetry. The purpose of this paper is to record the first occurrence of eskebomite in Canada and to present electron microprobe analyses, reflectance and micro-indentation hardness measurements. GrNsRAr.
    [Show full text]
  • Article Benefited from Construc- Ering the Co Dominance Among the Non-Cu Metal Atoms, Tive Reviews by Jochen Schlüter and Taras Panikorovskii
    Eur. J. Mineral., 32, 637–644, 2020 https://doi.org/10.5194/ejm-32-637-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany Stuart J. Mills1, Uwe Kolitsch2,3, Georges Favreau4, William D. Birch1, Valérie Galea-Clolus5, and Johannes Markus Henrich6 1Geosciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 2Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria 3Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090 Vienna, Austria 4independent researcher: 421 Avenue Jean Monnet, 13090 Aix-en-Provence, France 5independent researcher: 10 rue Combe Noire, 83210 Solliès-Toucas, France 6independent researcher: Im Großen Garten 3, 57548 Kirchen (Sieg), Germany Correspondence: Stuart J. Mills ([email protected]) Received: 13 April 2020 – Revised: 30 October 2020 – Accepted: 9 November 2020 – Published: 25 November 2020 Abstract. The new mineral gobelinite, ideally CoCu4.SO4/2.OH/6 6H2O, is a new member of the ktenasite group and the Co analogue of ktenasite, ZnCu4.SO4/2.OH/6 6H2O.q It occurs at Cap Garonne (CG), Var, France (type locality), and Eisenzecher Zug (EZ), Siegerland, Northq Rhine-Westphalia, Germany (cotype lo- cality). The mineral forms pale green, bluish green or greyish green, blocky to thin, lath-like crystals. They are transparent and non-fluorescent, with a vitreous, sometimes also pearly, lustre and a white streak having a pale-green cast. Mohs hardness is about 2.5. The crystals are brittle with an irregular fracture; no cleav- age was observed.
    [Show full text]