Higher Seed Number Compensates for Lower Fruit Set in Deceptive Orchids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of the Orchids of the Crimea (Orchidaceae)
J. Eur. Orch. 46 (2): 407 - 436. 2014. Alexander V. Fateryga and Karel C.A.J. Kreutz Checklist of the orchids of the Crimea (Orchidaceae) Keywords Orchidaceae, checklist of species, new nomenclature combinations, hybrids, flora of the Crimea. Summary Fateryga, A.V. & C.A.J. Kreutz (2014): Checklist of the orchids of the Crimea (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. A new nomenclature checklist of the Crimean orchids with 49 taxa and 16 hybrids is proposed. Six new taxa are added and ten taxa are excluded from the latest checklist of the Crimean vascular flora published by YENA (2012). In addition, five nomenclature changes are proposed: Epipactis persica (Soó) Nannf. subsp. taurica (Fateryga & Kreutz) Fateryga & Kreutz comb. et stat. nov., Orchis mascula (L.) L. var. wanjkovii (E. Wulff) Fateryga & Kreutz stat. nov., Anacamptis ×simorrensis (E.G. Camus) H. Kretzschmar, Eccarius & H. Dietr. nothosubsp. ticinensis (Gsell) Fateryga & Kreutz stat. nov., ×Dactylocamptis uechtritziana (Hausskn.) B. Bock ex M. Peregrym & Kuzemko nothosubsp. magyarii (Soó) Fateryga & Kreutz comb. et stat. nov., and Orchis ×beyrichii Kern. nothosubsp. mackaensis (Kreutz) Fateryga & Kreutz comb. et stat. nov. Moreover, a new variety, Limodorum abortivum (L.) Sw. var. viridis Fateryga & Kreutz var. nov. is described. Zusammenfassung Fateryga, A.V. & C.A.J. Kreutz (2014): Eine Übersicht der Orchideen der Krim (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. Eine neue nomenklatorische Liste der Orchideen der Krim mit 49 Taxa und 16 Hybriden wird vorgestellt. Sechs Arten sind neu für die Krim. Zehn Taxa, die noch bei YENA (2012) in seiner Checklist aufgelistet wurden, kommen auf der Krim nicht vor und wurden gestrichen. -
Pdf of JHOS January 2012
JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 9 No. 1 (63) January 2012 JOURNAL of the HARDY ORCHID SOCIETY Vol. 9 No. 1 (63) January 2012 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the “Advice to Authors” (see website www.hardyorchidsociety.org.uk , January 2004 Journal, Members’ Handbook or contact the Editor). Views expressed in journal arti - cles are those of their author(s) and may not reflect those of HOS. The Hardy Orchid Society Committee President: Prof. Richard Bateman, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS Chairman: Celia Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Vice-Chairman: David Hughes, Linmoor Cottage, Highwood, Ringwood, Hants., BH24 3LE [email protected] Secretary: Alan Leck, 61 Fraser Close, Deeping St. James, Peterborough, PE6 8QL [email protected] Treasurer: John Wallington, 17, Springbank, Eversley Park Road, London, N21 1JH [email protected] Membership Secretary: Moira Tarrant, Bumbys, Fox Road, Mashbury, -
(Orchidaceae- Orchideae) in Two Permanent Plots of a Mire in Slovakia
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 2006 Band/Volume: 46_1 Autor(en)/Author(s): Hrivnak Richard, Gomory Dusan Artikel/Article: Inter-annual Variability of the Abundance and Morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two Permanent Plots of a Mire in Slovakia. 27-44 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 46 Fasc. 1 27-44 18. 12. 2006 Inter-annual Variability of the Abundance and Morphology of Dactylorhiza majalis (Orchidaceae- Orchideae) in two Permanent Plots of a Mire in Slovakia By Richard HRIVNÄK*), Dusan GÖMÖRY**) and Alzbeta CVACHOVÄ***) With 4 Figures Received October 13, 2005 Key words: Dactylorhiza majalis, Orchidaceae-Orchideae. - Morphology, modification, variability. - Population growth. - Vegetation of an acidic poor fen. - Slovakia. Summary HRIVNÄK R., GÖMÖRY D. & CVACHOVÄ A. 2006. Inter-annual variability of the abundance and morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two permanent plots of a mire in Slovakia. - Phyton (Horn, Austria) 46 (1): 27-44, 4 fig- ures. - English with German summary. Inter-annual variability of the abundance and morphology of Dactylorhiza ma- jalis (RCHB.) HUNT & SUMMERH. was studied in two monitoring plots (MPs) in a nu- trient poor acidic fen in the Veporske Mts, Central Slovakia, during 1997-2004. Stands were regularly mowed in the past. In the late 1980s and during the 1990s, mowing ceased and the area was gradually overgrown by shrubs and trees. Both MPs have been regularly mowed every year since 1999. -
The Analysis of the Flora of the Po@Ega Valley and the Surrounding Mountains
View metadata, citation and similar papers at core.ac.uk brought to you by CORE NAT. CROAT. VOL. 7 No 3 227¿274 ZAGREB September 30, 1998 ISSN 1330¿0520 UDK 581.93(497.5/1–18) THE ANALYSIS OF THE FLORA OF THE PO@EGA VALLEY AND THE SURROUNDING MOUNTAINS MIRKO TOMA[EVI] Dr. Vlatka Ma~eka 9, 34000 Po`ega, Croatia Toma{evi} M.: The analysis of the flora of the Po`ega Valley and the surrounding moun- tains, Nat. Croat., Vol. 7, No. 3., 227¿274, 1998, Zagreb Researching the vascular flora of the Po`ega Valley and the surrounding mountains, alto- gether 1467 plant taxa were recorded. An analysis was made of which floral elements particular plant taxa belonged to, as well as an analysis of the life forms. In the vegetation cover of this area plants of the Eurasian floral element as well as European plants represent the major propor- tion. This shows that in the phytogeographical aspect this area belongs to the Eurosiberian- Northamerican region. According to life forms, vascular plants are distributed in the following numbers: H=650, T=355, G=148, P=209, Ch=70, Hy=33. Key words: analysis of flora, floral elements, life forms, the Po`ega Valley, Croatia Toma{evi} M.: Analiza flore Po`e{ke kotline i okolnoga gorja, Nat. Croat., Vol. 7, No. 3., 227¿274, 1998, Zagreb Istra`ivanjem vaskularne flore Po`e{ke kotline i okolnoga gorja ukupno je zabilje`eno i utvr|eno 1467 biljnih svojti. Izvr{ena je analiza pripadnosti pojedinih biljnih svojti odre|enim flornim elementima, te analiza `ivotnih oblika. -
Phylogenetics of Tribe Orchideae (Orchidaceae: Orchidoideae)
Annals of Botany 110: 71–90, 2012 doi:10.1093/aob/mcs083, available online at www.aob.oxfordjournals.org Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes Luis A. Inda1,*, Manuel Pimentel2 and Mark W. Chase3 1Escuela Polite´cnica Superior de Huesca, Universidad de Zaragoza, carretera de Cuarte sn. 22071 Huesca, Spain, 2Facultade de Ciencias, Universidade da Corun˜a, Campus da Zapateira sn. 15071 A Corun˜a, Spain and 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK * For correspondence. E-mail [email protected] Received: 3 November 2011 Returned for revision: 9 December 2011 Accepted: 1 March 2012 Published electronically: 25 April 2012 † Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. -
Click to View .Pdf of This Issue
JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 6 No. 2 (52) April 2009 JOURNAL of the HARDY ORCHID SOCIETY Vol. 6 No. 2 (52) April 2009 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the “Advice to Authors” (see website, January 2004 Journal, Members’ Handbook or contact the Editor). Views expressed in journal articles are those of their author(s) and may not reflect those of HOS. The Hardy Orchid Society Committee President: Prof. Richard Bateman, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS Chairman & Field Meeting Co-ordinator: David Hughes, Linmoor Cottage, Highwood, Ringwood, Hants., BH24 3LE [email protected] Vice-Chairman: Celia Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Secretary (Acting): Alan Leck, 61 Fraser Close, Deeping St. James, Peterborough, PE6 8QL [email protected] Treasurer: Iain Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Membership Secretary: Celia Wright, The Windmill, Vennington, Westbury, -
“Dynamic Speciation Processes in the Mediterranean Orchid Genus Ophrys L
“DYNAMIC SPECIATION PROCESSES IN THE MEDITERRANEAN ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” Tesi di Dottorato in Biologia Avanzata, XXIV ciclo (Indirizzo Sistematica Molecolare) Universitá degli Studi di Napoli Federico II Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Biologia Strutturale e Funzionale 1st supervisor: Prof. Salvatore Cozzolino 2nd supervisor: Prof. Serena Aceto PhD student: Dott. Hendrik Breitkopf 1 Cover picture: Pseudo-copulation of a Colletes cunicularius male on a flower of Ophrys exaltata ssp. archipelagi (Marina di Lesina, Italy. H. Breitkopf, 2011). 2 TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER 1: MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE) CHAPTER 2: ANALYSIS OF VARIATION AND SPECIATION IN THE OPHRYS SPHEGODES SPECIES COMPLEX CHAPTER 3: FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS CHAPTER 4: SPECIATION BY DISTURBANCE: A POPULATION STUDY OF CENTRAL ITALIAN OPHRYS SPHEGODES LINEAGES CONTRIBUTION OF CO-AUTHORS ACKNOWLEDGEMENTS 3 GENERAL INTRODUCTION ORCHIDS With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), the family of the Orchidaceae is the largest family of angiosperm plants. Recently discovered fossils document their existence for at least 15 Ma. The last common ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all continents and a great variety of habitats, ranging from deserts and swamps to arctic regions. Two large groups can be distinguished: Epiphytic and epilithic orchids attach themselves with aerial roots to trees or stones, mostly halfway between the ground and the upper canopy where they absorb water through the velamen of their roots. -
Circumscribing Genera in the European Orchid Flora: a Subjective
Ber. Arbeitskrs. Heim. Orchid. Beiheft 8; 2012: 94 - 126 Circumscribing genera in the European orchid lora: a subjective critique of recent contributions Richard M. BATEMAN Keywords: Anacamptis, Androrchis, classiication, evolutionary tree, genus circumscription, monophyly, orchid, Orchidinae, Orchis, phylogeny, taxonomy. Zusammenfassung/Summary: BATEMAN , R. M. (2012): Circumscribing genera in the European orchid lora: a subjective critique of recent contributions. – Ber. Arbeitskrs. Heim. Orch. Beiheft 8; 2012: 94 - 126. Die Abgrenzung von Gattungen oder anderen höheren Taxa erfolgt nach modernen Ansätzen weitestgehend auf der Rekonstruktion der Stammesgeschichte (Stamm- baum-Theorie), mit Hilfe von großen Daten-Matrizen. Wenngleich aufgrund des Fortschritts in der DNS-Sequenzierungstechnik immer mehr Merkmale in der DNS identiiziert werden, ist es mindestens genauso wichtig, die Anzahl der analysierten Planzen zu erhöhen, um genaue Zuordnungen zu erschließen. Die größere Vielfalt mathematischer Methoden zur Erstellung von Stammbäumen führt nicht gleichzeitig zu verbesserten Methoden zur Beurteilung der Stabilität der Zweige innerhalb der Stammbäume. Ein weiterer kontraproduktiver Trend ist die wachsende Tendenz, diverse Datengruppen mit einzelnen Matrizen zu verquicken, die besser einzeln analysiert würden, um festzustellen, ob sie ähnliche Schlussfolgerungen bezüglich der Verwandtschaftsverhältnisse liefern. Ein Stammbaum zur Abgrenzung höherer Taxa muss nicht so robust sein, wie ein Stammbaum, aus dem man Details des Evo- lutionsmusters -
WETLAND PLANTS – Full Species List (English) RECORDING FORM
WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp. -
Do Rewardless Orchids Show a Positive Relationship Between Phenotypic Diversity and Reproductive Success?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serveur académique lausannois Ecology, 88(2), 2007, pp. 434–442 Ó 2007 by the Ecological Society of America DO REWARDLESS ORCHIDS SHOW A POSITIVE RELATIONSHIP BETWEEN PHENOTYPIC DIVERSITY AND REPRODUCTIVE SUCCESS? 1,3 2 1 2 ANN SMITHSON, NICOLAS JUILLET, MARK R. MACNAIR, AND LUC D. B. GIGORD 1Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK 2Department of Ecology and Evolution, Biology Building, University of Lausanne, Lausanne, CH-1015, Switzerland Abstract. Among rewardless orchids, pollinator sampling behavior has been suggested to drive a positive relationship between population phenotypic variability and absolute reproductive success, and hence population fitness. We tested this hypothesis by constructing experimental arrays using the rewardless orchid Dactylorhiza sambucina, which is dimorphic for corolla color. We found no evidence that polymorphic arrays had higher mean reproductive success than monomorphic arrays for pollinia removal, pollen deposition, or fruit set. For pollinia removal, monomorphic yellow arrays had significantly greater reproductive success, and monomorphic red the least. A tendency for yellow arrays to have higher pollen deposition was also found. We argue that differential population fitness was most likely to reflect differential numbers of pollinators attracted to arrays, through preferential long-distance attraction to arrays with yellow inflorescences. Correlative studies of absolute reproductive success in 52 populations of D. sambucina supported our experimental results. To our knowledge this is the first study to suggest that attraction of a greater number of pollinators to rewardless orchids may be of greater functional importance to population fitness, and thus ecology and conservation, than are the behavioral sequences of individual pollinators. -
Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations. -
Extent and Reasons for Meadows in South Bohemia Becoming Unsuitable for Orchids
142 European Journal of Environmental Sciences EXTENT AND REASONS FOR MEADOWS IN SOUTH BOHEMIA BECOMING UNSUITABLE FOR ORCHIDS ZUZANA ŠTÍPKOVÁ1,2,* and PAVEL KINDLMANN1,2 1 Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, 60300 Brno, Czech Republic 2 Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic * Corresponding author: [email protected] ABSTRACT Decline in wet grasslands, which in the past resulted particularly from the intensification of agriculture, was accompanied by the loss of a lot of populations of organisms, including protected and endangered species of plants and animals associated with these habitats e.g. terrestrial orchids. The survival of populations of many species of European orchids is strongly dependent on appropriate site management, especially regular mowing or grazing. In addition, humans can negatively affect the persistence of orchid populations in various ways, such as conversion of orchid meadows into building areas, dams, roads etc. or the intensive use of fertilizers and contamination of areas by fertilisers from nearby fields. Comparison of historical data with the present distribution of orchids can reveal a lot about the main reasons for the decline in this endangered group of plants. Here we present an extensive study of the persistence of 192 historical orchid sites in South Bohemia, with particular reference to the 5 commonest species of orchids, Anacamptis morio, Dactylorhiza majalis, Epipactis helleborine, Epipactis palustris and Platanthera bifolia. We show that the most abundant species at the sites studied was Dactylorhiza majalis. E. palustris, A. morio and P.