Agenda 10/23/2018 The - An Organizational Model with predictive and explanatory power

The Modern Periodic Table - latest additions (student input)

Electrons in the Atom

Homework Who, what, where, when, how? Why, is a good question.

104 Rf Rutherfordium Russia 1964 (Plutonium + neon) 261 amu

105 Db 268amu , Russia 1967 - 1970

106 1974 Berkley and Dubna Sg 263 amu - 266 amu? IUPAC

107 Bh Bohrium Bismuth with ions 1981 , Germany (1976 Dubna, Russia) 270 amu

108 Hs Germany, 1984 + iron 270 amu

109 Me(?) 1982 Germany bismuth + iron ions Atomic mass?

110 Darmstadium Ds 1994 281 amu lead-208 + nickel-62 Who, what, where, when, how? Why, is a good question. 111 Roentgenium, Rg, 1994 Darmstadt, Germany 280 amu Bismuth, nickel in heavy ion accelerator

112 , Cn Darmstadt, 1996, 29 sec half life, lead-208 + Zn-70, 277 amu

113 , Nh 286 amu Japan Zinc + bismuth , half life 20 sec

114 Flerovium, Fl, 289 amu, Dubna, Russia 1998/9

115 , Mc, 288 amu, Dubna, 2010 Americium + calcium ions

116 Livermorium, Lv, 293 amu Dubna/Livermore calcium-48 + curium-248, 2000

117 Tennessine 2010, Tennessee/Russian 294 amu Calcium+

118 2002 Dubna, 294 amu, -249 + Calcium-48 103 Lr, 260 amu Berkeley and Moscow Californium with 1965

104 Rutherfordium, Rf, 267 amu Moscow/Berkeley 1964 Plutonium with 113 -115 particles;

105 Dubnium, Db, 268 amu 28 hrs half life, 1968, Dubna, Moscow (later Berkeley)

106 Seaborgium, Sg, 1974 Berkeley 271 amu

107 Bohrium, Bh, 1981, 264 amu (1975 261 in Moscow)

108 Hassium, Hs, 1984 radium + calcium, half life 10 secs

109 Meitnerium,Mt, 268 amu, 1982 Darmstadt, 266 amu half lives 6 mins - 1.7 millisec

110 , Ds, 281 amu, 10 sec halflife, 1994 lead-208 and nickel-62 111 Roentgenium, Rg, 272 amu, Darmstadt, Germany, 1994 nickel + bismuth ions

112 Copernicium Cn, Germany, half life 29 sec, lead + ions of zinc, 285 amu

113 Nihonium, Nh, Japan, half life 10 secs, 286 amu, 2004

114 Flerovium, Fl, 289 amu, 1998, Dubna, Russia, 4 286 -289 2.6 secs

Plutonium + calcium

115 Moscovium, Mc, 2003 Dubna, Russia / Berkeley americium + Calcium ions 288 amu

116 Livermorium, Lv, 292 amu, 2000, Dubna, Russia

117 Tennessine, Ts, 294 amu, 2009-10, Dubna, Russia, berkelium + Ca ions

118 Oganesson, 2002, Dubna, Russia 294amu How are arranged in atoms ( configurations)? We need a model that explains all the experimental data:

● valency of atoms in groups (or families) in the periodic table ● Periodicity of chemical and physical properties (repeating patterns) observed ● Photoelectric effect ● Spectral line patterns and Flame colors We need a model of the atom that explains experimental data. Nuclear Atom Model

Video of electron in atom Atomic Emission Spectra - light emitted at specific wavelengths

Demonstration - see for yourself Bohr Model to Explain Hydrogen Emission Spectrum

Click here to find out more

Bohr Model of Atom - was a starting point Quantum (wave) mechanical model of atom gives us mathematically predicted probability maps that we call: Atomic orbitals

s p

d f

g Compare this to our Nuclear Atom Model

nucleus

electron cloud Energy level n =1

Contains 1s orbital

Can accommodate n = 1 up to 2 electrons ? +

So for Hydrogen

1+ 1e- 1 counter on n= 1 energy level Energy level n =1

Contains 1s orbital

Can accommodate n = 1 up to 2 electrons ? +

And for Helium

2+ 2e- 2 counters on(in) n= 1 energy level Electrons and PT: Data Table 1, 1st 20 elements

Element Grp # # Valence Electron Lewis electron dot electrons configuration (full) structure (simplified) 1. H 1 1 1. 1s1 H 2. He 18 2 2. 1s2 He:

3. Li 4. Be 5. B

6. C

7. N

8. O

9. F

10. Ne

11. Na

12. Mg

13. Al

14. Si

15. P

16. S

!7. Cl

18. Ar

19. K

20. Ca Quantum (wave) mechanical model of atom gives us mathematically predicted probability maps that we call: Atomic orbitals

s p

d f

g Energy level n =1

Contains 2s orbital + 2p orbital (which has 3 suborbitals)

Can accommodate n = 1 up to 2 electrons + 6 electrons ? + n = 2 = 8 electrons

Li

3+ 3 e- 2 in n = 1 then 1 in/on n= 2 Electrons and PT: Data Table 1, 1st 20 elements

Element Grp # # Valence Electron Electron configuration Lewis electron dot electrons configuration (full) structure (simplified) 1. H 1 1 1. 1s1 H 2. He 18 2 2. 1s2 He: 3. Li 1 1 2.1 1s22s1 Li 4. Be 5. B

6. C

7. N

8. O

9. F

10. Ne

11. Na

12. Mg

13. Al

14. Si

15. P

16. S

!7. Cl

18. Ar

19. K

20. Ca Electrons and PT: Data Table 1, 1st 20 elements

Element Grp # # Valence Electron Electron configuration Lewis electron electrons configuration (full) dot structure (simplified) 3. Li 1 1 2.1 1s22s1 Li 4. Be 2 2 2.2 1s22s2 Be 5. B 13 3 2.3 1s22s22p1 B

6. C

7. N

8. O

9. F

10. Ne

11. Na

12. Mg

13. Al

14. Si

15. P

16. S

!7. Cl

18. Ar

19. K

20. Ca Electrons and PT: Data Table 1, 1st 20 elements

Element Grp # # Valence Electron Electron configuration Lewis electron electrons configuration (full) dot structure (simplified) 6. C 14 4. 2.4 1s22s22p2 C 7. N 15 5 2.5 1s22s22p3 N 8. O 16 6 2.6 1s22s22p4 O 9. F 17 7 2.7 1s22s22p5 F 10. Ne 18 8 2.8 1s22s22p6 Ne

11. Na

12. Mg

13. Al

14. Si

15. P

16. S

!7. Cl

18. Ar

19. K

20. Ca Energy level n =3 (1st pass)

Contains 3s orbital, 3p orbital (3 suborbitals)

So Can accommodate n = 1 ? up to 8 electrons at the + n = 2 moment n = 3 Element Grp # # Valence Electron Electron configuration Lewis electron dot electrons configuration (full) structure (simplified)

11. Na 1 1 2.8.1 1s22s22p63s1

12. Mg 2 2 2.8.2 1s22s22p63s2

13. Al 13 3 2.8.3 1s22s22p63s23p1

14. Si 14 4 2.8.4 1s22s22p63s23p2

15. P 15 5 2.8 5 1s22s22p63s23p3

16. S 16 6 2.8.6 1s22s22p63s23p4

!7. Cl 17 7 2.8.7 1s22s22p63s23p5

18. Ar 18 8 2.8.8 1s22s22p63s23p6

19. K 1 1 2.8.8.1 1s22s22p63s23p64s1

20. Ca 2 2 2.8.8.2 1s22s22p63s23p64s2