Granasen, a Dolomite-Brucite Deposit with Potential for Industrial Development

Total Page:16

File Type:pdf, Size:1020Kb

Granasen, a Dolomite-Brucite Deposit with Potential for Industrial Development NGU -BULL 436, 2000 - PAGE 75 Granasen, a dolomite-brucite deposit with potential for industrial development ODD 0VERENG 0vereng, O. 2000: Granasen, a do lomite-brucite deposi t wi th pote ntial for indust rial develo pm ent. Norges geolog iske und ersekelse Bulletin 436, 75-84. Granasen, situated close to Mo sjoen in north ern Norway, is a deposit containing several milli on tonn es of dolomite and brucite. The deposit has been investig ated and characte rised in preparati on fo r future deve lopment and exploitation. The ore consists of dol omi te and brucite . Brucite has fo rmed as a result of hydro th ermal alte rat ion associated with intrusion of gabbro. Tests have been carried out to evaluate the com mercial value of the dolom ite resources. A variet y of different bene ficiation met hods were investigated to achieve co mmerc ial concent rates of brucite . The most successful result was obtai ned by selective flocculat ion , w hich up-gr ades th e ore to a maximum gra de of 95.5 % brucite, with a recovery of 80 %. As an alte rnative, or by-product of bru cite concent rate produ ction, th e deposit cou ld also be w orked for dolomite. Odd 0vereng, Norgesgeologi ske undersekelse,N-749 1 Trondh eim, Norw ay. of th e Granasen dol om it e marble (Faye & 0 vereng 1979). Introduction Extensive mi neralogical and geo log ical investigat ions, Since the beg inning of the 1970s, the Geologica l Survey of including diamond drill ing, were carried out in 1979 and Norway (NGU) has investigated a large number of indu strial 1980 (0 vereng 1981), and confirmed th e interpretation th at min eral occurrence s. In the early stage of this programme, a t he brucit e min eralisation is related to th e contact-metamor­ large deposit of high -qu ality dolomite marbl e was found phic effects of th e Mosjo en gabb ro. During t his progr amm e, some 13 km north of th e town Mosjoen, in Nordl and county a variety of different tests were carried out to esti mate th e (Fig. 1). The deposit has a favourable location, as it is sit uated likely commercia l value of the deposit (0 vereng 1995). Simi­ onl y 3 km from Vefsnfjord, wit h railway and good harbour lar brucite-dolomite depositsare describ ed from Canada, e.g. facilities, and is close to a we ll-devel oped infrast ruct ure at by Goudge (1957) and Amb rose (1943), and from the USA Mosjo en. The location is also favourable from an environ­ (Burnham 1959). ment al point of view . This paper reviews th e exploration his­ Brucit e isan industrial mineral with a far higher content of tory of th e Granasen do lomite-bru cite deposit. MgO (69.1wt. %) or elemental Mg (41.6 wt. %) than any ot her naturally occur ring magnesium com pound , except th e rather rare min eral periclase (MgO).In com parison, th e main History of investigations current ly exploited sources of Mg-comp oun ds, magn esite, The Granasen dolomite marble depo sit wasfirst described by magnesium chloride and do lomite, cont ain 28.8, 25.5 and 0vereng (1972). Since th en, much wo rk has been carried out 12.6 wt. % Mg, respectively. Brucite is therefore a min eral of wit h th e primary goal ofobtaining reliable information about considerable interest as an alternative raw mate rial for pro­ th e size, geometry and qualit y of the dep osit. In 1974, the duction of MgO and elemental Mg. centra l part was mapped at a scale of 1:5,000, and several short drillholeswere fi nanced by Norcem A/S to test th e qua l­ ity of th e ore (0 vereng 1974). Norcem A/S signed royalty Geological setting agreements wit h th e landowners. The Granasen area is located in th e Elsfjord- Mosjoen tecton­ In 1975 a co-operative project between NGU and SINTEF ostrat igraphic unit (Riis & Ramb erg 1979) in th e Helgeland was initi ated to evaluate technical aspect s for use of Norw e­ region of Nordl and. The rocks of th e area belong to th e east­ gian dolomite marble in production of basic refractory prod­ ern part of th e Helgeland Napp e Complex (HNC), th e upper­ uct s. Dolomite marbl es from a number of localiti es were most unit of a series of nappes in th e Central Scandinavian tested for th is purpose (Seltveit et al. 1977). The dolomite Caledonid esand ascribed to th e Upp ermost Allochthon (Gee from Granasen gave excellent result s. Materi al was also sent & Zachrisson 1979). The Uppermost Allochth on in thi s region to Dolomitwerke GmbH, WQl frath , Germany, one of t he lead­ consists of t hree tectonic complexes, th e HNC, th e Beiarn ing producersof refractor y bricks.The testsgave result scom­ Nappe and th e Rodinqfjallet Nappe Complex. These com­ parable to t hose obtained at SINTEF and encouraged NGU to plexes broadly consist of comparable lith olo gies: mica continue core dri llin g at Granasen in 1978. Additional testing schists, calcareous mica schists, marbles, amphibo lit es, ser­ of th ese cores confirmed t he earlier results (0 vereng 1978). In penti nites, gneisses and granitoid int rusions (Gavelin & Kull­ 1979, the mineral bruci te (Mg(OHb l was discovered in parts ing 1955, Ramb erg 1965, 1967, Gustavson 1981). NGU-BULL 436, 2000 - PAGE 76 ODD0VERENG N l I lOt . /f t ff V ' 50 100,io: J r \ ,j I • Granasen Mosjeen LEGEND Dolomite marble PROFILE0 o Calcite marble Mica schis Garnet-mica schist o Quartzite/Calc-silicate rock o Mica gneiss with lenses of acid igneous rock Acid in rusions (granite, diorite) o Greenschist PROfU600 ­o Gabbro/Amp hibolite Certain boundary PROFIlEBOO Uncertain bou ndary Strike/d ip lp A Fold axis o 200 400 m ( / ( ,- I .. -.... ~ Fig. 1. Geological map of the Granasen do lomite deposit (0 vereng 1981). ODD0VERENG NGU-BULL 436, 2000 - PAGE 77 m.a.s .! PROFILE0 4()() 300 200 Stream \ 100 1---· " o 100 200 m m.a.s.t PROFILE200 300 .........7 -- _ 400 b------------ 200 : .../ : " 100 ../ " , o 100 200 m m.a.sJ. PROFILE 400 400300 b-----------....--).---- - - - - 200· / 100 r o 100 200 m LEGEND ma.s.t PROFILE 600 ~ ------------, Dolomite marble 300 o Calcite marble ­ Mica schist/Garnet-mica schist 200 o Quartzite/Calc-silicate rock l00 j ---- Mica gneiss with lenses of ­o 100 200 m acid igneous rock Acid intrusion (granite, diorite) m .a.s.t PROFILE 800 ~- -- - - - - - - - - - Greenschist 400 )' .... - - Gabbro/Amphibolite 300 /:/ ~ Certain boundary 200 :/'/ Uncertain boundary 100 . Drillhole o 100 zoom m.8.S.!. PROFILE 1200 4()() Fig. 2. Geological profiles from t he Granasen dolom ite deposit (0 vereng 1981). l00 ~--....--......--------.......- 100 200 m Traditionally, the Uppermost Allochthon had been consid­ are th e result of the major phase of deform ation, metamor­ ered as essentially compris ing Cambro-Silurian rocks, phism and nappe tran slation that to ok place during th e Scan­ deformed and metamorphosed during Caledonian moun ­ dian phase of th e Caledon ian Orogeny in Late Silurian to tain building (e.g., Strand 1960). No fossils have yet been Early Devonian time. In contra st to oth er nappes in the found in sedimentary rocks from th e Uppermo st Allochthon, Uppermo st Allochthon, the HNChostssizeable bodi esof syn­ but radiom etric ages indicate that parts of th e gneissic units orog enic intr usions which crop out over more than 30 % of are of Precambrian age. Intru sive rocks, however, are of both th e area. In accordance with th e regional trend, th e rock units Late Precambrian and Cambro-Silur ian to Late Siluri an age in the Granasen area have a compl ex and pro long ed defo r­ (Priem et al. 1975, Claesson 1979). Rock units in th e area are mation history (Riis & Ramberg 1979). In the HNC, early fold s strongly deformed and the observed mineral assemblages have N-S axes and almost upright axial planes. Gabrielsen & NGU -BULL 4 36,200 0 - PAGE 78 ODD0VERENG Ramberg (1979) suggested two phases of thrusting for th e content is, on average, about 17 wt. %; individua l samples HNC, both older than the latest fold ing phases in th e area. may contain up to 23 wt. % brucite. Metamorphism in th e Mosjoen un it of the HNC is appar entl y Exploratory core drilling in the deposit (5000 m of core) linked to the second, main deformation ph ase (0 2). wh ich revealed t hat bruci te occurs in distinct layers within th e dol­ overprints older magmatic mineral assembl ages. The P-T omi te marble. Distribution of brucite w ithin the layers conditions of metamorphism are assumed to be about 500 ­ appea rs to be concentrated in a very complex net work of 600° C, at 2.0 - 3.5 kb, with increasing temperatures to wards veinlets, with a gradual decrease in brucite concentration the contact with the Mosj oen Igneous Compl ex (Theisen away from the gabbro contact. Layersof brucite-bearing dol­ Juell 1985 ). omi te alternate with layers of pure do lomite or dolomite w ith granulesofoliv ine (forsterite),or of olivine disp laying varying grades of alteration to serpentine and brucite. Since brucite The Granasen dolomite-brucite is more soluble than carbonates, the brucite content can be deposit roug hly est imated from the naturally-etched weat hering sur­ The lens-shaped deposit, which crop s out bet ween 115 and faces.
Recommended publications
  • Fluid Mixing and the Deep Biosphere of a Fossil Lost City-Type Hydrothermal System at the Iberia Margin
    Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin Frieder Kleina,1, Susan E. Humphrisb, Weifu Guob, Florence Schubotzc, Esther M. Schwarzenbachd, and William D. Orsia aDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; cDepartment of Geosciences and Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany; and dDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved August 4, 2015 (received for review March 7, 2015) Subseafloor mixing of reduced hydrothermal fluids with seawater is aging, brucite undersaturated in seawater dissolves and aragonite believed to provide the energy and substrates needed to support recrystallizes to calcite (7). deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., Actively venting chimneys host a microbial community with a serpentinite). However, geosphere-biosphere interactions in serpen- relatively high proportion of methanogenic archaea (the Lost tinite-hosted subseafloor mixing zones remain poorly constrained. City Methanosarcinales), methanotrophic bacteria, and sulfur- Here we examine fossil microbial communities and fluid mixing oxidizing bacteria, whereas typical sulfate-reducing bacteria are processes in the subseafloor of a Cretaceous Lost City-type hydro- rare (8–10). Geochemical evidence for significant microbial sulfate thermal system at the magma-poor passive Iberia Margin (Ocean reduction in basement lithologies and distinct microbial commu- Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assem- nities in Lost City vent fluids and chimneys suggest that subsurface blages precipitated from mixed fluids ca.
    [Show full text]
  • Master Thesis
    A study in environmental chemistry: natural and anthropogenic radionuclides in sediment cores from the Norwegian Trench and the Vefsnfjord by Lena Helvik Master of Science Thesis Department of Chemistry University of Bergen Bergen, June 2019 SUMMARY In this work the anthropogenic radionuclide 137Cs and the naturally occurring radionuclides 226Ra, 228Ra, 210Pb and 40K have been studied in sediment cores from the Norwegian Trench and from the Vefsnfjord in Nordland. Caesium-137 is a fission product, introduced to the environment by nuclear weapons tests in 1950s and -60s, discharges from reprocessing plants for spent nuclear fuel, and from accidents like the Chernobyl accident in 1986. Levels of 137Cs in Norwegian marine areas are generally low, and the levels are routinely monitored. Investigations in selected Norwegian fjords have, however, shown elevated levels of 137Cs in surface sediments and sediment profiles, compared to adjacent open marine areas. The Vefsnfjord, which is investigated in this work, is one of the fjords in Norway with the highest measured levels of 137Cs. The contamination source is most likely the Chernobyl accident. Potassium-40 is a naturally occurring radioactive isotope of potassium (isotopic abundance of 0.012%). radium-226 and lead-210 are members of the natural radioactive “uranium series”, while radium-228 is member of the natural radioactive “thorium series”. All four are found in various amounts in bedrock and the marine environment. However, it is well known that different industries, including the oil and gas industry, also discharge naturally occurring radionuclides to the marine environment. In this thesis, local and regional variations of 137Cs, 226Ra, 228Ra, 210Pb and 40K in the two study areas have been investigated.
    [Show full text]
  • Reetableringsprosjektet I Vefsnaregionen
    Rapport 14 · 2015 Reetableringsprosjektet i Vefsnaregionen - Årsrapport for aktiviteten i 2014 Norwegian Veterinary Institute`s Report Series Institute`s Norwegian Veterinary Espen Holthe Thomas Bjørnå Håvard Lo Veterinærinstituttets rapportserie Veterinærinstituttets rapportserie · 14 – 2015 Tittel Reetableringsprosjektet i Vefsnaregionen - Årsrapport for aktiviteten i 2014. Publisert av Veterinærinstituttet · Pb. 750 Sentrum · 0106 Oslo Form omslag: Graf AS Forsidefoto: Forsjordforsen i Drevja, Veterinærinstituttet Miljø- og smittetiltak, Trondheim Foto: Veterinærinstituttet, Miljø-og Smittetiltak, Trondheim Bestilling [email protected] Faks: + 47 23 21 60 01 Tel: + 47 23 21 63 66 ISSN 1890-3290 elektronisk utgave Forslag til sitering: Holthe E, Bjørnå T, Lo H. Reetableringsprosjektet i Vefsnare- gionen - Årsrapport for aktiviteten i 2014. Veterinærinstitut- tets rapport-serie 14-2015. Oslo: Veterinærinstituttet; 2015 © Veterinærinstituttet Kopiering tillatt når Veterinærinstituttet gjengis som kilde Veterinærinstituttets rapportserie Norwegian Veterinary Institute`s Report Series Rapport 14 · 2015 Reetableringsprosjektet i Vefsnaregionen - Årsrapport for aktiviteten 2014 Forfattere Espen Holthe, Veterinærinstituttet Thomas Bjørnå, MON KF Håvard Lo, Veterinærinstituttet Oppdragsgiver Miljødirektoratet 02.06.2015 ISSN 1890-3290 elektronisk utgave Sammendrag Holthe, E. Bjørnå, T. & Lo, H. 2015. Reetableringsprosjektet i Vefsnaregionen. Årsrapport 2014. Veterinærinstituttets rapportserei 14-2015. 33 s. Rapporten omhandler alle vassdragene i regionen der det er gjennomført tiltak i forbindelse med reetableringsprosjektet, bortsett fra Vefsna. For Vefsna er det utarbeidet egen rapport, se (Holthe mfl. 2015). I 2014 ble det i alt satt ut ca. 773.000 individer av laks i elvene Fusta, Drevja, Halsanelva, Hestdalselva, Dagsvikelva og Hundåla. I tillegg ble det satt ut 102.000 sjøørretunger i Fustavassdraget, da i hovedsak oppstrøms Forsmoforsen. Det er også satt ut ca. 38.000 individer av stasjonær ørret og ca.
    [Show full text]
  • Reetableringsprosjektet I Vefsnaregionen - Årsrapport 2016 VETERINÆRINSTITUTTET
    Rapport 17 - 2017 Reetableringsprosjektet i Vefsnaregionen - Årsrapport 2016 VETERINÆRINSTITUTTET Reetableringsprosjektet i Vefsnaregionen – Årsrapport 2016 Innhold Sammendrag ................................................................................................................. 2 Forord ......................................................................................................................... 3 1. Innledning .............................................................................................................. 4 2. Metode og materiale .................................................................................................. 5 2.1 Innsamling av ungfisk .............................................................................................. 5 2.2 Innsamling av voksenfisk .......................................................................................... 5 2.3 Gytefiskregistrering ................................................................................................ 5 2.4 Utsettingsmaterialet ............................................................................................... 6 2.5 Bademerking av øyerogn .......................................................................................... 6 2.6 Utsetting av fiskemateriale i Vefsnaregionen ................................................................. 6 2.7 Otolitt og skjellanalyse ............................................................................................ 7 3. Resultat fra ungfiskundersøkelser
    [Show full text]
  • DOGAMI Short Paper 8, Strategic and Critical Minerals: a Guide for Oregon
    STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 702 Woodlark Building Portland, Oregon G M I SHORT PAPI:R No. 8 STRATEGIC AND CRITICAL MINERALS A GUIDE lOR OREGON PROSPECTORS. By Lloyd w. Staples; Ph.D, A••latant Proteaaor ot Geology University ot Oregon . • STATE GOVIEIIINING BOAIIID W. H. ITRAYIER, CHAIIIMAN . BAKU ALBIEIIIT BURC:H MIEDP'OIID IE MACNAUGHTON ••• PDIIT\.ANO EARL K. NIXON DIIIIIECTOIII PRICIE 15 CIENTI I Oat lORD In noraal tia•• ao1t pro•p•otor• look tor gold, 1inoe that aetal u1ually otter• the �uiok••t reward and i• generally tither •a•1ly reoogn1�•d or the or• 1• •usoept• 1ble or •••Y detera1nat1on. Pro1peotor11 ln general, thus gain llttlt or no experl­ tno• with other •inerai• who•• peaoetlae aarkttl otter little tnoentlve tor ltaroh tor new depo1it1. Under war oondltion• th••• aineral11 needed tor produotion ot war aat­ erial•, beooae ot priae iaportanoe and an in1i1tent deaand i1 created tor intoraation oonoernins ooourrenoe11 aineral oharaoteri1tio11 u1e1 and aarket1. fhe Dtpartaent i1 publllhins thil paper to help aeet thil deaand in1otar &I Oreson i1 �ono�rned. Dr. Staple• 11 tlptoially qualititd to write on the lubJeot or 1trateg1o aineral1. In rtoent rear• auoh ot hll work, both 1n private praotioe and 1n teaohing1 hat been oonoerntd with thll tubJeot. It 11 boptd that tht paptr will bt ot aattrial &1111t&not to Oregon pro1ptotor1 &1 well al to 1aall operator• who have turned their attention troa gold aintns to thole alneral depo1it1 e11ential tor war netdl. It i1 believed that 1ohool1 will al1o t1nd the paper intoraatlve and tiaely.
    [Show full text]
  • Experimental Investigations of the Reaction Path in the Mgo–CO2
    Available online at www.sciencedirect.com Applied Geochemistry Applied Geochemistry 23 (2008) 1634–1659 www.elsevier.com/locate/apgeochem Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation Yongliang Xiong *, Anna Snider Lord Sandia National Laboratories, Carlsbad Programs Group, 4100 National Parks Highway, Carlsbad, NM 88220, USA1 Received 26 June 2007; accepted 25 December 2007 Editorial handling by Z. Cetiner Available online 9 February 2008 Abstract The reaction path in the MgO–CO2–H2O system at ambient temperatures and atmospheric CO2 partial pressure(s), especially in high-ionic-strength brines, is of both geological interest and practical significance. Its practical importance lies mainly in the field of nuclear waste isolation. In the USA, industrial-grade MgO, consisting mainly of the mineral peri- clase, is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) for defense-related transuranic waste. The German Asse repository will employ a Mg(OH)2- based engineered barrier consisting mainly of the mineral brucite. Therefore, the reaction of periclase or brucite with car- bonated brines with high-ionic-strength is an important process likely to occur in nuclear waste repositories in salt forma- tions where bulk MgO or Mg(OH)2 will be employed as an engineered barrier. The reaction path in the system MgO–CO2– H2O in solutions with a wide range of ionic strengths was investigated experimentally in this study. The experimental results at ambient laboratory temperature and ambient laboratory atmospheric CO2 partial pressure demonstrate that hyd- romagnesite (5424) (Mg5(CO3)4(OH)2 Á 4H2O) forms during the carbonation of brucite in a series of solutions with differ- ent ionic strengths.
    [Show full text]
  • Brucite Mg(OH)2 C 2001-2005 Mineral Data Publishing, Version 1
    Brucite Mg(OH)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32/m. Crystals tabular {0001}, to 19 cm, in platy or foliated masses and rosettes; also fibrous, to 50 cm; granular, massive. Physical Properties: Cleavage: {0001}, perfect. Tenacity: Sectile; separable plates are flexible, fibers are elastic. Hardness = 2.5 D(meas.) = 2.39 D(calc.) = 2.368 Pyroelectric. Optical Properties: Transparent. Color: White, pale green, blue, gray; honey-yellow to brownish red and deep brown in manganoan varieties; colorless in transmitted light. Streak: White. Luster: Waxy, pearly on cleavage surfaces. Optical Class: Uniaxial (+); anomalously biaxial. ω = 1.56–1.59 = 1.58–1.60 2V(meas.) = Small. Cell Data: Space Group: P 3m1..a = 3.142(1) c = 4.766(2) Z=1 X-ray Powder Pattern: Synthetic. 2.365 (100), 4.77 (90), 1.794 (55), 1.573 (35), 1.494 (18), 1.373 (16), 1.310 (12) Chemistry: (1) (2) (3) Fe2O3 0.10 1.95 FeO 9.57 MnO 0.84 MgO 68.29 60.33 69.11 H2O 30.74 28.60 30.89 Total 99.97 100.45 100.00 (1) Wood’s Chrome mine, Pennsylvania, USA; corresponds to (Mg0.99Fe0.01)Σ=1.00(OH)2. (2) Asbestos, Canada; after deduction of Fe2O3 impurity, corresponds to 2+ (Mg0.93Fe0.08)Σ=1.01(OH)2. (3) Mg(OH)2. Mineral Group: Brucite group. Occurrence: A common alteration of periclase in marble; a low-temperature hydrothermal vein mineral in metamorphic limestones and chlorite schists; formed during serpentinization of dunites.
    [Show full text]
  • Reetablering Av Laks I Vefsna Nedstrøms Laksforsen - Sluttrapport VETERINÆRINSTITUTTET
    Rapport 12 - 2019 Reetablering av laks i Vefsna nedstrøms Laksforsen - Sluttrapport VETERINÆRINSTITUTTET Reetablering av laks i Vefsna nedstrøms Laksforsen Sluttrapport Innhold Innhold ........................................................................................................................ 2 Sammendrag ................................................................................................................. 4 Forord ......................................................................................................................... 6 1. Innledning ........................................................................................................... 7 2. Områdebeskrivelse ................................................................................................. 9 3. Metode og materiale .............................................................................................. 11 3.1 Utsettingsmaterialet .............................................................................................. 11 3.2 Bademerking av øyerogn ......................................................................................... 11 3.3 Utsetting av fiskemateriale ...................................................................................... 11 3.4 Innsamling av ungfisk ............................................................................................. 12 3.5 Innsamling av voksenfisk ......................................................................................... 15 3.6 Otolitt- og skjellanalyser
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Vefsnfjorden. Beskrivelse Av Hydrofysiske Forhold I Fjordens Indre Del
    RAPPORT L.NR. 5939-2010 Vefsnfjorden. Beskrivelse av hydrofysiske forhold i fjordens indre del Norsk institutt for vannforskning RAPPORT Hovedkontor Sørlandsavdelingen Østlandsavdelingen Vestlandsavdelingen NIVA Midt-Norge Gaustadalléen 21 Televeien 3 Sandvikaveien 41 Thormøhlensgate 53 D Pirsenteret, Havnegata 9 0349 Oslo 4879 Grimstad 2312 Ottestad 5006 Bergen Postboks 1266 Telefon (47) 22 18 51 00 Telefon (47) 22 18 51 00 Telefon (47) 22 18 51 00 Telefon (47) 22 18 51 00 7462 Trondheim Telefax (47) 22 18 52 00 Telefax (47) 37 04 45 13 Telefax (47) 62 57 66 53 Telefax (47) 55 31 22 14 Telefon (47) 22 18 51 00 Internett: www.niva.no Telefax (47) 73 54 63 87 Tittel Løpenr. (for bestilling) Dato Vefsnfjorden. Beskrivelse av hydrofysiske forhold i fjordens indre 5939-2010 3.3.2010 del. Prosjektnr. Sider 29321 23 Forfatter(e) Fagområde Distribusjon Jarle Molvær Oseanografi Fri Geografisk område Trykket Nordland NIVA Oppdragsgiver(e) Oppdragsreferanse Alcoa Mosjøen Helge Nes Sammendrag Det gis en oversikt over vannmasser og strømforhold i ca. 0-30 m dyp i den indre delen av Vefsnfjorden. Vannmasser og strømforhold ned til 6-8 m dyp preges av den store ferskvannstilførselen fra Vefsna, som danner et 2-5 m dypt brakkvannslag som raskt strømmer ut fjorden – og en mindre og langsommere inngående sjøvannsstrøm under denne. Typisk strømhastighet i brakkvannslaget synes å være 0,1-0,3 m/s. Strømmålinger i 10 m dyp og 5 m over bunnen like utenfor havneområdet viste at for ca. 90% av målingene var <2 cm/s og maksimal hastighet var 7 cm/s.
    [Show full text]
  • Mineralogy of the Kraubath-Type Magnesite Deposits Of
    Yerbilimleri, 30 (3), 169–180 Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi Journal of the Earth Sciences Application and Research Centre of Hacettepe University Mineralogy of the Kraubath-type magnesite deposits of the Khuzdar area, Balochistan, Pakistan Khuzdar Bölgesi (Belucistan, Pakistan)’ndeki Kraubath tipi manyezit yataklarının mineralojisi Erum BASHIR, Shahid NASEEM, Shamim Ahmed SHEIKH, Maria KALEEM Department of Geology, University of Karachi, Karachi 75270, PAKISTAN Geliş (received) : 17 Ağustos (August) 2009 Kabul (accepted) : 17 Eylül (September) 2009 ABSTRACT Mineralogical studies of the magnesite deposits in the Khuzdar District, Balochistan, Pakistan were made using the X- ray diffraction (XRD) technique. These Kraubath-type magnesite deposits are hosted within serpentinized harzburgites, associated with Bela Ophiolite of Cretaceous age. The deposits occur as cryptocrystalline veins of stockwork-type, possessing botryoidal and bone habits. The ultramafic rocks of Bela Ophiolite were subjected to serpentinization. The hydrothermal fluids leached out Mg, Ca, Fe and other elements from the serpentinized rocks and finally carbonation of these ions resulted in the formation of their hydroxides and carbonates of different combinations to produce these de- posits. The XRD analysis of the ores revealed a high magnesite content in association with artinite, brucite, huntite, Fe- magnesite, dolomite, calcite and Mg-calcite. Initially, at low temperatures and low partial pressure from carbon dioxide (PCO2), metastable hydroxides and carbonates are formed, and these are gradually converted into a stable magnesite phase. The low abundance of allied minerals reflects the relatively high temperature conditions and PCO2 that convert metastable minerals into their stable magnesite phase. The study revealed an increasing temperature and PCO2 from brucite through artinite, hydromagnesite, huntite, and dolomite to magnesite.
    [Show full text]
  • Soapstone in the North Quarries, Products and People 7000 BC – AD 1700
    UBAS University of Bergen Archaeological Series Soapstone in the North Quarries, Products and People 7000 BC – AD 1700 Gitte Hansen and Per Storemyr (eds) 20179 Soapstone in the North Quarries, Products and People 7000 BC – AD 1700 UniversityUBAS of Bergen Archaeological Series Soapstone in the North Quarries, Products and People 7000 BC – AD 1700 Gitte Hansen and Per Storemyr (eds) 9 2017 UBAS – University of Bergen Archaeological Series 9 Copyright: Authors, 2017 University of Bergen Bergen University Museum and Department of Archaeology, History, Cultural Studies and Religion P.O. Box 7800 NO-5020 Bergen NORWAY ISBN: 978-82-90273-90-8 UBAS 9 UBAS: ISSN 0809-6058 Editors of this book Gitte Hansen Per Storemyr Editors of the series UBAS Nils Anfinset Randi Barndon Knut Andreas Bergsvik Søren Diinhoff Lars L. Forsberg Layout Beate Helle, Bergen University Museum Cover: Arkikon, www.arkikon.no Print 07 Media as Peter Møllers vei 8 Postboks 178 Økern 0509 Oslo Paper: 100 g Arctic volume white Typography: Adobe Garamond Pro and Myriad Pro Preface This book has been a long time in the making. It is an outcome of the five Norwegian University Museums’ joint research programme Forskning i Felleskap (FIF, 2010–2015), supported by the Research Council of Norway. FIF kindly facilitated a number of workshops and meetings between archaeologists, geologists and craftspeople, all with a common interest in premodern soapstone quarrying and use. The result is the chapters of this book, which are based on studies carried out over the last two decades and, for the most part, are published scientifically for the first time.
    [Show full text]