Open Research Online Oro.Open.Ac.Uk

Total Page:16

File Type:pdf, Size:1020Kb

Open Research Online Oro.Open.Ac.Uk Open Research Online The Open University’s repository of research publications and other research outputs Potential Microbial Processes In An Ancient Martian Environment, An Investigation Into Bio-Signature Production And Community Ecology Thesis How to cite: Curtis-Harper, Elliot (2017). Potential Microbial Processes In An Ancient Martian Environment, An Investigation Into Bio-Signature Production And Community Ecology. PhD thesis The Open University. For guidance on citations see FAQs. c 2017 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000cc45 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Potential microbial processes in an ancient martian environment, an investigation into bio- signature production and community ecology Elliot Curtis-Harper B.Sc. Natural Sciences (Hons) A Thesis Submitted for the Degree of Doctor of Philosophy Astrobiology April 2017 Department of Physical Sciences The Open University UK i Declaration The research described herein was funded by STFC (Science and Technologies Funding Council) and conducted at The Open University. All of the research carried out in this thesis is my own original research, with the following exceptions: • MiSeq sequencing (Chapters 2 and 3). Conducted by a bioinformatics company (Research and Testing Laboratory, Lubbock, Texas). All subsequent bioinformatic analyses was conducted myself. • XRF analysis (Chapter 3). Samples were prepared myself but operation of the instrument was carried out by John Watson (Open University, UK). • ICP-AES (Chapter 3). Operation of the instrument was carried out by Laboratory Technician Patrick Rafferty (Open University, UK). All subsequent data processing was carried out myself. • XRD (Chapter 3). Sample preparation was carried out by myself but operation of the instrument was carried out by Dr Paul Schofield (Natural History Museum, UK). Subsequent data analysis was carried out by myself. ii Abstract This work investigated whether the River Dee estuary can be considered as an martian environmental analogue and examined the whether an understanding of microbial processes could inform future life detection missions on Mars. The subsurface environment of the River Dee estuary, UK, and its microbial community, was characterised and compared to the palaeolake at Gale Crater, Mars. Similarities were identified in pH, temperature and Total Organic Carbon measurements, as well as potential bioessential element availability (based on comparative mineralogy of the two sites). The microbial community at the River Dee site was also characterised, indicating that a diverse bacterial community thrived there, alongside a single dominant archaeal group. This provided key insight into potential microbial communities on Mars, and associated processes that may inform future Mars research. Since the diversity and attributes of microorganisms is directly linked to their environment, the microbial community of the River Dee estuary was used to investigate potential martian geomicrobiological processes and community dynamics within a simulated martian experimental environment. Concentrations of the bioessential elements Fe, Mg and K were seen to increase in the biological experiments when compared with abiotic controls, leading to, for example, a 143 µmol L-1 difference in the concentration of Fe during the stationary phase. One bacterial group, the Acidobacteria Gp9, dominated the microbial community for 400 hr during the stationary phase, accounting for ~58 % of the microbial community at its peak. For a subsequent experiment, five bacterial species were isolated from the simulated martian environment, and characterised in order to demonstrate their growth optima and tolerance to relevant environmental extremes. Clostridium amygdalinum was iii found to be a model organism for survival within environments like the palaeolake at Gale Crater, and is proposed as a useful biological analogue for future investigations of the potential of life in such environments on Mars. Acknowledgements This thesis is the summation of research carried out under the apt supervision of Dr Karen Olsson-Francis, Dr Victoria Pearson and Dr Susanne Schwenzer. I am extremely grateful for their constant support, knowledge and, of late, patience. Their supervision was excellent and I feel lucky to have had their guidance. Thank you to Dr Stephen Summers, without whom I’d have been defeated by incorrigible PCR reactions and smothered by alien-looking bioinformatics software outputs. You were invaluable to my understanding of molecular biology and to my long-overdue completion of my lab work. To my friend, Thomas Barrett, I also owe thanks. Thank you for all of the gaming nights, Game of Thrones, and the myriad shenanigans in the House of Mirrors. Your brummy-tinged rage and displeasure at the uncompliant NanoSIMS gave me the right dose of schadenfreude to go back to my inept microorganisms and try to convince them to grow. To Rebecca Wolsey, I owe the most. Without you I fear I would not be sitting here writing this gratuitous monologue. When you strolled into the lab in October 2013 you turned my life upside down. Working together in the lab you, without question, handed me solutions to problems you’d spent months solving. You are the source of my happiness and sanity, without which I certainly would not have made it this far. Finally, to my family: your love and support has been invaluable. Thank you. iv Table of contents Declaration ii Abstract iii Acknowledgements iv Table of Contents v Abbreviations and acronyms xi List of tables xiii List of figures xv Chapter 1- Introduction Introduction 1 1.1. The martian environment 2 1.1.1. Past 2 1.1.2. Present 6 1.2. Terrestrial vs martian life 9 1.2.1. Origins of life on Earth 9 1.2.2. Potential origins of life on Mars 10 1.3. Habitability 12 1.3.1. The requirements of life 12 v 1.4. Putative martian life 18 1.4.1. Potential characteristics of martian life 19 1.4.2. Potential analogue microorganisms 20 1.5. Life detection missions 23 1.5.1. Past and present 23 1.5.2. Assumptions of life detection 24 1.5.3. Martian analogues 26 1.6. Biosignatures 29 1.6.1. Inorganic/geochemical 29 1.6.2. Organic 33 1.6.3. The limitations of biosignatures 34 1.7. Ecological processes on Mars 35 1.7.1. Colonisation and succession 35 1.8. Outline of work 39 Chapter 2- The intertidal subsurface microbial community: an analogue for putative martian life 2.1. Introduction 41 2.2. Methods 44 2.2.1. Sample collection 44 2.2.2. Environmental characterisation 46 vi 2.2.3. Microbial community analysis 50 2.3. Results 55 2.3.1. Environmental characterisation 55 2.3.2. Microbial community analysis 67 2.4. Discussion 77 2.4.1. Environmental characterisation 77 2.4.2. Microbial diversity 88 2.4.3. Limitations 92 2.5. Conclusions 94 Chapter 3- The microbial weathering and ecological succession of an intertidal subsurface community under simulated martian conditions 3.1. Introduction 96 3.2. Designing a Mars analogue experimental system 98 3.3. Mars regolith analogue 99 3.3.1. Defining a regolith analogue 100 3.3.2. Production of the regolith analogue 102 3.3.3. Characterisation of the regolith analogue 102 3.4. Optimisation of the Mars analogue system 103 3.5. Methods 106 3.5.1. Anaerobic techniques 106 vii 3.5.2. Enrichment media 108 3.5.3. Minimal medium 109 3.5.4. Final experimental setup 112 3.5.5. Analytical techniques 115 3.6. Results 121 3.6.1. Microbial growth 121 3.6.2. pH 123 3.6.3. ICP-AES 124 3.6.4. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis 128 3.6.5. Field Electron Gun Scanning Electron Microscopy (FEGSEM) 135 3.6.6. Powder X-Ray Diffraction 142 3.7. Discussion 145 3.7.1. Trends in microbial diversity 145 3.7.2. Microbial weathering, dissolution and secondary mineralisation 155 3.8. Conclusions 160 Chapter 4- Isolation and characterisation of microbial analogues for Mars 4.1. Introduction 162 4.1.1. Summary of previous chapters 162 viii 4.1.2. Putative martian life 163 4.1.3. Potentially habitable martian environments 165 4.1.4. Limits of life 166 4.1.5. Aims of the chapter 167 4.2. Methods 168 4.2.1. Media preparation 168 4.2.2. Isolation 172 4.2.3. DNA sequencing and 16S rRNA contig construction 174 4.2.4. Phenotypic characterisation of isolates 175 4.2.5. Determination of carbon source utilisation by BIOLOG tests 178 4.2.6. Survivability during exposure to environmental stressors 180 4.3. Results 182 4.3.1. Identification of isolates 182 4.3.2. Phenotypic characterisation of isolates 184 4.3.3. Freeze-thaw survival 190 4.3.4. Determination of carbon source utility by BIOLOG tests 192 4.4. Discussion 195 4.4.1. Metabolism 195 4.4.2. Optimum growth conditions 197 4.4.3. Other phenotypes 200 4.4.4. Isolates 202 ix 4.4.5. Sources of life on Mars 206 4.5. Conclusions 208 Chapter 5- Summary and conclusions 5.1. Discussion of findings and limitations 209 5.1.1. Environmental analogue 209 5.1.2. Elemental bioavailability 210 5.1.3. Biological analogue 211 5.1.4. Limitations 214 5.1.5. Biosignatures 216 5.2. Future work to address research aims 218 5.2.1. Further characterisation of the River Dee analogue environment 218 5.2.2. Clarification of microbial weathering processes and biosignature production 218 5.2.3. Further characterisation of isolates 219 5.3.
Recommended publications
  • Microreport the Science and Technology of Small Particles™ M I C R O M E R I T I C S I N S T R U M E N T C O R P O R a T I O N Volume 18 No
    E H T microReport The Science and Technology of Small Particles™ M ICRO M ERITICS I NSTRU M ENT C ORPORATION VOLUME 18 NO. 2 In This Issue Micromeritics Proudly Announces Its Second Micromeritics Proudly Announces Its Second Instrumentation Grant Award Instrumentation Award AutoChem II 2920 Awarded Winner to the University of South Carolina .............................1 icromeritics re- Mcently launched Micromeritics Appoints New an Instrument Grant Manager of Market Program that is in- Development..................... 2 tended to provide particle characteriza- Scientific Theory Posters tion instruments to are Now Available..............3 non-profit universities and research organi- Micromeritics Extensive zations for the pur- Bibliography Surpasses pose of fostering and 25,000 Downloads supporting meritori- AutoChem II 2920 600 papers added since ous research projects. Chemisorption Analyzer January 2007.................. 3 The initial grant was awarded to the Berkeley Catalysis Center at the Pulse Chemisorption University of California-Berkeley. Dr. Alan Katz, the with AutoChem II 2920: principle investigator intends to use the instrument Isopropylamine on Zeolites (an AutoChem 2920) to determine the concentration Guest article by and acid/base characteristics of catalytic active sites Andrew D’Amico.................4 on solids in a fashion that cannot be accomplished by other techniques. In particular, this will be used What’s New at to investigate the chemisorption of H2, CO, CO2, and Micromeritics Analytical N2O, as well as reactive che- Services ............................6 misorption using hydrogen and alkanes as reductants. Also... After careful consideration of Training Courses...............7 many deserving applications, Events .............................. 7 the special Grant Selection Committee has selected the second grant award winner. An AutoChem II 2920 Cata- lyst Characterization System has been awarded to the De- partment of Chemical Engi- Dr.
    [Show full text]
  • Materials Characterization in Pharma
    Materials Characterization in Pharma R&D spending in the pharmaceutical industry through 2015 Particle Size was valued at around $58bn as organisations vied to gain a competitive advantage by bringing new drugs to market Particle size is crucial to dissolution rates, bioavailability, and as quickly as possible[1]. Materials science is now helping stability and other performance factors in solid and suspension [2] pharmaceutical companies to standardize and control areas dosage forms . As part of a CQA process, it’s vital for such as drug form and manufacture to deliver new products manufacturers to explore how particle size affects performance. more quickly and with greater quality. The pharma industry The Micromeritics NanoPlus HD DLS uses dynamic light is increasingly embracing the principles of Quality by Design scattering (DLS) and photon correlation spectroscopy to (QbD) to improve efficiency and ensure good quality and analyse particle size in the range of 0.1 nm to 12.3 pm with reduced variability throughout the drug production process. sample suspension concentrations from 0.00001% to 40%. DLS is also a rapid and cost effective method for What is QbD? measuring the particle by particle surface charge known as zeta potential that controls the stability of suspensions. QbD is defined by The International Conference on Harmonization as “A systematic approach to development Porosity that begins with predefined objectives and emphasizes product and process understanding and process control, The properties of a tablet are almost entirely defined by the based on sound science and quality risk management.” [2]. The compaction behaviour of excipients during compression. FDA’s process validation (PV) guidance [3] is also important The tablets tendency to break apart (friability), solidity and and adds further clarification, providing a standardised and dissolution behaviour are all attributes that are linked to systematic approach for clinicians, consumers and investors.
    [Show full text]
  • The Elzone II 5390
    TheThe Elzone Elzone II II 5390 5390 Particle Count and Size Analyzer Elzone II Overview of Basic Theory • Operates using the Electrical Sensing Zone (ESZ) Principle, also known as the Coulter Principle. • First commercially available Elzone system was introduced in 1963. • Fully compliant to the ISO 13319 Standard - Determination of Particle Size Distributions- Electrical Sensing Zone Method, as well as numerous ASTM methods. • Technology has been standardized for use in automated blood cell counters as well as a characterization method for many biological and industrial products. • Thousands of references for the use of various Electrical Sensing Zone models documented. • The highest resolution technology available for particle counting and sizing. Elzone II Overview of Basic Theory • Individual Particle Size and Concentration are Measured. Not calculated. • Particle size is represented as the equivalent spherical volume diameter. • Operation is not affected bycolor of sample or refractive indexes (as is when using other analytical methods). • Capable of performing count and size of very low concentration samples if necessary. • Particle concentration is determined using an accurate metering device. • Dynamic size measurements are made in real time. • Capable of performing analyses with samples suspended in an aqueous buffer solution or hazardous diluents. Elzone II Overview of Basic Theory • Particles suspended in an electrolyte solution are drawn through a small aperture. Across the aperture a voltage is applied. This creates the “sensing zone.” • Particles passing through the aperture displace a volume of electrolytic solution equal to the particle’s own volume. • Displaced electrolyte causes a change in resistance across the aperture resulting in a voltage pulse. • Pulse intensity is proportional to the particle volume.
    [Show full text]
  • Whitepaper an Introduction to Nldft Models for Porosity Characterization Whitepaper
    WHITEPAPER AN INTRODUCTION TO NLDFT MODELS FOR POROSITY CHARACTERIZATION WHITEPAPER AN INTRODUCTION TO NLDFT MODELS FOR POROSITY CHARACTERIZATION Non-local density functional theory (NLDFT) models In gas adsorption, DFT is used to model the properties of are used to determine the porosity of a sample – pore the sorptive fluid, typically nitrogen, confined in porous size and pore size distribution – from measured gas solids [1-2]. adsorption isotherms. Here we provide simple, easy- to-understand answers to frequently asked questions Work to apply DFT to adsorption isotherms began in relating to this topic, supplying the background the 1980s with the work of Seaton et al. [3] who first understanding needed for effective application of this proposed a procedure for determination of the pore powerful mathematical tool. size distribution of porous carbons from adsorption isotherms and a simple DFT model. In this procedure the pore size distribution is obtained as a solution of What is DFT? And NLDFT? the adsorption integral equation. Specifically, the aim Density functional theory (DFT) is a mathematical was to effectively describe the non-homogeneous method or tool used in quantum physics to determine fluid behavior associated with phase changes that occur an approximate solution to the Schrödinger equation when fluids are constrained by walls, capillaries and slits. for a multi-bodied system. Let’s unpack that somewhat Scientists from Micromeritics were pioneers in this area complex sentence to relate DFT to the practicalities of and worked extensively on improving the application of gas adsorption studies. DFT around this time [4-6]. By 1993, those leading the way had recognized the superiority of using non-local In simple terms, the solution of Schrödinger’s equation density approximations, a refinement of DFT, for gas is a probability function called a wave function that adsorption analysis, and the application of non-local describes the likelihood of finding an electron in a certain DFT (NLDFT) progressed steadily from this time [6-7].
    [Show full text]
  • Lead and Arsenic Speciation and Bioaccessibility Following Sorption on Oxide Mineral Surfaces
    LEAD AND ARSENIC SPECIATION AND BIOACCESSIBILITY FOLLOWING SORPTION ON OXIDE MINERAL SURFACES Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Douglas Gerald Beak, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. Nicholas Basta, Co Advisor Dr. Samuel Traina, Co Advisor _________________________ Co Advisor Dr. Harold Walker Dr. Kirk Scheckel _________________________ Co Advisor Soil Science Graduate Program ABSTRACT The risk posed from incidental ingestion of arsenic-contaminated or lead- contaminated soil may depend on sorption of arsenate (As(V)) or lead (Pb(II)) to oxide surfaces in soil. Arsenate or lead sorbed to ferrihydrite, corundum, and birnessite model oxide minerals were used to simulate possible effects of ingestion of soil contaminated with As(V) or Pb(II). Arsenate or lead sorbed oxides were placed in a simulated gastrointestinal tract (in vitro) to ascertain the bioaccessibility of As(V) or Pb(II) and changes in As(V) or Pb(II) surface speciation. The speciation of As or Pb was determined using EXAFS and XANES analysis. The As(V) adsorption maximum was found to be 7.04 g kg-1, and 0.47 g kg-1 for ferrihydrite and corundum, respectively. The bioaccessible As(V) for ferrihydrite ranged form 0 to 5 % and for corundum ranged from 0 to 16 %. The surface speciation for ferrihydrite and corundum was determined to be binuclear bidentate. These results for As(V) sorbed to ferrihydrite and corundum suggest that the bioaccessibility of As(V) is related to the As(V) concentration, and the As(V) adsorption maximum.
    [Show full text]
  • Particle Size and Particle Shape
    4356 Communications Drive Norcross, GA 30093 USA Telephone: 770.662.3660 Fax: 678.348.7565 Email: [email protected] Particle Size and Particle Shape Laser Light Scattering - Mie and Fraunhofer Theories 520 - 00 Aqueous - based dispersion (ISO 13320).......................................................................................................$250 520 - 01 Non-aqueous - based dispersion (ISO 13320 )..............................................................................................$250 520 - 50 Dry dispersion (ISO 13320) using Malvern Mastersizer.................................................................................$250 X- Ray Sedimentation - Stokes’ Law 510 - 00 Aqueous and non-aqueous based dispersion (ISO 13317 - 3) (Requires density 133 - 00 prior to analysis)................................................................................................$250 Electrical Sensing Zone - “Coulter principle” 538 - 00 Aqueous and non-aqueous based dispersion (ISO 13319)..........................................................................$300 538 - 02 Particle Size Distribution plus particle concentration analysis (ISO 13319)................................................$325 538 - 50 Emission stack testing, particle size analysis of fly ash particles collected on filters (ISO 13319).......................................................................................................................................$325 Particle Shape Analysis 005 - 80 Particle shape using Wet dispersion and Dynamic
    [Show full text]
  • Microreport M I C R O M E R I T I C S I N S T R U M E N T C O R P O R a T I O N Volume 23 No
    E H T microReport M ICRO M ERITICS I NSTRU M ENT C ORPORATION VOLUME 23 NO. 1 Micromeritics’ New 3Flex - Versatile High- Throughput Surface Area, Mesopore, and Micropore Surface Characterization The 3FlexTM Surface Characterization Analyzer is a fully automated, three-station instrument capable of high-throughput surface area and pore size analyses In This Issue with superior accu- racy, resolution, and MicroActiveTM Micromeritics’ New 3Flex ............. 1 data reduction. Each Particulate Systems NanoPlus analysis station is DLS Nano Particle Size and Zeta upgradeable from Potential Analyzer .................... 3 mesopore to micro- pore with its own Micromeritics to Showcase its transducers for cur- Extensive Line of Materials rent or future high- Characterization Instruments and throughput needs. A Services at Pittcon 2013 .............. 4 single 3Flex with its Guest Article “Carbon Dioxide minimal footprint and three configurable analysis stations eliminates Characterization of Carbons with the costly investment in multiple instruments and additional bench space. TriStar II 3020” .............................. 6 The 3Flex provides a remarkable savings on analysis time compared to a single- or two-station instrument. Micropore ports include kryp- Particle Characterization Solutions ton capability for low surface area materials. Heated vapor analysis for Appearance and Structure capability is standard and an extended-range vapor option is also Assessment of Lyophilized available. Biopharmaceutical Compounds ... 8 Capturing the filling of micropores can be a challenge because, at Micromeritics Analytical Services cryogenic temperatures, micropores begin to fill at very low pressures Article: “Physical Characterization of (around 10-6 torr). A single dose of gas, such as nitrogen, could com- Shale,” News and Events ........... 9 pletely fill micropores such as those contained in zeolites.
    [Show full text]
  • Micromeritics Training Center
    MICROMERITICS PRODUCT BROCHURE www.micromeritics.com PHYSISORPTION Carefully engineered to perform surface area and porosity measurements, the physisorption line of instruments determines the quality and utility of a wide range of materials. Though different materials can appear to be identical, variations in the surface area and porosity can greatly influence the material’s performance characteristics. Micromeritics offers a large selection of gas sorption analyzers that will fulfill demanding requirements for determining surface area and porosity. MICROMERITICS Low Surface Area Sample Ports Pore Size Range Measurement micro meso 3Flex micro meso ASAP 2020 micro* meso TriStar II micro* meso Gemini VII ASAP 2420 micro meso * Micropore analysis can be performed on the TriStar II and Gemini VII with the use of CO2 The 3Flex is a fully automated, three-station instrument capable of high- throughput surface area, mesopore, and micropore analyses with superior accuracy, resolution, and data reduction and reporting versatility. Each analysis station is upgradeable from mesopore to micropore with its own set of pressure transducers. • Three independently configurable analysis stations • Micropore stations include krypton capability for low surface area materials – vapor is standard and an extended-range vapor option is available • Ultra-clean, leak-free operation with pneumatically actuated, hard seal valves • Interactively evaluate isotherm data with MicroActive software and user-defined reporting options – reduces time required to obtain surface area and porosity results • Innovative dashboard monitors and provides convenient access to real-time performance indicators and maintenance scheduling information The ASAP 2020 can obtain high-quality data for research and quality control applications and is designed to provide surface area, porosity, and chemical adsorption data to materials analysis laboratories.
    [Show full text]
  • Chemisorb 2750
    ChemiSorb 2750 Operator’s Manual 275-42805-01 April 2009 © Micromeritics Instrument Corporation 2004-2009. All rights reserved. WARRANTY MICROMERITICS INSTRUMENT CORPORATION warrants for one year from the date of shipment each instrument it manufactures to be free from defects in material and workmanship impairing its usefulness under normal use and service conditions except as noted herein. Our liability under this warranty is limited to repair, servicing and adjustment, free of charge at our plant, of any instrument or defective parts when returned prepaid to us and which our examination discloses to have been defective. The purchaser is responsible for all transportation charges involving the shipment of materials for war- ranty repairs. Failure of any instrument or product due to operator error, improper installation, unauthorized repair or alteration, failure of utilities, or environmental contamination will not constitute a warranty claim. The materials of construction used in MICROMERITICS instruments and other products were chosen after extensive testing and experience for their reliability and durability. However, these materials cannot be totally guaranteed against wear and/or decomposition by chemical action (corrosion) as a result of normal use. Repair parts are warranted to be free from defects in material and workmanship for 90 days from the date of shipment. No instrument or product shall be returned to MICROMERITICS prior to notification of alleged defect and authorization to return the instrument or product. All repairs or replacements are made subject to factory inspec- tion of returned parts. MICROMERITICS shall be released from all obligations under its warranty in the event repairs or modifications are made by persons other than its own authorized service personnel unless such work is authorized in writing by MICROMERITICS.
    [Show full text]
  • An Integrated Study of the Ceramic Processing of Yttria James Alan Voigt Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 An integrated study of the ceramic processing of yttria James Alan Voigt Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Voigt, James Alan, "An integrated study of the ceramic processing of yttria " (1986). Retrospective Theses and Dissertations. 8045. https://lib.dr.iastate.edu/rtd/8045 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps.
    [Show full text]
  • Gemini VII 2390 Surface Area Analyzer
    Gemini VII 2390 Surface Area Analyzer Gemini VII Bibliography of Peer-Reviewed Papers 2013 Title Author / Publication Citation ..measurements of MWCNTs (before and after gelation) were evaluated using a Surface Area and ‘Bucky gel’ of multiwalled carbon Pore Size Analyzer (Gemini-V, Micromeritics, USA). X-ray diffraction (XRD) patterns of pristine and nanotubes as electrodes for high Manoj K Singh / Yogesh Kumar / S A Hashmi , Nanotechnology, 24 (46), p.465704, Nov gelled MWCNTs were recorded with a high- performance, flexible electric double 2013 resolution... layer capacitors ..samples were measured via N 2 adsorption at −196 °C on a Micromeritics ASAP 2020 analyzer 3DOM InVO 4 -supported chromia with with the samples outgassed at 300 Wang, Yuan / Dai, Hongxing / Deng, Jiguang °C...microscopic (SEM) images of the samples good performance for the visible-light- / Liu, Yuxi / Arandiyan, Hamidreza / Li, were recorded on a Gemini Zeiss Supra 55 driven photodegradation of rhodamine Xinwei / Gao, Baozu / Xie, Shaohua, Solid apparatus (operating at 10 kV). Transmission... State Sciences, 24, p.62-70, Oct 2013 B ..adsorption study Nitrogen adsorption-desorption isotherms were recorded at −196 °C on a Micromeritics automatic surface area analyzer A completely solvent-free process for Hoashi, Yohei / Tozuka, Yuichi / Takeuchi, (Gemini 2375, Shimadzu). Samples were heated at the improvement of erythritol Hirofumi, International Journal of 100 °C for 12 h under vacuum before Pharmaceutics, 455 (1-2), p.132-137, Oct measurement... compactibility 2013 ..of the samples were determined using the nitrogen adsorption/desorption isotherms Ding, Yi / Yin, Guangfu / Liao, Xiaoming / recorded at 77.4 K using a Micromeritics Gemini A convenient route to synthesize SBA- Huang, Zhongbing / Chen, Xianchun / Yao, analyser.
    [Show full text]
  • Microreport the Science and Technology of Small Particles™ M ICROMERITICS I NSTRUMENT C ORPORATION VOLUME 16 NO
    THE microReport The Science and Technology of Small Particles™ M ICROMERITICS I NSTRUMENT C ORPORATION VOLUME 16 NO. 1 In This Issue New Elzone Combines New Elzone Combines Modern Technology with Modern Technology with Proven Method New Elzone available in Proven Method 2005 .....................................1 icromeritics is prepar- Micromeritics’ Tony Thornton ing to release our new Appointed Chairman of ISO MElzone® II 5390 particle Committee on Particle Sizing sizing and counting instrument. Will assist in the establishment The Elzone series is based on the of U.S. and International “electrical sensing zone” tech- Particle Sizing Standards...3 nique, also known as the “Coulter Principle.” The first instru- Micromeritics Showcases ment of this type was invented Instruments at the in the 1950’s by Wallace H. Pittsburgh Conference.......4 Coulter, founder of the Coulter Corporation, and it quickly Perform Longer Surface became the preferred method for counting blood cells. Area Measurements with The Gemini Today, this technique is widely accepted and recognized as New Gemini allows for longer analysis times..........5 a highly effective method of sizing and counting particles composed of a wide variety of organic and inorganic materi- What’s New at Micromeritics als. Unlike other particle measurement techniques such as Analytical Services ...........6 laser light scattering, sedimentation, or image analysis, the electrical sensing zone method can analyze samples of vary- Also... ing optical properties, densities, colors, shapes, and orienta- Training Courses.................7 tions. Micromeritics’ Elzone particle size analyzer uses this Events..................................7 powerful particle characterization technique to determine quickly and accurately the size, number, concentration, and mass of a wide variety of finely divided materials.
    [Show full text]