Minerals Named After Scientists

Total Page:16

File Type:pdf, Size:1020Kb

Minerals Named After Scientists Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 1 MINERALS NAMED AFTER PEOPLE AND PLACES © Dr. John Andraos, 2003-2011 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ PEOPLE MINERAL PERSON OR PLACE DESCRIPTION Abelsonite ABELSON, Philip Hauge (1913 - ?) geochemist Abenakiite ABENAKI people, Quebec, Canada Abernathyite ABERNATHY, Jess Mine operator American, b. ? Abswurmbachite ABS-WURMBACH, IRMGARD (1938 - ) mineralogist German, b. ? Adamite ADAM, Gilbert Joseph Zn3(AsO3)2 H2O (1795 - 1881) mineralogist French, b. ? Aegirine AEGIR, Scandinavian god of the sea Afwillite WILLIAMS, Alpheus Fuller (1874 - ?) mine operator DeBeers Consolidated Mines, Kimberley, South Africa Agrellite AGRELL, Stuart O. (? - 1996) mineralogist British, b. ? Agrinierite AGRINIER, Henri (1928 - 1971) mineralogist French, b. ? Aguilarite AGUILAR, P. Superintendent of San Carlos mine, Guanajuato, Mexico Mexican, b. ? Aikenite 2 PbS Cu2S Bi2S5 Andersonite ANDERSON, Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 2 Andradite ANDRADA e Silva, Jose B. Ca3Fe2(SiO4)3 de (? - 1838) geologist Brazilian, b. ? Arfvedsonite ARFVEDSON, Johann August (1792 - 1841) Swedish, b. Skagerholms- Bruk, Skaraborgs-Län, Sweden Arrhenite ARRHENIUS, Svante Silico-tantalate of Y, Ce, Zr, (1859 - 1927) Al, Fe, Ca, Be Swedish, b. Wijk, near Uppsala, Sweden Avogardrite AVOGADRO, Lorenzo KBF4, CsBF4 Romano Amedeo Carlo (1776 - 1856) Italian, b. Turin, Italy Babingtonite (Ca, Fe, Mn)SiO3 Fe2(SiO3)3 Becquerelite BECQUEREL, Antoine 4 UO3 7 H2O Henri César (1852 - 1908) French b. Paris, France Berzelianite BERZELIUS, Jöns Jakob Cu2Se (1779 - 1848) Swedish, b. East Götland, Sweden Boulangerite 5 PbS 2 Sb2O3 Bournonite 3 PbS 3 Cu2S Sb2S3 Braggite BRAGG, Sir William Henry PtS, PdS, NiS (1862 - 1942) British, b. Westward, Cumberland, England BRAGG, Sir William Lawrence (1890 - 1971) Australian-British, b. Adelaide, Australia Brannerite (U, Ca, Fe, Y, Th)3 Ti5O16 Braunite 3 MnO3 MnSiO3 Brewsterite BREWSTER, Sir David BaO, SrO, Al2O3 6 SiO2 (1781 - 1868) 5H2O Scottish, b. Jedburgh, Scotland Broeggerite BROEGGER (U, Th, Pb2)O6 2 UO3 Bunsenite BUNSEN, ROBERT NiO (1811 – 1899) German, b. Goettingen, Germany Churchite (Ce, Ca)PO4 2H2O Clarkeite CLARKE (Na2Pb)O 3 UO3 3 H2O Cleveite CLEVE, Per Theodor Related to uraninite (1840 - 1905) Swedish, b. Stockholm, Sweden Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 3 Codazzite (Ca, Mg, Fe, Ce)CO3 Colemanite COLEMAN, William T. Ca2B6O11 5 H2O (? - 1893) businessman and mine owner American, b. ? Cookeite COOKE (OH)6LiAl3SiO6 Cooperite COOPER PtS Curite CURIE-SKLODOWSKA, 2 PbO 5 UO3 4 H2O Marie (1867 - 1934) Polish-French, b. Warsaw, Poland CURIE, Pierre (1859 - 1906) French, b. Paris, France Davidite Titanate of Fe, U, V, Cr Dickinsonite DICKINSON, (Mn, Fe, Ca, H, Na)3 P2O8 Edingtonite BaO Al2O3 3 SiO2 3 H2O Emmonsite EMMONS, FeTeO3 Erdmannite ERDMANN, Silicate of Ce, Y, Th, Zr, Be, Ca, Al, Fe Fairfieldite FAIRFIELD, Ca2MnP2O8 2 H2O Fergusonite FERGUSON, Y(Nb, Ta)O4 Fersmannite FERSMANN, 2 (Na2O Na2F2) 4 CaO 4 TiO2 3 SiO2 Fischerite FISCHER, AlPO4 Al(OH)3 2.5 H2O Florencite FLORENCE, W. 3 Al2O3 Ce2O3 2 P2O5 Brazilian mineraologist 6 H2O Forsterite FORSTER, 2 MgO SiO2 Fowlerite FOWLER Ca(Mn, Fe, Zn)5(SiO3)6 Freyalite FREYA Silicate of Th Norse goddess of love and beauty Fuchsite FUCHS, Muscovite + Cr Gadolinite GADOLIN, Johann Be2Fe(YO)2(SiO4)2 (1760 - 1852) Finnish, b. Abo, Finland Gahnite GAHN, Johan Gottlieb ZnAl2O4 (1745 - 1818) Swedish (b. Voxna, Gävleborg, Sweden) Gerhardite GERHARD, 3 Cu(OH)2 Cu(NO3)2 Gibbsite GIBBS, Al2O3 3 H2O Glauber's salt, GLAUBER, Johann CaSO4 Na2SO4 Glauberite Rudolph (1640 - 1670) German, b. Karlstadt, Germany Gmelinite GMELIN, Leopold CaO Na2O Al2O3 3 SiO2 (1788 - 1853) 6 H2O German, b. Göttingen, Germany Guitermannite GUITERMANN, 3 PbS As2S3 Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 4 Hackmanite HACKMAN, Sodalite containing 6% of 3 NaAlSiO4 Na2S Hausmannite HAUSMANN, Mn3O4 Hübnerite HÜBNER, MnWO4 Hutchinsonite HUTCHINSON, PbS Tl2S Ag2S 2 As2S3 Jamesonite JAMESON 2 PbS Sb2S3 Jeffersite JEFFER 10 (Mg, Fe)0.4 (Al, Fe)2O3 10 SiO2 7 H2O Johannite JOHANN (Cu, Fe, Na2)O UO3 SO3 4 H2O Kalkowskite KALKOW (Fe, Ce)2O3 4 (Ti, Si)O2 Kaneite KANE, Robert John (1809 - 1890) Irish, b. Dublin, Ireland Kieserite KIESER, Dietrich MgSO4 H2O (? - 1862) physician German, b. ? Knopite Near perovskite + Ce2O3 FeO Kolbeckite Be phosphate or silicophosphate Lawsonite H4CaAl2Si2O10 Lessingite Ca silicate Lewisite LEWIS, Winford Lee 5 CaO 2 TiO2 3 Sb2O5 (1878 - 1943) American, b. Gridley, California, USA Lorenzenite Na2(TiO2)Si2O7 + ZrO2 Löweite 2 MgSO4 2 Na2SO4 5 H2O Ludwigite 3 MgO B2O3 FeO Fe2O3 Mackintoshite 3 ThO2 3 SiO2 UO2 3 H2O Maitlandite 2 (Pb, Ca)O 3 ThO2 4 UO2 8 SiO2 23 H2O Mendelyeevite MENDELYEEV, Dimitri Ca urano-titano-niobate Ivanovich (1834 - 1907) Russian, b. Tobolsk, Russia Millerite MILLER, William Hallowes NiS (1801 - 1888) British, b. Llandovery, Wales Moissanite MOISSAN, Henri SiC (1852 - 1907) French, b. Paris, France Naëgite Zircon + Y, Nb, Ta, U, Th oxides Nagyagite 10 PbS Sb2S3 2 AuTe3 or 2 AuS Naumannite (Ag2Pb)Se Oliveiraite 3 ZrO2 2 TiO2 2 H2O Parsonsite 2 PbO UO3 P2O5 H2O Phillipsite (K2, Ca)Al2SiO4O12 Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 5 4.5 H2O Powellite Ca(Mo, W)O4 Priceite 5 CaO 6 B2O3 9 H2O Ralstonite 3 Al(OH, F)3 (Na2, Mg)F2 2 H2O Rammelsbergite NiAs2 Renardite PbO 4 UO3 P2O5 9 H2O Richetite Hydrous Pb uranate Roeblingite 2 PbSO4 H10Ca7(SiO4)6 Rogersite Fe2O3 2 SO3 6 H2O Roosevelite BiAsO4 Rosenbuschite Na2Ca3(Si, Ti, Zr)4O12 Rossite CaO V2O5 4 H2O Rowlandite Fe(Y, Ce, La)2(YF)2Si4O14 Rutherfordine RUTHERFORD, Lord UO2CO3, 68% U2O3 Ernest (1871 - 1937) New Zealander-British, b. Spring Grove (now Brightwater) New Zealand Scheelite SCHEELE, Karl Wilhelm CaWO4 (1742 - 1786) Swedish, b. Stralsund, then Sweden Scheteligite (Ca, Y, Sb, Mn)2(Ti, Ta, Nb)2(O, OH)7 Schoepite 4 UO3 9 H2O Schorlomite 3 CaO (Fe, Ti)2O3 3 (Si, Ti)O2 Schroeckeringite 3 CaCO3 Na2SO4 UO3 10 H2O Seybertite 10 (Mg, Ca)O 5 Al2O3 4 SiO2 3 H2O Sharpite 6 UO3 5 CO2 8 H2O Sillimanite SILLIMAN, Benjamin Al2SiO5 (? - 1864) geologist American, b. ? Sklodowskite CURIE-SKLODOWSKA, MgO 2 UO3 2 SiO2 7 H2O Marie (1867 - 1934) Polish-French, b. Warsaw, Poland Smithsonite SMITHSON, James ZnCO3 (? - 1829) British, b. ? Soddyite SODDY, Frederick 5 UO3 2 SiO2 6 H2O (1877 - 1956) British, b. Eastbourne, England Stephanite 5 Ag2S Sb2S3 Sternbergite Ag2S Fe4S5 Stiepelmannite (Y, Yb)PO4 AlPO4 2 Al(OH)3 + Ce, La, Pr Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 6 Stromeyerite STROMEYER, Friedrich Ag2S Cu2S (1776 - 1835) German, b. Göttingen, Germany Strüverite Fe(Ta, Nb)2Ti6O18 Swartzite SWARTZ CaMgUO2(CO3)3 12 H2O Tennantite TENNANT, Smithson 5 Cu2S 2 ZnS 2 As2S3 (1761 - 1815) British, b. Selby, England Thenardite THÉNARD, Louis Jacques Na2SO4 (1777 – 1857) French, b. Louptière, France) Thomsonite THOMSON, 2 (Ca, Na2)O 2 Al2O3 4 SiO2 5 H2O Thortveitite (Sc, Y)2Si2O7 Thucholite Hydrocarbon, Th, Ce, La, Dy, Y, Er, H2, N Tiemannite TIEMANN, Johann K.W.F. HgSe (1848 - 1899) German, b. Rübeland, Harz, Germany Toddite 55.7% Nb2O3 11.1% U oxides Torbernite Cu(UO2)2P2O8 12 H2O Törnebohmite (Ce, La, Al)3(F, OH)(SiO4)2 Troegerite (UO2)3As2O8 12H2O Tschermigite (NH4)Al(SO4)2 12H2O Ulexite ULEX, George L. NaCaB5O9 8 H2O (? - 1883) German, b. ? Uvarovite UVAROV, Count Sergei S. (? - 1855) Russian, b. ? Ullmannite ULLMANN, Fritz NiSbS (1875 – 1939) German, b. Fürth, Germany Valentinite Sb2O3 Vietinghofite Hydrated Fe samarskite Voglite Hydrous carbonate of U, Ca, Cu Volborthite 6 (Cu, Ca, Ba)O V2O5 15 H2O Wagnerite 3 MgO P2O5 MgF2 Wernerite WERNER, Abraham Gottlob X80Y20 – X40Y60 (1749 - 1817) X = CaCO3 3 CaAl2Si2O8 German, b. Wehrau, Silesia Y = NaCl 3 NaAlSi3O8 Wiikite Niobate, titanate, silicate of Fe, rare earths Willemite WILLEM I, King of the 2 ZnO SiO2 Netherlands (? - 1843) Woehlerite WOEHLER, Friedrich Zr silicate and niobate of Ca, (1800 - 1882) Na German, b. near Frankfurt, Germany Wollastonite WOLLASTON, William CaO SiO2 Hyde (1766 - 1828) British, b. East Dereham, Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 7 Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 8 Norfolk, England Wurzite WURTZ, Charles Adolphe ZnS (1817 - 1884) French, b. Wolfisheim, near Strasbourg, France Yagiite YAGI, Kenzo (1949 - ) mineralogist Japanese, b. ? Yakhontovite YAKHONTOVA, Liia Konstanttinovna (? - ?) mineralogist Russian, b. ? Yanomanite YANOMANI people, Amazon Basin, Brazil Yavapaiite YAVAPAI people, Arizona, USA Yedlinite YEDLIN, Leo Neal (1908 - 1977) mineralogist American, b. ? Yoderite YODER Jr., Hatten Schuyler (1921 - ) petrologist American, b. ? Yofortierite FORTIER, Yves Oscar (1914 - ) mineralogist Canadian, b. ? Yoshimuraite YOSHIMURA, Toyofumi (? - ?) mineralogist Japanese, b. ? Yoshiokaite YOSHIOKA, Takashi (1935 - 1983) mineralogist Japanese, b. ? Yuanfuliite FULI, Yuan (1893 - 1987) geologist Chinese, b. ? Yushkinite YUSHKIN, Nikolai Pavlovich (1936 - ) mineralogist Russian, b. ? Zaherite ZAHER, Mohammed Abduz (? - ?) mineralogist Bangladeshi, b. ? Zajacite ZAJAC, Ihor Stephan (1935 - ) explorer Zakharovite ZAKHAROV, Evgeny E. (1902 - 1980) mineralogist Russian, b. ? Zanazziite ZANAZZI, Pier Francesco (1939 -) mineralogist Italian, b. ? Zapatalite
Recommended publications
  • Tundrite-(Ce) Na3(Ce; La)4(Ti; Nb)2(Sio4)2(CO3)3O4(OH) ² 2H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Triclinic
    Tundrite-(Ce) Na3(Ce; La)4(Ti; Nb)2(SiO4)2(CO3)3O4(OH) ² 2H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Triclinic. Point Group: 1: Crystals acicular along [001] and °attened on 010 , to 3 cm; as stellate groups and spherulitic masses. Twinning: On 010 , producing f g f g pseudorhombohedra. Physical Properties: Cleavage: Pronounced on 010 . Fracture: Splintery. f g Tenacity: Brittle. Hardness = 3 D(meas.) = 3.70{4.12 D(calc.) = 4.06 » Optical Properties: Transparent. Color: Brownish yellow, greenish yellow to bright light green. Streak: Yellowish gray. Luster: Vitreous to adamantine. Optical Class: Biaxial (+). Pleochroism: Weak; X = pale yellow; Z = greenish yellow. Orientation: Z c = 4 {14 . ® = 1.743 ¯ = 1.80 ° = 1.88 2V(meas.) = 76 ^ ± ± ± Cell Data: Space Group: P 1: a = 7.533(4) b = 13.924(6) c = 5.010(2) ® = 99±52(2)0 ¯ = 70±50(3)0 ° = 100± 59(2)0 Z = 1 X-ray Powder Pattern: Il¶³maussaq intrusion, Greenland. 13.49 (100), 2.505 (100), 3.448 (90), 2.766 (90), 3.535 (80), 6.784 (70), 1.914 (70) Chemistry: (1) SiO2 10.03 TiO2 12.20 La2O3 8.57 Ce2O3 24.38 Nd2O3 10.25 RE2O3 5.80 Nb2O5 3.44 CaO 0.75 Na2O 8.20 CO3 16.38 Total [100.00] (1) Il¶³maussaq intrusion, Greenland; by electron microprobe, C con¯rmed by loss on ignition; original analysis given as elements, here recalculated to oxides, corresponding to Na3:17(Ce1:78Nd0:73La0:63RE0:41Ca0:16)§=3:71(Ti1:83Nb0:31)§=2:14(SiO4)2:00(CO3)3:27O4:25: Occurrence: In pegmatite veins associated with nepheline syenites.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Secondary Phosphate Minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): Substitutions of Triphylite and Montebrasite Scholz, R.; Chaves, M
    The secondary phosphate minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): substitutions of triphylite and montebrasite Scholz, R.; Chaves, M. L. S. C.; Belotti, F. M.; Filho, M. Cândido; Filho, L. Autor(es): A. D. Menezes; Silveira, C. Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/31441 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0_27 Accessed : 2-Oct-2021 20:21:49 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra.
    [Show full text]
  • First Terrestrial Occurrence of Titanium
    875 Thz Caradian M fuc ralo g is t Vol.35, pp. 875-885(1997) FIRSTTERRESTRIAL OCCURRENCE OF TITANIUM.RICH PYRRHOTITE, MARCASITEAND PVRITEIN A FENITIZEDXENOLITH FROMTHE KHIBINA ALKALINE COMPLEX. RUSSIA ANDREI Y. BARKOVT nxp KAUKO V.O. LAAJOKI Irxtiruteof Geosciencesand Astrorcmy, University of Oula FIN-90570OuIW FinLand YT]RIP.MEN'SHIKOV Geological Instirute, Kola Science Cente, Russian Acadenry of Scimces, 14 Fersman Street, Apatity 1M200 , Russia TUOMO T. AI.APIETI Instituteof Geoscierrcesand Astrotnnry, University of Ouh+FN-90570 OuIu Finlnnl SEPPOJ. SryONEN Instiarcof ElcctronOptics, University of OuhaFN-90570 Ouh+ Finlnnd ABSTRACT The first terrestrial titanium-rich sulfides, the fust natural niobium-rich sulfide FeMgSe, fluorine-rich (ca. 6 wt.Vo D end-memberphlogopite (S().04 wLTo FeO) and ferroan alabandite occurlocally in aheterogeneous xenolit\ enclosed within nepheline syenite in the l(hifiaa alkalins gs6plex, Kola Peninsul4 northwestem Russia- This assemblage is exclusively associated with an alkali-feldspar-rich rock, probably fenite. Associat€d ninerals include corundum, Nb-Zr-bearing rutile and monazite. The maximum Ti content reaches 3.9 w.7o in pynhotite and 2 wt.7o in marcasite and pyrite, which represent prducts of replacement of the pynhotite. Titanium is distributed rather homogeneously within single grains of the pyrrhotite; however, a strong grain-to-gain variation is observed. The Tl-rich sulfides invariably contrin an elevated level ofvanadium (0.2-0 .4 wr.Vo).T\e results indicate that both Ti and V enter into solid solution in the sulfides. Presumably, there is an environmental similarity between the occurrences ofTl-bearing sulfides in trftibina and in meteorites (enstatite chondrites), where Tl-bearing hoilite occurs.
    [Show full text]
  • Cafetite, Ca[Ti2o5](H2O): Crystal Structure and Revision of Chemical Formula
    American Mineralogist, Volume 88, pages 424–429, 2003 Cafetite, Ca[Ti2O5](H2O): Crystal structure and revision of chemical formula SERGEY V. K RIVOVICHEV,1,* VICTOR N. YAKOVENCHUK,2 PETER C. BURNS,3 YAKOV A. PAKHOMOVSKY,2 AND YURY P. MENSHIKOV2 1Department of Crystallography, St. Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia 2Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184200-RU Apatity, Russia 3Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0767, U.S.A. ABSTRACT The crystal structure of cafetite, ideally Ca[Ti2O5](H2O), (monoclinic, P21/n, a = 4.9436(15), b = 12.109(4), c = 15.911(5) Å, b = 98.937(5)∞, V = 940.9(5) Å3, Z = 8) has been solved by direct methods and refined to R1 = 0.057 using X-ray diffraction data collected from a crystal pseudo-merohedrally twinned on (001). There are four symmetrically independent Ti cations; each is octahedrally coordi- nated by six O atoms. The coordination polyhedra around the Ti cations are strongly distorted with individual Ti-O bond lengths ranging from 1.743 to 2.223 Å (the average <Ti-O> bond length is 1.98 Å). Two symmetrically independent Ca cations are coordinated by six and eight anions for Ca1 and Ca2, respectively. The structure is based on [Ti2O5] sheets of TiO6 octahedra parallel to (001). The Ca atoms and H2O groups are located between the sheets and link them into a three-dimensional struc- ture. The structural formula of cafetite confirmed by electron microprobe analysis is Ca[Ti2O5](H2O), .
    [Show full text]
  • 38Th RMS Program Notes
    E.fu\wsoil 'og PROGRAM Thursday Evening, April 14, 2011 PM 4:00-6:00 Cocktails and Snacks – Hospitality Suite 400 (4th Floor) 6:00-7:45 Dinner – Baxter’s 8:00-9:15 THE GUALTERONI COLLECTION: A TIME CAPSULE FROM A CENTURY AGO – Dr. Renato Pagano In 1950, the honorary curator of the Museum of Natural History in Genoa first introduced Dr. Renato Pagano to mineral collecting as a Boy Scout. He has never looked back. He holds a doctorate in electrical engineering and had a distinguished career as an Italian industrialist. His passion for minerals has produced a collection of more than 13,000 specimens, with both systematic and aesthetic subcollections. His wife Adriana shares his passion for minerals and is his partner in collecting and curating. An excellent profile of Renato, Adriana, and their many collections appeared earlier this year in Mineralogical Record (42:41-52). Tonight Dr. Pagano will talk about an historic mineral collection assembled between 1861 and 1908 and recently acquired intact by the Museum of Natural History of Milan. We most warmly welcome Dr. Renato Pagano back to the speakers’ podium. 9:15 Cocktails and snacks in the Hospitality Suite on the 4th floor will be available throughout the rest of the evening. Dealers’ rooms will be open at this time. All of the dealers are located on the 4th floor. Friday Morning, April 15, 2011 AM 9:00 Announcements 9:15-10:15 CRACKING THE CODE OF PHLOGOPITE DEPOSITS IN QUÉBEC (PARKER MINE), MADAGASCAR (AMPANDANDRAVA) AND RUSSIA (KOVDOR) – Dr. Robert F. Martin Robert François Martin is an emeritus professor of geology at McGill University in Montreal.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Revision 2 of Ms. 5419 Page 1 Time's Arrow in the Trees of Life And
    Revision 2 of Ms. 5419 Time’s Arrow in the Trees of Life and Minerals Peter J. Heaney1,* 1Dept. of Geosciences, Penn State University, University Park, PA 16802 *To whom correspondence should be addressed: [email protected] Page 1 Revision 2 of Ms. 5419 1 ABSTRACT 2 Charles Darwin analogized the diversification of species to a Tree of Life. 3 This metaphor aligns precisely with the taxonomic system that Linnaeus developed 4 a century earlier to classify living species, because an underlying mechanism – 5 natural selection – has driven the evolution of new organisms over vast timescales. 6 On the other hand, the efforts of Linnaeus to extend his “universal” organizing 7 system to minerals has been regarded as an epistemological misfire that was 8 properly abandoned by the late nineteenth century. 9 The mineral taxonomies proposed in the wake of Linnaeus can be 10 distinguished by their focus on external character (Werner), crystallography (Haüy), 11 or chemistry (Berzelius). This article appraises the competition among these 12 systems and posits that the chemistry-based Berzelian taxonomy, as embedded 13 within the widely adopted system of James Dwight Dana, ultimately triumphed 14 because it reflects Earth’s episodic but persistent progression with respect to 15 chemical differentiation. In this context, Hazen et al.’s (2008) pioneering work in 16 mineral evolution reveals that even the temporal character of the phylogenetic Tree 17 of Life is rooted within a Danan framework for ordering minerals. 18 19 Page 1 Revision 2 of Ms. 5419 20 INTRODUCTION 21 In an essay dedicated to the evolutionary biologist Ernst Mayr, Stephen Jay 22 Gould (2000) expresses his indignation at the sheer luckiness of Carolus Linnaeus 23 (1707-1778; Fig.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Revision #1 the Atomic Arrangement and Electronic Interactions In
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7851. http://www.minsocam.org/ 1 Revision #1 2 3 The atomic arrangement and electronic interactions in vonsenite at 4 295, 100, and 90 K 5 1, 1, 2 3 4 6 MARC MADERAZZO , JOHN M. HUGHES , M. DARBY DYAR , GEORGE R. ROSSMAN , 5 3 6 7 BRANDON J. ACKLEY , ELIZABETH C. SKLUTE , MARIAN V. LUPULESCU , AND 7 8 JEFFREY CHIARENZELLI 9 10 1Department of Geology, University of Vermont, Burlington, Vermont, 05405, U.S.A. 11 2Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, U.S.A. 12 3Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A. 13 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125- 14 2500, U.S.A. 15 5Department of Chemistry, University of Vermont, Burlington, Vermont, 05405, U.S.A. 16 6New York State Museum, Research and Collections, 3140 CEC, Albany, New York 12230, U.S.A. 17 7Department of Geology, St. Lawrence University, Canton, New York 13617, U.S.A. 18 19 ABSTRACT 2+ 3+ 20 Vonsenite, Fe 2Fe O2BO3, has been the subject of many studies in the materials-science and 21 condensed-matter-physics communities due to interest in the electronic and magnetic properties 22 and ordering behavior of the phase. One such study, undertaken on synthetic material of 23 endmember composition, reports X-ray diffraction structure refinements that indicate a phase 24 transition from Pbam to Pbnm at or just below approximately 283 K, determined subsequently to 25 arise from a Peierls-like instability.
    [Show full text]
  • Brandãoite, [Beal2(PO4)2(OH)2(H2O
    Mineralogical Magazine (2019), 83, 261–267 doi:10.1180/mgm.2018.121 Article Brandãoite, [BeAl2(PO4)2(OH)2(H2O)4](H2O), a new Be–Al phosphate mineral from the João Firmino mine, Pomarolli farm region, Divino das Laranjeiras County, Minas Gerais State, Brazil: description and crystal structure † Luiz A. D. Menezes Filho1 , Mário L. S. C. Chaves1, Mark A. Cooper2, Neil A. Ball2, Yassir A. Abdu2,3, Ryan Sharpe2, Maxwell C. Day2 and Frank C. Hawthorne2* 1Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; and 3Department of Applied Physics and Astronomy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates Abstract – Brandãoite, [BeAl2(PO4)2(OH)2(H2O)4](H2O), is a new Be Al phosphate mineral from the João Firmino mine, Pomarolli farm region, Divino das Laranjeiras County, Minas Gerais State, Brazil, where it occurs in an albite pocket with other secondary phosphates, including beryllonite, atencioite and zanazziite, in a granitic pegmatite. It occurs as colourless acicular crystals <10 µm wide and <100 µm long that form compact radiating spherical aggregates up to 1.0–1.5 mm across. It is colourless and transparent in single crystals and white in aggregates, has a white streak and a vitreous lustre, is brittle and has conchoidal fracture. Mohs hardness is 6, and the calculated density 3 α β γ is 2.353 g/cm . Brandãoite is biaxial (+), = 1.544, = 1.552 and = 1.568, all ± 0.002; 2Vobs = 69.7(10)° and 2Vcalc = 71.2°.
    [Show full text]