Lead and Arsenic Speciation and Bioaccessibility Following Sorption on Oxide Mineral Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Lead and Arsenic Speciation and Bioaccessibility Following Sorption on Oxide Mineral Surfaces LEAD AND ARSENIC SPECIATION AND BIOACCESSIBILITY FOLLOWING SORPTION ON OXIDE MINERAL SURFACES Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Douglas Gerald Beak, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. Nicholas Basta, Co Advisor Dr. Samuel Traina, Co Advisor _________________________ Co Advisor Dr. Harold Walker Dr. Kirk Scheckel _________________________ Co Advisor Soil Science Graduate Program ABSTRACT The risk posed from incidental ingestion of arsenic-contaminated or lead- contaminated soil may depend on sorption of arsenate (As(V)) or lead (Pb(II)) to oxide surfaces in soil. Arsenate or lead sorbed to ferrihydrite, corundum, and birnessite model oxide minerals were used to simulate possible effects of ingestion of soil contaminated with As(V) or Pb(II). Arsenate or lead sorbed oxides were placed in a simulated gastrointestinal tract (in vitro) to ascertain the bioaccessibility of As(V) or Pb(II) and changes in As(V) or Pb(II) surface speciation. The speciation of As or Pb was determined using EXAFS and XANES analysis. The As(V) adsorption maximum was found to be 7.04 g kg-1, and 0.47 g kg-1 for ferrihydrite and corundum, respectively. The bioaccessible As(V) for ferrihydrite ranged form 0 to 5 % and for corundum ranged from 0 to 16 %. The surface speciation for ferrihydrite and corundum was determined to be binuclear bidentate. These results for As(V) sorbed to ferrihydrite and corundum suggest that the bioaccessibility of As(V) is related to the As(V) concentration, and the As(V) adsorption maximum. The bioaccessibility of As(V) sorbed to birnessite ranged from 16 to 28 % and the As(V) surface speciation was binuclear bidentate. The results for As (V) sorbed birnessite suggest that birnessite can reduce the bioaccessibility of As(V) in contaminated soil. Sorption of Pb(II) was significant for all the model oxides used. The sorption maximum was found to be 2.13 g kg-1 for corundum, 38.6 g kg-1 for ii ferrihydrite, and 127 g kg-1 for birnessite. The bioaccessible Pb(II) ranged from 53 to 88 % for ferrihydrite, Pb(II) concentrations greater than 200 mg kg-1 was greater than 85 % for corundum and below 200 mg kg-1 there was no bioaccessible Pb(II). There was no measurable bioaccessible Pb(II) for any concentration of Pb sorbed birnessite. The surface Pb(II) speciation was found to be: 1. Mononuclear bidentate for ferrihydrite, 2. Mononuclear bidentate and an outer-sphere complex for corundum, and 3. Binuclear bidentate, and trinuclear tridentate for birnessite. Ferrihydrite and corundum usefulness in Pb remediation would be limited when risk of incidental ingestion is of major concern. iii To Stephanie, Aislinn, and Delaney, my favorite girls iv ACKNOWLEDGEMENTS I wish thank my advisors, Nick Basta and Sam Traina, for providing opportunities to explore. Without their patience, input, guidance, and financial support none of this would be possible. I would also like to thank Hal Walker for his help and support throughout the process, but especially during the period between Sam’s leaving and Nick’s arrival. I would like to thank my other committee member, Kirk Scheckel for making the EXAFS analysis a reality and providing an opportunity that lead to securing a job. Thanks also to Sandy Jones and Jerry Bigham for the use of the XRD, Surface Area Analyzer and Thermal Analysis and their guidance in the mineralogical analysis. I sincerely appreciate the help Danold Golightly provided me in training on the ICP and ICP analysis in his and Hal Walker’s lab. Thanks to Dr. Fred Rhoton for providing the ferrihydrite used in this research and to Alcoa for supplying the T64-20 micron corundum used in this research. The use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W- 31-109-Eng-38. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center located at Sector 5 of the Advanced Photon Source. DND-CAT is supported by the E.I. DuPont de v Nemours & Co., The Dow Chemical Company, the U.S. National Science Foundation through Grant DMR-9304725 and the State of Illinois through the Department of Commerce and the Board of Higher Education Grant IBHE HECA NWU 96. Finally, I would like to thank my family for making all of this possible. To my wife Stephanie, thank you for your sacrifices, understanding, patience, love, encouragement, and gentle prodding. Your support over the years made this possible. Without you this would not have happened and I owe you big time. Thank you. I would like to thank my daughters Aislinn and Delaney. You tried really hard to understand what was going on while Daddy was at work or writing his “book”, and you did a great job of letting me get my “book” finished. Your smiling little faces always cheered me up. When this is over I owe you some time at the “roller slide”. vi VITA April 20, 1964 ……………………. Born- Honolulu Hawaii 1989 ………………………………. B.S. Education, The Ohio State University 1989- 1990 ………………………… Research Assistant, Environmental Soil Chemistry Laboratory The Ohio State University, Columbus, Ohio 1990- 2000 ………………………… Research Associate, Lab Manager, Environmental Chemistry Water Quality Laboratory The Ohio State University, Columbus, Ohio 2000- Present ……………………… Research Associate, Lab Manager Soil Physical Chemistry Laboratory The Ohio State University, Columbus, Ohio PUBLICATIONS Research Publications 1. Beak, Douglas G., and Nicholas T. Basta. 2005. Bioaccessibility of As bound to Ferrihydrite. 230th ACS National Meeting. Washington, DC. Aug. 28- Sept. 1, 2005. 2. Beak, Douglas G., Nicholas T. Basta, Kirk Schekel, and Samuel Traina. 2005. The bioaccessibility of As bound to ferrihydrite. 8th International Conference of the Biogeochemistry of Trace Elements (ICOBTE). Adelaide, Australia. April 3- 7, 2005. 3. Beak, Douglas G., Chia-Chen Chen, Jerry M. Bigham, and Samuel J. Traina. 1999. Synthesis and Properties of Hematite, Maghemite, and Their Chromium Substituted Analogs. In: Proceedings of the 36th Annual Meeting of the Clay Minerals Society, June 26- July 1, 1999. Purdue University, West Lafayette, IN. pg. 11. vii 4. Beak, Stephanie A., Douglas G. Beak, and Samuel J. Traina 1999. Gastrointestinal Adsorption of Lead From Soils and Associated Health Effects. Conference on Topics in Toxicology and Risk Assessment. April 1999. Wright Patterson Airforce Base, Fairborn, OH. 5. Springer, Abraham E., E. Scott Bair, and Douglas Beak. 1996. Natural Gradient, Surface Applied Tracer Test at the Ohio Management Systems Evaluation Area. Environmental & Engineering Geoscience. Vol. II, No. 4, Winter 1996. p. 453 - 464. 6. Logan, T. J., D. J. Eckert, and D. G. Beak. 1994. Tillage, Crop, and Climatic Effects on Runoff and Tile Drainage Losses of Nitrate and Four Herbicides. Soil and Tillage Res. Vol. 30. No. 1. p. 75 - 103. 7. Springer, A. E., E. S. Bair and D. Beak. 1993. Agricultural Chemical Transport Relative to a Tracer Under Natural Recharge Conditions in an Alluvial Valley Aquifer. EOS, Transactions, American Geophysical Union, vol. 74, No. 16. p. 129. 8. Logan, T. and D. Beak. 1993. The Sampling, Analytical, and Quality Control/ Quality Assurance Program of the Ohio MSEA. In: Proceedings of the Agricultural Research to Protect Water Quality Conference, February 21 - 24, 1993, Minneapolis, Minnesota. Published by the Soil and Water Conservation Society. p. 347 - 350. 9. Springer, A., S. Bair, and D. Beak. 1993. Transport of Atrazine, Alachlor, and Nitrate Relative to the Tracer Bromide at the Ohio Management Systems Evaluation Area. In: Proceedings of the Agricultural Research to Protect Water Quality Conference, February 21 - 24, 1993, Minneapolis, Minnesota. Published by the Soil and Water Conservation Society. p. 102 - 109. 10. White, D. A., A. D. Ward, and D. G. Beak. 1993. Bias in Field Sampling Techniques for Assessing Nitrate Concentrations in Groundwater. In: Proceedings of the Agricultural Research to Protect Water Quality Conference, February 21 - 24, 1993, Minneapolis, Minnesota. Published by the Soil and Water Conservation Society. p. 359 - 364. FIELDS OF STUDY Major Field: Soil Science viii TABLE OF CONTENTS Page Abstract ………………………………………………………………………………….. ii Dedication ………………………………………………………………………………. iv Acknowledgements ……………………………………………………………………… v Vita …………………………………………………………………………………….. vii List of Tables …………………………………………………………………………... xii List of Figures …………………………………………………………………………. xiv Introduction ……………………………………………………………………………… 1 Chapters 1. Bioaccessibility of Arsenate bound to ferrihydrite using a simulated gastrointestinal system …………………………………………………………... 2 Abstract ………………………………………………………………………….. 2 Key Words ………………………………………………………………………. 3 Introduction ……………………………………………………………………… 3 Materials and Methods …………………………………………………………... 6 Elemental Composition ………………………………………………….. 6 XRD Analysis …………………………………………………………… 7 Surface Area Measurements …………………………………………….. 7 Point of Zero Charge …………………………………………………….. 7 Determination of Fe and As by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP) ………………………….. 8 Arsenic Sorption Isotherms ……………………………………………... 8 Solid Preparation for Bioaccessibility and Speciation Determination …………………………………………………………… 9 Estimation of Bioaccessible Arsenic ……………………………………. 9 Solid Phase Speciation of Arsenic ……………………………………... 10 Results
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Microreport the Science and Technology of Small Particles™ M I C R O M E R I T I C S I N S T R U M E N T C O R P O R a T I O N Volume 18 No
    E H T microReport The Science and Technology of Small Particles™ M ICRO M ERITICS I NSTRU M ENT C ORPORATION VOLUME 18 NO. 2 In This Issue Micromeritics Proudly Announces Its Second Micromeritics Proudly Announces Its Second Instrumentation Grant Award Instrumentation Award AutoChem II 2920 Awarded Winner to the University of South Carolina .............................1 icromeritics re- Mcently launched Micromeritics Appoints New an Instrument Grant Manager of Market Program that is in- Development..................... 2 tended to provide particle characteriza- Scientific Theory Posters tion instruments to are Now Available..............3 non-profit universities and research organi- Micromeritics Extensive zations for the pur- Bibliography Surpasses pose of fostering and 25,000 Downloads supporting meritori- AutoChem II 2920 600 papers added since ous research projects. Chemisorption Analyzer January 2007.................. 3 The initial grant was awarded to the Berkeley Catalysis Center at the Pulse Chemisorption University of California-Berkeley. Dr. Alan Katz, the with AutoChem II 2920: principle investigator intends to use the instrument Isopropylamine on Zeolites (an AutoChem 2920) to determine the concentration Guest article by and acid/base characteristics of catalytic active sites Andrew D’Amico.................4 on solids in a fashion that cannot be accomplished by other techniques. In particular, this will be used What’s New at to investigate the chemisorption of H2, CO, CO2, and Micromeritics Analytical N2O, as well as reactive che- Services ............................6 misorption using hydrogen and alkanes as reductants. Also... After careful consideration of Training Courses...............7 many deserving applications, Events .............................. 7 the special Grant Selection Committee has selected the second grant award winner. An AutoChem II 2920 Cata- lyst Characterization System has been awarded to the De- partment of Chemical Engi- Dr.
    [Show full text]
  • Materials Characterization in Pharma
    Materials Characterization in Pharma R&D spending in the pharmaceutical industry through 2015 Particle Size was valued at around $58bn as organisations vied to gain a competitive advantage by bringing new drugs to market Particle size is crucial to dissolution rates, bioavailability, and as quickly as possible[1]. Materials science is now helping stability and other performance factors in solid and suspension [2] pharmaceutical companies to standardize and control areas dosage forms . As part of a CQA process, it’s vital for such as drug form and manufacture to deliver new products manufacturers to explore how particle size affects performance. more quickly and with greater quality. The pharma industry The Micromeritics NanoPlus HD DLS uses dynamic light is increasingly embracing the principles of Quality by Design scattering (DLS) and photon correlation spectroscopy to (QbD) to improve efficiency and ensure good quality and analyse particle size in the range of 0.1 nm to 12.3 pm with reduced variability throughout the drug production process. sample suspension concentrations from 0.00001% to 40%. DLS is also a rapid and cost effective method for What is QbD? measuring the particle by particle surface charge known as zeta potential that controls the stability of suspensions. QbD is defined by The International Conference on Harmonization as “A systematic approach to development Porosity that begins with predefined objectives and emphasizes product and process understanding and process control, The properties of a tablet are almost entirely defined by the based on sound science and quality risk management.” [2]. The compaction behaviour of excipients during compression. FDA’s process validation (PV) guidance [3] is also important The tablets tendency to break apart (friability), solidity and and adds further clarification, providing a standardised and dissolution behaviour are all attributes that are linked to systematic approach for clinicians, consumers and investors.
    [Show full text]
  • The Elzone II 5390
    TheThe Elzone Elzone II II 5390 5390 Particle Count and Size Analyzer Elzone II Overview of Basic Theory • Operates using the Electrical Sensing Zone (ESZ) Principle, also known as the Coulter Principle. • First commercially available Elzone system was introduced in 1963. • Fully compliant to the ISO 13319 Standard - Determination of Particle Size Distributions- Electrical Sensing Zone Method, as well as numerous ASTM methods. • Technology has been standardized for use in automated blood cell counters as well as a characterization method for many biological and industrial products. • Thousands of references for the use of various Electrical Sensing Zone models documented. • The highest resolution technology available for particle counting and sizing. Elzone II Overview of Basic Theory • Individual Particle Size and Concentration are Measured. Not calculated. • Particle size is represented as the equivalent spherical volume diameter. • Operation is not affected bycolor of sample or refractive indexes (as is when using other analytical methods). • Capable of performing count and size of very low concentration samples if necessary. • Particle concentration is determined using an accurate metering device. • Dynamic size measurements are made in real time. • Capable of performing analyses with samples suspended in an aqueous buffer solution or hazardous diluents. Elzone II Overview of Basic Theory • Particles suspended in an electrolyte solution are drawn through a small aperture. Across the aperture a voltage is applied. This creates the “sensing zone.” • Particles passing through the aperture displace a volume of electrolytic solution equal to the particle’s own volume. • Displaced electrolyte causes a change in resistance across the aperture resulting in a voltage pulse. • Pulse intensity is proportional to the particle volume.
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Potential Microbial Processes In An Ancient Martian Environment, An Investigation Into Bio-Signature Production And Community Ecology Thesis How to cite: Curtis-Harper, Elliot (2017). Potential Microbial Processes In An Ancient Martian Environment, An Investigation Into Bio-Signature Production And Community Ecology. PhD thesis The Open University. For guidance on citations see FAQs. c 2017 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000cc45 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Potential microbial processes in an ancient martian environment, an investigation into bio- signature production and community ecology Elliot Curtis-Harper B.Sc. Natural Sciences (Hons) A Thesis Submitted for the Degree of Doctor of Philosophy Astrobiology April 2017 Department of Physical Sciences The Open University UK i Declaration The research described herein was funded by STFC (Science and Technologies Funding Council) and conducted at The Open University. All of the research carried out in this thesis is my own original research, with the following exceptions: • MiSeq sequencing (Chapters 2 and 3). Conducted by a bioinformatics company (Research and Testing Laboratory, Lubbock, Texas). All subsequent bioinformatic analyses was conducted myself. • XRF analysis (Chapter 3).
    [Show full text]
  • Whitepaper an Introduction to Nldft Models for Porosity Characterization Whitepaper
    WHITEPAPER AN INTRODUCTION TO NLDFT MODELS FOR POROSITY CHARACTERIZATION WHITEPAPER AN INTRODUCTION TO NLDFT MODELS FOR POROSITY CHARACTERIZATION Non-local density functional theory (NLDFT) models In gas adsorption, DFT is used to model the properties of are used to determine the porosity of a sample – pore the sorptive fluid, typically nitrogen, confined in porous size and pore size distribution – from measured gas solids [1-2]. adsorption isotherms. Here we provide simple, easy- to-understand answers to frequently asked questions Work to apply DFT to adsorption isotherms began in relating to this topic, supplying the background the 1980s with the work of Seaton et al. [3] who first understanding needed for effective application of this proposed a procedure for determination of the pore powerful mathematical tool. size distribution of porous carbons from adsorption isotherms and a simple DFT model. In this procedure the pore size distribution is obtained as a solution of What is DFT? And NLDFT? the adsorption integral equation. Specifically, the aim Density functional theory (DFT) is a mathematical was to effectively describe the non-homogeneous method or tool used in quantum physics to determine fluid behavior associated with phase changes that occur an approximate solution to the Schrödinger equation when fluids are constrained by walls, capillaries and slits. for a multi-bodied system. Let’s unpack that somewhat Scientists from Micromeritics were pioneers in this area complex sentence to relate DFT to the practicalities of and worked extensively on improving the application of gas adsorption studies. DFT around this time [4-6]. By 1993, those leading the way had recognized the superiority of using non-local In simple terms, the solution of Schrödinger’s equation density approximations, a refinement of DFT, for gas is a probability function called a wave function that adsorption analysis, and the application of non-local describes the likelihood of finding an electron in a certain DFT (NLDFT) progressed steadily from this time [6-7].
    [Show full text]
  • Coralloite, Mn2+Mn23+(Aso4)2(OH)2⋅4H2O, a New Mixed
    American Mineralogist, Volume 97, pages 727–734, 2012 2+ 3+ Coralloite, Mn Mn2 (AsO4)2(OH)2·4H2O, a new mixed valence Mn hydrate arsenate: Crystal structure and relationships with bermanite and whitmoreite mineral groups ATHOS MARIA CALLEGARI,1,* MASSIMO BOIOCCHI,2 MARCO E. CIRIOTTI,3 AND CORRADO BALESTRA4 1Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, via Ferrata 1, I-27100 Pavia, Italy 2Centro Grandi Strumenti, Università degli Studi di Pavia, via Bassi 21, I-27100 Pavia, Italy 3Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Ciriè, Italy 4Associazione Micromineralogica Italiana, via Delfino 74, I-17017 Millesimo, Italy ABSTRACT Coralloite is a new mineral found at the Monte Nero Mine (Rocchetta Vara, La Spezia, Liguria, 2+ 3+ Italy) having the simplified formula Mn Mn2 (AsO4)2(OH)2·4H2O. It occurs as sub-millimetric lamellar cinnabar-red crystals elongated on [100] and flattened on (001), isolated or forming wisps up to 0.5–1 mm long. Associated phases are calcite, inesite, quartz, brandtite, sarkinite, and tilasite in a chert matrix. Crystals are pleochroic, yellow along [100] and orange-red in directions normal to it. Extinction is parallel to the cleavage traces and elongation is negative. The small crystal size does not allow accurate determination of refraction indices. Crossed polar observations of crystals placed in diiodomethane (n = 1.74) suggest that the mean refractive index is close to that value. Coralloite is triclinic, space group P1, a = 5.5828(7), b = 9.7660(13), c = 5.5455(7) Å, α = 94.467(3), β = 111.348(2), γ = 93.850(2)°, V = 279.26(6) Å3, Z = 1.
    [Show full text]
  • Particle Size and Particle Shape
    4356 Communications Drive Norcross, GA 30093 USA Telephone: 770.662.3660 Fax: 678.348.7565 Email: [email protected] Particle Size and Particle Shape Laser Light Scattering - Mie and Fraunhofer Theories 520 - 00 Aqueous - based dispersion (ISO 13320).......................................................................................................$250 520 - 01 Non-aqueous - based dispersion (ISO 13320 )..............................................................................................$250 520 - 50 Dry dispersion (ISO 13320) using Malvern Mastersizer.................................................................................$250 X- Ray Sedimentation - Stokes’ Law 510 - 00 Aqueous and non-aqueous based dispersion (ISO 13317 - 3) (Requires density 133 - 00 prior to analysis)................................................................................................$250 Electrical Sensing Zone - “Coulter principle” 538 - 00 Aqueous and non-aqueous based dispersion (ISO 13319)..........................................................................$300 538 - 02 Particle Size Distribution plus particle concentration analysis (ISO 13319)................................................$325 538 - 50 Emission stack testing, particle size analysis of fly ash particles collected on filters (ISO 13319).......................................................................................................................................$325 Particle Shape Analysis 005 - 80 Particle shape using Wet dispersion and Dynamic
    [Show full text]
  • IMA Master List
    The New IMA List of Minerals – A Work in Progress – Update: February 2013 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]
  • Microreport M I C R O M E R I T I C S I N S T R U M E N T C O R P O R a T I O N Volume 23 No
    E H T microReport M ICRO M ERITICS I NSTRU M ENT C ORPORATION VOLUME 23 NO. 1 Micromeritics’ New 3Flex - Versatile High- Throughput Surface Area, Mesopore, and Micropore Surface Characterization The 3FlexTM Surface Characterization Analyzer is a fully automated, three-station instrument capable of high-throughput surface area and pore size analyses In This Issue with superior accu- racy, resolution, and MicroActiveTM Micromeritics’ New 3Flex ............. 1 data reduction. Each Particulate Systems NanoPlus analysis station is DLS Nano Particle Size and Zeta upgradeable from Potential Analyzer .................... 3 mesopore to micro- pore with its own Micromeritics to Showcase its transducers for cur- Extensive Line of Materials rent or future high- Characterization Instruments and throughput needs. A Services at Pittcon 2013 .............. 4 single 3Flex with its Guest Article “Carbon Dioxide minimal footprint and three configurable analysis stations eliminates Characterization of Carbons with the costly investment in multiple instruments and additional bench space. TriStar II 3020” .............................. 6 The 3Flex provides a remarkable savings on analysis time compared to a single- or two-station instrument. Micropore ports include kryp- Particle Characterization Solutions ton capability for low surface area materials. Heated vapor analysis for Appearance and Structure capability is standard and an extended-range vapor option is also Assessment of Lyophilized available. Biopharmaceutical Compounds ... 8 Capturing the filling of micropores can be a challenge because, at Micromeritics Analytical Services cryogenic temperatures, micropores begin to fill at very low pressures Article: “Physical Characterization of (around 10-6 torr). A single dose of gas, such as nitrogen, could com- Shale,” News and Events ........... 9 pletely fill micropores such as those contained in zeolites.
    [Show full text]
  • Micromeritics Training Center
    MICROMERITICS PRODUCT BROCHURE www.micromeritics.com PHYSISORPTION Carefully engineered to perform surface area and porosity measurements, the physisorption line of instruments determines the quality and utility of a wide range of materials. Though different materials can appear to be identical, variations in the surface area and porosity can greatly influence the material’s performance characteristics. Micromeritics offers a large selection of gas sorption analyzers that will fulfill demanding requirements for determining surface area and porosity. MICROMERITICS Low Surface Area Sample Ports Pore Size Range Measurement micro meso 3Flex micro meso ASAP 2020 micro* meso TriStar II micro* meso Gemini VII ASAP 2420 micro meso * Micropore analysis can be performed on the TriStar II and Gemini VII with the use of CO2 The 3Flex is a fully automated, three-station instrument capable of high- throughput surface area, mesopore, and micropore analyses with superior accuracy, resolution, and data reduction and reporting versatility. Each analysis station is upgradeable from mesopore to micropore with its own set of pressure transducers. • Three independently configurable analysis stations • Micropore stations include krypton capability for low surface area materials – vapor is standard and an extended-range vapor option is available • Ultra-clean, leak-free operation with pneumatically actuated, hard seal valves • Interactively evaluate isotherm data with MicroActive software and user-defined reporting options – reduces time required to obtain surface area and porosity results • Innovative dashboard monitors and provides convenient access to real-time performance indicators and maintenance scheduling information The ASAP 2020 can obtain high-quality data for research and quality control applications and is designed to provide surface area, porosity, and chemical adsorption data to materials analysis laboratories.
    [Show full text]
  • Chemisorb 2750
    ChemiSorb 2750 Operator’s Manual 275-42805-01 April 2009 © Micromeritics Instrument Corporation 2004-2009. All rights reserved. WARRANTY MICROMERITICS INSTRUMENT CORPORATION warrants for one year from the date of shipment each instrument it manufactures to be free from defects in material and workmanship impairing its usefulness under normal use and service conditions except as noted herein. Our liability under this warranty is limited to repair, servicing and adjustment, free of charge at our plant, of any instrument or defective parts when returned prepaid to us and which our examination discloses to have been defective. The purchaser is responsible for all transportation charges involving the shipment of materials for war- ranty repairs. Failure of any instrument or product due to operator error, improper installation, unauthorized repair or alteration, failure of utilities, or environmental contamination will not constitute a warranty claim. The materials of construction used in MICROMERITICS instruments and other products were chosen after extensive testing and experience for their reliability and durability. However, these materials cannot be totally guaranteed against wear and/or decomposition by chemical action (corrosion) as a result of normal use. Repair parts are warranted to be free from defects in material and workmanship for 90 days from the date of shipment. No instrument or product shall be returned to MICROMERITICS prior to notification of alleged defect and authorization to return the instrument or product. All repairs or replacements are made subject to factory inspec- tion of returned parts. MICROMERITICS shall be released from all obligations under its warranty in the event repairs or modifications are made by persons other than its own authorized service personnel unless such work is authorized in writing by MICROMERITICS.
    [Show full text]