Cephalanthera Longifolia and Dactylorhiza Majalis, Two Terrestrial Orchids

Total Page:16

File Type:pdf, Size:1020Kb

Cephalanthera Longifolia and Dactylorhiza Majalis, Two Terrestrial Orchids Ann. Bot. Fennici 45: 281–289 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 August 2008 © Finnish Zoological and Botanical Publishing Board 2008 Mycorrhizas of Cephalanthera longifolia and Dactylorhiza majalis, two terrestrial orchids Aleš Látr1,*, Martina Čuříková1, Milan Baláž2 & Jaroslav Jurčák1 1) Department of Botany, Faculty of Science, Palacky University, Slechtitelu 11, CZ-783 71 Olomouc-Holice, Czech Republic (*corresponding author’s e-mail: [email protected]) 2) Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, CZ- 611 37 Brno, Czech Republic Received 2 July 2007, revised version received 14 Sep. 2007, accepted 18 Sep. 2007 Látr, A., Čuříková, M. , Baláž, M. & Jurčák, J. 2008: Mycorrhizas of Cephalanthera longifolia and Dactylorhiza majalis, two terrestrial orchids. — Ann. Bot. Fennici 45: 281–289. Dynamics of mycorrhizal colonization of two orchid species, rhizomatous Cephalan- thera longifolia and tuberous Dactylorhiza majalis, was studied during two growing seasons, with special emphasis on the occurrence of collapsed pelotons. No complete lysis of pelotons in digestion cells was found. Mycorrhizal colonization of subterranean organs of both species was observed to take place even before aerial shoots developed, indicating that colonization is not restricted to leafy season, and was constantly present throughout the growing seasons with no distinct coincidence with flowering or fruiting time. Mycorrhizal colonization of C. longifolia was patchy and of low degree (mean = 4.4%, SE = 0.3%). It occurred mostly in the distal parts of main roots, lateral roots and/or in isolated root parts. Intensity of mycorrhizal colonization of D. majalis was generally higher (mean = 12.1%, SE = 0.7%). Tubers lacked colonization except in the root-like extensions. Key words: Cephalanthera, colonization, Dactylorhiza, peloton lysis, orchid mycor- rhiza, symbiosis Introduction of an orchid seed into a protocorm and then into a young plantlet, because orchid seeds pos- Regular occurrence of mycorrhizal fungi within sess only very limited reserves (Peterson et al. orchid tissues has been well documented for 1998). The fungus obtains carbon compounds over a century (Bernard 1909, Burgeff 1909). either saprotrophically (Hadley & Perombelon However, until now we have insufficient infor- 1963, Hadley 1969, Midgley et al. 2006) or from mation about the roles that mycorrhizas play ectomycorrhizal symbiosis with trees, which in in compound exchange between the host and some cases it is also able to form (Zelmer & its symbiotic fungus. It is widely accepted that Currah 1995, McKendrick et al. 2000, Gebauer during early developmental stages of all orchids & Meyer 2003). This kind of plant nourish- the fungus supplies carbon compounds. This is ment, known as myco-heterotrophy, persists in a prerequisite for the successful development some orchid species lacking chlorophyll in the 282 Látr et al • ANN. BOT. FENNICI Vol. 45 adult stage, e.g. Cephalanthera austinae, which rence of collapsed pelotons. We tested the pos- receives nutrients required for growth and devel- sibility that different patterns of mycorrhizal opment from its mycobionts belonging to Thel- colonization occur during flowering and/or seed ephoraceae (Taylor & Bruns 1997). Most adult maturation and during the rest of the growing orchid species, however, are capable of pho- season. Root phenology of the species was also tosynthesis. There is some evidence that upon recorded. these conditions mycorrhizal fungi and green orchids are mutually independent as regards their carbon demand (Hadley & Purves 1974, Smith Material and methods 1967, Cameron et al. 2006) and that the main function of mycorrhizal symbiosis is to enhance This study was carried out on plants from two the mineral nutrition of the host plants (mainly localities near Vsetin, in the Zlin region of of nitrogen and phosphorus) (Alexander et al. the Czech Republic, from April 2004 to Sep- 1984, Smith & Read 1997, Cameron et al. 2007), tember 2005. The investigated population of a situation well known in other mycorrhizal Cephalanthera longifolia, with approximately types, e.g. arbuscular, ecto- or ericoid mycor- ten plants per m–2 occurs in a Fagus sylvat- rhizas. Despite this experimental evidence, some ica forest (49°21´N, 18°02´E; elevation 480 m authors have speculated that even in these cir- above sea level), where Carex pilosa is abundant cumstances the fungus might supply the orchid and two other orchid species, Neottia nidus-avis with carbohydrates, which can supplement the and Orchis mascula subsp. signifera are also photosynthetically fixed carbon. The possibil- relatively abundant. The population of Dacty- ity that the green orchid can supply associated lorhiza majalis with a usual abundance of two mycorrhizal fungus with its own carbon com- or three plants per m–2 grows in a damp meadow pounds was often discussed and in some cases (49°23´N, 18°01´E; elevation 530 m above sea also experimentally studied, for a long time level) together with other orchid species such as without success. Cameron et al. (2006) were Listera ovata, Platanthera bifolia and Gymnad- the first to show that an orchid could supply the enia conopsea subsp. conopsea. The meadow is mycorrhizal fungus with a measurable amount of regularly mowed and/or grazed by cattle in June photosynthetically fixed carbon. and July. Although a considerable amount of informa- Both C. longifolia and D. majalis are tion has already been published on orchid myco- summer-green species that produce green leafy rrhizas, there is little evidence for a possibility shoots and inflorescences in spring and overwin- that hyphal pelotons may completely disappear ter underground, either as a tuber (D. majalis) or during their disintegration within host cells. as a rhizome with perennial roots (C. longifolia). Rasmussen and Whigham (2002) first observed Both species flower in May and June. this phenomenon in Corallorhiza odontorhiza, Owing to the protected status of the two a chlorophyll-deficient, presumably fully myco- species, a limited number of plants were har- heterotrophic species, as well as in the summer- vested in accordance to a permit issued by the green orchid Galearis spectabilis, which at least Regional authority of the Zlin region (KUZL supplements its myco-heterotrophic nutrition 5898/2003 and KUZL 5947/2003). From two with photosynthetic CO2 assimilation. If true, to eight mature specimens of C. longifolia were a complete lysis of the pelotons is essential collected per sampling (May to September/Octo- for proper understanding of the functioning of ber). Of D. majalis, two specimens were sampled orchid mycorrhizal symbiosis, especially regard- once a week from the beginning of the growing ing the myco-heterotrophic nutrition of orchids. period until the aerial shoots were visible (May For this reason we studied in detail the dynamics to June–July). Due to the inaccessibility of the of the mycorrhizal colonization in two summer- localities, no specimens were harvested during green orchid species, Cephalanthera longifolia the winter. and Dactylorhiza majalis, during two growing Mycorrhizal colonization was evaluated on seasons, with special emphasis on the occur- sections of all roots (D. majalis, C. longifolia), ANN. BOT. FENNICI Vol. 45 • Mycorrhizas of Cephalanthera longifolia and Dactylorhiza majalis 283 tubers (D. majalis) and rhizomes (C. longifo- roots of C. longifolia, and colonization between lia). Underground organs of each plant were adventitious roots and root-like extensions of carefully removed from the soil, washed in tap D. majalis. Analyses were performed using a water, fixed in FAA for 48 hours and transferred NCSS software package. Counts of digestion to a mixture of glycerol and 90% ethanol (1:1, cells in separate root zones were analyzed using vol/vol). Transverse sections were made either hierarchical ANOVA, where the random effect using a manually operated microtome or by free plant (assigning roots to individual plants in hand. The sections were stained with an aqueous every harvest) was tested within the fixed factor safranin and phluoroglucinol–HCl solution. Part harvest. When the overall ANOVA table showed of our study was made on unstained transverse the effect harvest to be significant, then pairwise sections. Transverse sections of rhizomes and comparisons between means were made using roots except lateral ones were taken from three a Scheffé test. Calculations were done using a zones: apical (5–11 mm behind the root/rhizome Statistica 6 software package. Values are given tip, zone A), middle (in the middle of the root/ as means ± 1 SE. rhizome, zone B) and basal (zone C, 5–11 mm from the rhizome/tuber in the roots and from the rhizome end in the rhizome itself). In tubers Results proper and lateral roots of C. longifolia, sec- tions were made approximately in the middle Cephalanthera longifolia of the tuber/root length. One thin and com- plete section from each zone was then randomly Adventitious roots of C. longifolia showed picked for analysis. The sections were mounted patchy and very low overall degree of myco- in distilled water or glycerol and immediately rrhizal colonization: 4.5% ± 0.5% (n = 26) in observed using an Olympus BX-40 compound 2004 and 4.3% ± 0.3% (n = 26) in 2005 (Table microscope. 1), concentrated in the distal parts of the long According to Jurčák (2003), degree of myco- roots, lateral roots and/or in short isolated root rrhizal colonization was
Recommended publications
  • Checklist of the Orchids of the Crimea (Orchidaceae)
    J. Eur. Orch. 46 (2): 407 - 436. 2014. Alexander V. Fateryga and Karel C.A.J. Kreutz Checklist of the orchids of the Crimea (Orchidaceae) Keywords Orchidaceae, checklist of species, new nomenclature combinations, hybrids, flora of the Crimea. Summary Fateryga, A.V. & C.A.J. Kreutz (2014): Checklist of the orchids of the Crimea (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. A new nomenclature checklist of the Crimean orchids with 49 taxa and 16 hybrids is proposed. Six new taxa are added and ten taxa are excluded from the latest checklist of the Crimean vascular flora published by YENA (2012). In addition, five nomenclature changes are proposed: Epipactis persica (Soó) Nannf. subsp. taurica (Fateryga & Kreutz) Fateryga & Kreutz comb. et stat. nov., Orchis mascula (L.) L. var. wanjkovii (E. Wulff) Fateryga & Kreutz stat. nov., Anacamptis ×simorrensis (E.G. Camus) H. Kretzschmar, Eccarius & H. Dietr. nothosubsp. ticinensis (Gsell) Fateryga & Kreutz stat. nov., ×Dactylocamptis uechtritziana (Hausskn.) B. Bock ex M. Peregrym & Kuzemko nothosubsp. magyarii (Soó) Fateryga & Kreutz comb. et stat. nov., and Orchis ×beyrichii Kern. nothosubsp. mackaensis (Kreutz) Fateryga & Kreutz comb. et stat. nov. Moreover, a new variety, Limodorum abortivum (L.) Sw. var. viridis Fateryga & Kreutz var. nov. is described. Zusammenfassung Fateryga, A.V. & C.A.J. Kreutz (2014): Eine Übersicht der Orchideen der Krim (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. Eine neue nomenklatorische Liste der Orchideen der Krim mit 49 Taxa und 16 Hybriden wird vorgestellt. Sechs Arten sind neu für die Krim. Zehn Taxa, die noch bei YENA (2012) in seiner Checklist aufgelistet wurden, kommen auf der Krim nicht vor und wurden gestrichen.
    [Show full text]
  • November December 2010 Vol 67.3 Victoria Natural
    NOVEMBER DECEMBER 2010 VOL 67.3 VICTORIA NATURAL HISTORY SOCIETY The Victoria Naturalist Vol. 67.3 (2010) 1 Published six times a year by the SUBMISSIONS VICTORIA NATURAL HISTORY SOCIETY, P.O. Box 5220, Station B, Victoria, BC V8R 6N4 Deadline for next issue: December 1, 2010 Contents © 2010 as credited. Send to: Claudia Copley ISSN 0049—612X Printed in Canada 657 Beaver Lake Road, Victoria BC V8Z 5N9 Editors: Claudia Copley, 250-479-6622, Penelope Edwards Phone: 250-479-6622 Desktop Publishing: Frances Hunter, 250-479-1956 e-mail: [email protected] Distribution: Tom Gillespie, Phyllis Henderson, Morwyn Marshall Printing: Fotoprint, 250-382-8218 Guidelines for Submissions Opinions expressed by contributors to The Victoria Naturalist Members are encouraged to submit articles, field trip reports, natural are not necessarily those of the Society. history notes, and book reviews with photographs or illustrations if possible. Photographs of natural history are appreciated along with VICTORIA NATURAL HISTORY SOCIETY documentation of location, species names and a date. Please label your Honorary Life Members Dr. Bill Austin, Mrs. Lyndis Davis, submission with your name, address, and phone number and provide a Mr. Tony Embleton, Mr. Tom Gillespie, Mrs. Peggy Goodwill, title. We request submission of typed, double-spaced copy in an IBM compatible word processing file on diskette, or by e-mail. Photos and Mr. David Stirling, Mr. Bruce Whittington slides, and diskettes submitted will be returned if a stamped, self- Officers: 2009-2010 addressed envelope is included with the material. Digital images are PRESIDENT: Darren Copley, 250-479-6622, [email protected] welcome, but they need to be high resolution: a minimum of 1200 x VICE-PRESIDENT: James Miskelly, 250-477-0490, [email protected] 1550 pixels, or 300 dpi at the size of photos in the magazine.
    [Show full text]
  • Physiological Features of the Terrestrial Orchids
    Anallelle Uniiversiităţiiii diin Craiiova, seriia Agriiculltură – Montanollogiie – Cadastru (Annalls of the Uniiversiity of Craiiova - Agriicullture, Montanollogy, Cadastre Seriies)Voll. XLIX/2019 PHYSIOLOGICAL FEATURES OF THE TERRESTRIAL ORCHIDS CEPHALANTHERA LONGIFOLIA AND PLATANTHERA BIFOLIA THAT GROW IN THE PEDO-CLIMATIC CONDITIONS FROM OLTENIA REGION OF ROMANIA BUSE-DRAGOMIR LUMINITA (1), NICOLAE ION (2), NICULESCU MARIANA (3) (1) University of Craiova, E-mail: [email protected] (2) University of Craiova, E-mail: [email protected] (3) University of Craiova, E-mail: [email protected] *Corresponding author email: [email protected] Key words: terrestrial orchids, transpiration, photosynthesis, light ABSTRACT For studying the physiology of terrestrial orchids, plants from the species Cephalanthera longifolia and Platanthera bifolia have been used. The experiences were carried out directly on the field, in Mehedinţi County, Comanesti Hills. In both species of orchids, the seasonal dynamics of photosynthesis registers a peak during the flowering period that corresponds to a maximum content of assimilating pigments and also a maximum leaf surface. In terrestrial orchids, the seasonal dynamics of leaf transpiration intensity is highest during spring, when the water content in the soil is high and minimal in summer. The graphs showing the diurnal variation of photosynthesis for the two species indicate that Cephalanthera longifolia prefers semi-shaded and sunny habitats, while the plants of Platanthera bifolia that are found in the studied areas prefer a more shaded environment INTRODUCTION Orchids that grow directly at the two, more or less globular or digitally- ground level in large areas of Europe or branched tubules. From the main tuber on the grasslands of the tropical regions comes the flowering stem.
    [Show full text]
  • Pdf of JHOS January 2012
    JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 9 No. 1 (63) January 2012 JOURNAL of the HARDY ORCHID SOCIETY Vol. 9 No. 1 (63) January 2012 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the “Advice to Authors” (see website www.hardyorchidsociety.org.uk , January 2004 Journal, Members’ Handbook or contact the Editor). Views expressed in journal arti - cles are those of their author(s) and may not reflect those of HOS. The Hardy Orchid Society Committee President: Prof. Richard Bateman, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS Chairman: Celia Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Vice-Chairman: David Hughes, Linmoor Cottage, Highwood, Ringwood, Hants., BH24 3LE [email protected] Secretary: Alan Leck, 61 Fraser Close, Deeping St. James, Peterborough, PE6 8QL [email protected] Treasurer: John Wallington, 17, Springbank, Eversley Park Road, London, N21 1JH [email protected] Membership Secretary: Moira Tarrant, Bumbys, Fox Road, Mashbury,
    [Show full text]
  • (Orchidaceae- Orchideae) in Two Permanent Plots of a Mire in Slovakia
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 2006 Band/Volume: 46_1 Autor(en)/Author(s): Hrivnak Richard, Gomory Dusan Artikel/Article: Inter-annual Variability of the Abundance and Morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two Permanent Plots of a Mire in Slovakia. 27-44 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 46 Fasc. 1 27-44 18. 12. 2006 Inter-annual Variability of the Abundance and Morphology of Dactylorhiza majalis (Orchidaceae- Orchideae) in two Permanent Plots of a Mire in Slovakia By Richard HRIVNÄK*), Dusan GÖMÖRY**) and Alzbeta CVACHOVÄ***) With 4 Figures Received October 13, 2005 Key words: Dactylorhiza majalis, Orchidaceae-Orchideae. - Morphology, modification, variability. - Population growth. - Vegetation of an acidic poor fen. - Slovakia. Summary HRIVNÄK R., GÖMÖRY D. & CVACHOVÄ A. 2006. Inter-annual variability of the abundance and morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two permanent plots of a mire in Slovakia. - Phyton (Horn, Austria) 46 (1): 27-44, 4 fig- ures. - English with German summary. Inter-annual variability of the abundance and morphology of Dactylorhiza ma- jalis (RCHB.) HUNT & SUMMERH. was studied in two monitoring plots (MPs) in a nu- trient poor acidic fen in the Veporske Mts, Central Slovakia, during 1997-2004. Stands were regularly mowed in the past. In the late 1980s and during the 1990s, mowing ceased and the area was gradually overgrown by shrubs and trees. Both MPs have been regularly mowed every year since 1999.
    [Show full text]
  • Forma Nov.: a New Peloric Orchid from Ibaraki Prefecture, Japan
    The Japanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. Geobot. 65 (3): 127–139 (2014) Cephalanthera falcata f. conformis (Orchidaceae) forma nov.: A New Peloric Orchid from Ibaraki Prefecture, Japan 1,* 1 1 HirosHi Hayakawa , CHiHiro Hayakawa , yosHinobu kusumoto , tomoko 1 1 2 3,4 nisHida , Hiroaki ikeda , tatsuya Fukuda and Jun yokoyama 1National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan. *[email protected] (author for correspondences); 2Faculty of Agriculture, Kochi University, Nan- koku, Kochi 783-8502, Japan; 3Faculty of Science, Yamagata University, Kojirakawa, Yamagata 990-8560, Japan; 4Institute for Regional Innovation, Yamagata University, Kaminoyama, Yamagata 999-3101, Japan We recognize a new peloric form of the orchid Cephalanthera falcata (Thunb.) Blume f. conformis Hi- ros. Hayak. et J. Yokoy., which occurs in the vicinity of the Tsukuba mountain range in Ibaraki Prefec- ture, Japan. This peloric form is sympatric with C. falcata f. falcata. The peloric flowers have a petal-like lip. The flowers are radially symmetrical and the perianth parts spread weakly compared to normal flow- ers. The stigmas are positioned at the column apex, thus neighboring stigmas and the lower parts of the pollinia are conglutinated. We observed similar vegetative traits among C. falcata f. falcata, C. falcata f. albescens S. Kobayashi, and C. falcata f. conformis. The floral morphology in C. falcata f. conformis resembles that of C. nanchuanica (S.C. Chen) X.H. Jin et X.G. Xiang (i.e., similar petal-like lip and stig- ma position at the column apex; syn. Tangtsinia nanchuanica S.C.
    [Show full text]
  • Rare Plant Monitoring 2017
    RARE PLANT MONITORING 2017 Ajuga pyramidalis Ophrys insectifera © Zoe Devlin What is it? In 2017, we decided to carry out a small pilot scheme on rare plant monitoring. Where experienced plant recorders had submitted recent casual records of rare plants to the Centre, they were asked if they would be willing to visit their rare plant population once a year during its flowering period and to count the total number of individuals present. The response to the scheme from the small number of recorders contacted has been overwhelming positive and it has resulted in very valuable data being collected in 2017. Data on the rare plant location, the count and additional information about the site is submitted online through a dedicated web portal set up by the Data Centre. The project was discussed and agreed with the NPWS. It is framed around the 2016 Vascular Plant Red List and is mainly focused on monitoring vulnerable, near threatened and rare least concern species. Why is it important? When assessing the national FAST FACTS 2017 conservation status of very rare species according to IUCN Red List methodology, it is recommended that 37 you use annual population count data. That’s the total number of rare plant Given the numbers of rare plant populations that were monitored in the species a country might have, this 2017 pilot information can be difficult to collect in any volume. This citizen science project relies on the generosity of 22 expert volunteers to ‘keep an eye’ on That’s the number of rare plant species rare populations near them and to that were monitored in 2017 submit standardised count data once a year.
    [Show full text]
  • WETLAND PLANTS – Full Species List (English) RECORDING FORM
    WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp.
    [Show full text]
  • Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
    plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations.
    [Show full text]
  • Higher Seed Number Compensates for Lower Fruit Set in Deceptive Orchids
    Journal of Ecology 2016, 104, 343–351 doi: 10.1111/1365-2745.12511 Higher seed number compensates for lower fruit set in deceptive orchids Judit Sonkoly1*, Anna E. Vojtko2,Jacint Tok€ olyi€ 3,Peter Tor€ ok€ 4,Gabor Sramko5,6, Zoltan Illyes 7 and Attila Molnar V.5 1Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; 2Department of Tisza Research, Centre for Ecological Research, MTA, H-4026 Debrecen, Hungary; 3MTA-DE “Lendulet€ ” Behavioural Ecology Research Group, University of Debrecen, H-4032 Debrecen, Hungary; 4MTA-DE Biodiversity and Ecosystem Services Research Group, University of Debrecen, H-4032 Debrecen, Hungary; 5Department of Botany, University of Debrecen, H-4032 Debrecen, Hungary; 6MTA-ELTE-MTM Ecology Research Group, H-1117 Budapest, Hungary; and 7Mindszenty Youth House, H-8900, Zalaegerszeg-Botfa, Hungary Summary 1. Floral deception is widespread in orchids, with more than one-third of the species being polli- nated this way. The evolutionary success of deceptive orchids is puzzling, as species employing this strategy are thought to have low reproductive success (less flowers yielding fruits) because of low pollination rates. However, direct measurements of total seed production in orchids – which is a bet- ter measure of reproductive success – are scarce due to the extremely small size of their seeds. 2. Here, we quantified seed numbers in 1015 fruits belonging to 48 orchid species from the Pannon- ian ecoregion (central Europe) and obtained fruit set and thousand-seed weight data for these species from the literature. We used phylogenetic comparative methods to test the hypothesis that deceptive species should compensate for their lower fruit set by having either more flowers, larger seeds or more seeds in a fruit.
    [Show full text]
  • Extent and Reasons for Meadows in South Bohemia Becoming Unsuitable for Orchids
    142 European Journal of Environmental Sciences EXTENT AND REASONS FOR MEADOWS IN SOUTH BOHEMIA BECOMING UNSUITABLE FOR ORCHIDS ZUZANA ŠTÍPKOVÁ1,2,* and PAVEL KINDLMANN1,2 1 Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, 60300 Brno, Czech Republic 2 Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic * Corresponding author: [email protected] ABSTRACT Decline in wet grasslands, which in the past resulted particularly from the intensification of agriculture, was accompanied by the loss of a lot of populations of organisms, including protected and endangered species of plants and animals associated with these habitats e.g. terrestrial orchids. The survival of populations of many species of European orchids is strongly dependent on appropriate site management, especially regular mowing or grazing. In addition, humans can negatively affect the persistence of orchid populations in various ways, such as conversion of orchid meadows into building areas, dams, roads etc. or the intensive use of fertilizers and contamination of areas by fertilisers from nearby fields. Comparison of historical data with the present distribution of orchids can reveal a lot about the main reasons for the decline in this endangered group of plants. Here we present an extensive study of the persistence of 192 historical orchid sites in South Bohemia, with particular reference to the 5 commonest species of orchids, Anacamptis morio, Dactylorhiza majalis, Epipactis helleborine, Epipactis palustris and Platanthera bifolia. We show that the most abundant species at the sites studied was Dactylorhiza majalis. E. palustris, A. morio and P.
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]