
Agenda 10/23/2018 The Periodic Table - An Organizational Model with predictive and explanatory power The Modern Periodic Table - latest additions (student input) Electrons in the Atom Homework Who, what, where, when, how? Why, is a good question. 104 Rf Rutherfordium Russia 1964 (Plutonium + neon) 261 amu 105 Dubnium Db 268amu Dubna, Russia 1967 - 1970 106 1974 Berkley and Dubna Seaborgium Sg 263 amu - 266 amu? IUPAC 107 Bh Bohrium Bismuth with chromium ions 1981 Darmstadt, Germany (1976 Dubna, Russia) 270 amu 108 Hassium Hs Germany, 1984 Lead + iron 270 amu 109 Meitnerium Me(?) 1982 Germany bismuth + iron ions Atomic mass? 110 Darmstadium Ds 1994 281 amu lead-208 + nickel-62 Who, what, where, when, how? Why, is a good question. 111 Roentgenium, Rg, 1994 Darmstadt, Germany 280 amu Bismuth, nickel in heavy ion accelerator 112 Copernicium, Cn Darmstadt, 1996, 29 sec half life, lead-208 + Zn-70, 277 amu 113 Nihonium, Nh 286 amu Japan Zinc + bismuth , half life 20 sec 114 Flerovium, Fl, 289 amu, Dubna, Russia 1998/9 115 Moscovium, Mc, 288 amu, Dubna, 2010 Americium + calcium ions 116 Livermorium, Lv, 293 amu Dubna/Livermore calcium-48 + curium-248, 2000 117 Tennessine 2010, Tennessee/Russian 294 amu Calcium+ Berkelium 118 Oganesson 2002 Dubna, 294 amu, californium-249 + Calcium-48 103 Lawrencium Lr, 260 amu Berkeley and Moscow Californium with boron 1965 104 Rutherfordium, Rf, 267 amu Moscow/Berkeley 1964 Plutonium with 113 -115 particles; 105 Dubnium, Db, 268 amu 28 hrs half life, 1968, Dubna, Moscow (later Berkeley) 106 Seaborgium, Sg, 1974 Berkeley 271 amu 107 Bohrium, Bh, 1981, 264 amu (1975 261 isotope in Moscow) 108 Hassium, Hs, 1984 radium + calcium, half life 10 secs 109 Meitnerium,Mt, 268 amu, 1982 Darmstadt, 266 amu half lives 6 mins - 1.7 millisec 110 Darmstadtium, Ds, 281 amu, 10 sec halflife, 1994 lead-208 and nickel-62 111 Roentgenium, Rg, 272 amu, Darmstadt, Germany, 1994 nickel + bismuth ions 112 Copernicium Cn, Germany, half life 29 sec, lead + ions of zinc, 285 amu 113 Nihonium, Nh, Japan, half life 10 secs, 286 amu, 2004 114 Flerovium, Fl, 289 amu, 1998, Dubna, Russia, 4 isotopes 286 -289 2.6 secs Plutonium + calcium 115 Moscovium, Mc, 2003 Dubna, Russia / Berkeley americium + Calcium ions 288 amu 116 Livermorium, Lv, 292 amu, 2000, Dubna, Russia 117 Tennessine, Ts, 294 amu, 2009-10, Dubna, Russia, berkelium + Ca ions 118 Oganesson, 2002, Dubna, Russia 294amu How are electrons arranged in atoms (electron configurations)? We need a model that explains all the experimental data: ● valency of atoms in groups (or families) in the periodic table ● Periodicity of chemical and physical properties (repeating patterns) observed ● Photoelectric effect ● Spectral line patterns and Flame colors We need a model of the atom that explains experimental data. Nuclear Atom Model Video of electron in atom Atomic Emission Spectra - light emitted at specific wavelengths Demonstration - see for yourself Bohr Model to Explain Hydrogen Emission Spectrum Click here to find out more Bohr Model of Atom - was a starting point Quantum (wave) mechanical model of atom gives us mathematically predicted probability maps that we call: Atomic orbitals s p d f g Compare this to our Nuclear Atom Model nucleus electron cloud Energy level n =1 Contains 1s orbital Can accommodate n = 1 up to 2 electrons ? + So for Hydrogen 1+ 1e- 1 counter on n= 1 energy level Energy level n =1 Contains 1s orbital Can accommodate n = 1 up to 2 electrons ? + And for Helium 2+ 2e- 2 counters on(in) n= 1 energy level Electrons and PT: Data Table 1, 1st 20 elements Element Grp # # Valence Electron Electron configuration Lewis electron dot electrons configuration (full) structure (simplified) 1. H 1 1 1. 1s1 H 2. He 18 2 2. 1s2 He: 3. Li 4. Be 5. B 6. C 7. N 8. O 9. F 10. Ne 11. Na 12. Mg 13. Al 14. Si 15. P 16. S !7. Cl 18. Ar 19. K 20. Ca Quantum (wave) mechanical model of atom gives us mathematically predicted probability maps that we call: Atomic orbitals s p d f g Energy level n =1 Contains 2s orbital + 2p orbital (which has 3 suborbitals) Can accommodate n = 1 up to 2 electrons + 6 electrons ? + n = 2 = 8 electrons Li 3+ 3 e- 2 in n = 1 then 1 in/on n= 2 Electrons and PT: Data Table 1, 1st 20 elements Element Grp # # Valence Electron Electron configuration Lewis electron dot electrons configuration (full) structure (simplified) 1. H 1 1 1. 1s1 H 2. He 18 2 2. 1s2 He: 3. Li 1 1 2.1 1s22s1 Li 4. Be 5. B 6. C 7. N 8. O 9. F 10. Ne 11. Na 12. Mg 13. Al 14. Si 15. P 16. S !7. Cl 18. Ar 19. K 20. Ca Electrons and PT: Data Table 1, 1st 20 elements Element Grp # # Valence Electron Electron configuration Lewis electron electrons configuration (full) dot structure (simplified) 3. Li 1 1 2.1 1s22s1 Li 4. Be 2 2 2.2 1s22s2 Be 5. B 13 3 2.3 1s22s22p1 B 6. C 7. N 8. O 9. F 10. Ne 11. Na 12. Mg 13. Al 14. Si 15. P 16. S !7. Cl 18. Ar 19. K 20. Ca Electrons and PT: Data Table 1, 1st 20 elements Element Grp # # Valence Electron Electron configuration Lewis electron electrons configuration (full) dot structure (simplified) 6. C 14 4. 2.4 1s22s22p2 C 7. N 15 5 2.5 1s22s22p3 N 8. O 16 6 2.6 1s22s22p4 O 9. F 17 7 2.7 1s22s22p5 F 10. Ne 18 8 2.8 1s22s22p6 Ne 11. Na 12. Mg 13. Al 14. Si 15. P 16. S !7. Cl 18. Ar 19. K 20. Ca Energy level n =3 (1st pass) Contains 3s orbital, 3p orbital (3 suborbitals) So Can accommodate n = 1 ? up to 8 electrons at the + n = 2 moment n = 3 Element Grp # # Valence Electron Electron configuration Lewis electron dot electrons configuration (full) structure (simplified) 11. Na 1 1 2.8.1 1s22s22p63s1 12. Mg 2 2 2.8.2 1s22s22p63s2 13. Al 13 3 2.8.3 1s22s22p63s23p1 14. Si 14 4 2.8.4 1s22s22p63s23p2 15. P 15 5 2.8 5 1s22s22p63s23p3 16. S 16 6 2.8.6 1s22s22p63s23p4 !7. Cl 17 7 2.8.7 1s22s22p63s23p5 18. Ar 18 8 2.8.8 1s22s22p63s23p6 19. K 1 1 2.8.8.1 1s22s22p63s23p64s1 20. Ca 2 2 2.8.8.2 1s22s22p63s23p64s2.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages23 Page
-
File Size-