Pdf of JHOS January 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of the Orchids of the Crimea (Orchidaceae)
J. Eur. Orch. 46 (2): 407 - 436. 2014. Alexander V. Fateryga and Karel C.A.J. Kreutz Checklist of the orchids of the Crimea (Orchidaceae) Keywords Orchidaceae, checklist of species, new nomenclature combinations, hybrids, flora of the Crimea. Summary Fateryga, A.V. & C.A.J. Kreutz (2014): Checklist of the orchids of the Crimea (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. A new nomenclature checklist of the Crimean orchids with 49 taxa and 16 hybrids is proposed. Six new taxa are added and ten taxa are excluded from the latest checklist of the Crimean vascular flora published by YENA (2012). In addition, five nomenclature changes are proposed: Epipactis persica (Soó) Nannf. subsp. taurica (Fateryga & Kreutz) Fateryga & Kreutz comb. et stat. nov., Orchis mascula (L.) L. var. wanjkovii (E. Wulff) Fateryga & Kreutz stat. nov., Anacamptis ×simorrensis (E.G. Camus) H. Kretzschmar, Eccarius & H. Dietr. nothosubsp. ticinensis (Gsell) Fateryga & Kreutz stat. nov., ×Dactylocamptis uechtritziana (Hausskn.) B. Bock ex M. Peregrym & Kuzemko nothosubsp. magyarii (Soó) Fateryga & Kreutz comb. et stat. nov., and Orchis ×beyrichii Kern. nothosubsp. mackaensis (Kreutz) Fateryga & Kreutz comb. et stat. nov. Moreover, a new variety, Limodorum abortivum (L.) Sw. var. viridis Fateryga & Kreutz var. nov. is described. Zusammenfassung Fateryga, A.V. & C.A.J. Kreutz (2014): Eine Übersicht der Orchideen der Krim (Orchidaceae).- J. Eur. Orch. 46 (2): 407-436. Eine neue nomenklatorische Liste der Orchideen der Krim mit 49 Taxa und 16 Hybriden wird vorgestellt. Sechs Arten sind neu für die Krim. Zehn Taxa, die noch bei YENA (2012) in seiner Checklist aufgelistet wurden, kommen auf der Krim nicht vor und wurden gestrichen. -
Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species
Hind ile Scientific Volume 2018, Article ID 7958689, 18 pages https://doi.org/10.1155/2018/7958689 Hindawi Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species Daniel de la Torre Llorente© Biotechnology-Plant Biology Department, Higher Technical School of Agronomic, Food and Biosystems Engineering, Universidad Politecnica de Madrid, 28140 Madrid, Spain Correspondence should be addressed to Daniel de la Torre Llorente; [email protected] Received 22 June 2017; Accepted 28 December 2017; Published 30 January 2018 Academic Editor: Antonio Amorim Copyright © 2018 Daniel de la Torre Llorente. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis report reviews the European, National, and Regional catalogues of protected species, focusing specifcally on the Orchidaceae family to determine which species seem to be well-protected and where they are protected. Moreover, this examination highlights which species appear to be underprotected and therefore need to be included in some catalogues of protection or be catalogued under some category of protection. Te national and regional catalogues that should be implemented are shown, as well as what species should be included within them. Tis report should be a helpful guideline for environmental policies about orchids conservation in Spain, at least at the regional and national level. Around 76% of the Spanish orchid fora are listed with any fgure of protection or included in any red list, either nationally (about 12-17%) or regionally (72%). -
Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice. -
(Orchidaceae- Orchideae) in Two Permanent Plots of a Mire in Slovakia
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 2006 Band/Volume: 46_1 Autor(en)/Author(s): Hrivnak Richard, Gomory Dusan Artikel/Article: Inter-annual Variability of the Abundance and Morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two Permanent Plots of a Mire in Slovakia. 27-44 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 46 Fasc. 1 27-44 18. 12. 2006 Inter-annual Variability of the Abundance and Morphology of Dactylorhiza majalis (Orchidaceae- Orchideae) in two Permanent Plots of a Mire in Slovakia By Richard HRIVNÄK*), Dusan GÖMÖRY**) and Alzbeta CVACHOVÄ***) With 4 Figures Received October 13, 2005 Key words: Dactylorhiza majalis, Orchidaceae-Orchideae. - Morphology, modification, variability. - Population growth. - Vegetation of an acidic poor fen. - Slovakia. Summary HRIVNÄK R., GÖMÖRY D. & CVACHOVÄ A. 2006. Inter-annual variability of the abundance and morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two permanent plots of a mire in Slovakia. - Phyton (Horn, Austria) 46 (1): 27-44, 4 fig- ures. - English with German summary. Inter-annual variability of the abundance and morphology of Dactylorhiza ma- jalis (RCHB.) HUNT & SUMMERH. was studied in two monitoring plots (MPs) in a nu- trient poor acidic fen in the Veporske Mts, Central Slovakia, during 1997-2004. Stands were regularly mowed in the past. In the late 1980s and during the 1990s, mowing ceased and the area was gradually overgrown by shrubs and trees. Both MPs have been regularly mowed every year since 1999. -
Orchid Observations in Croatia in 2016
1 Orchid observations in Croatia in 201 6 Frank Verhart, Maastricht , the Nether lands [email protected] I ntroduction and general remarks As in 2014/2015 I visited Croatia for observation of wild orchids. In 2016 I went to Croatia twice. From 14 april until 1 May I was on the Southern Dalmatian peninsula Pelješac and from 11 until 30 June I explored the area between the Plitvice National Park and the city of Karlovac in the counties Lika - Senj and Karlovac. As always I did observations o f wild orchids on locations often not registered in the Flora Croatica Database (FCD) , a project of the Department of Botany of the University of Zagreb . At Pelješac interesting observations I did include those of Cephalanthera damasonium and Orchis ustula ta , as both have not been reported before from the peninsula. I found Epipactis microphylla , Ophrys bombyliflora and Serapias ionica , all of which have been recorded very rarely from Pelješac in the past. The visit to the inland of Croatia in June also yie lded observations of Epipactis microphylla , however by far the most frequently seen orchid species was Orchis ustulata of which a great many locations were recorded, many of those new. In the next chapters I present the results of these visits. Distrib ution maps The distribution maps in this article were taken from the Flora Croatica Database (FCD, Nikolić 2016 ) . The units of distribution are based on MTB, a current standard for mapping flora in Croatia. MTB is an abbreviation of the German “ “Meßtischblätter” , which means topographic map and corresponds with 10 degrees longitude and 6 degrees latitude grid. -
Circumscribing Genera in the European Orchid Flora: a Subjective
Ber. Arbeitskrs. Heim. Orchid. Beiheft 8; 2012: 94 - 126 Circumscribing genera in the European orchid lora: a subjective critique of recent contributions Richard M. BATEMAN Keywords: Anacamptis, Androrchis, classiication, evolutionary tree, genus circumscription, monophyly, orchid, Orchidinae, Orchis, phylogeny, taxonomy. Zusammenfassung/Summary: BATEMAN , R. M. (2012): Circumscribing genera in the European orchid lora: a subjective critique of recent contributions. – Ber. Arbeitskrs. Heim. Orch. Beiheft 8; 2012: 94 - 126. Die Abgrenzung von Gattungen oder anderen höheren Taxa erfolgt nach modernen Ansätzen weitestgehend auf der Rekonstruktion der Stammesgeschichte (Stamm- baum-Theorie), mit Hilfe von großen Daten-Matrizen. Wenngleich aufgrund des Fortschritts in der DNS-Sequenzierungstechnik immer mehr Merkmale in der DNS identiiziert werden, ist es mindestens genauso wichtig, die Anzahl der analysierten Planzen zu erhöhen, um genaue Zuordnungen zu erschließen. Die größere Vielfalt mathematischer Methoden zur Erstellung von Stammbäumen führt nicht gleichzeitig zu verbesserten Methoden zur Beurteilung der Stabilität der Zweige innerhalb der Stammbäume. Ein weiterer kontraproduktiver Trend ist die wachsende Tendenz, diverse Datengruppen mit einzelnen Matrizen zu verquicken, die besser einzeln analysiert würden, um festzustellen, ob sie ähnliche Schlussfolgerungen bezüglich der Verwandtschaftsverhältnisse liefern. Ein Stammbaum zur Abgrenzung höherer Taxa muss nicht so robust sein, wie ein Stammbaum, aus dem man Details des Evo- lutionsmusters -
WETLAND PLANTS – Full Species List (English) RECORDING FORM
WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp. -
HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (
HAUSTORIUM 76 1 HAUSTORIUM Parasitic Plants Newsletter ISSN 1944-6969 Official Organ of the International Parasitic Plant Society (http://www.parasiticplants.org/) July 2019 Number 76 CONTENTS MESSAGE FROM THE IPPS PRESIDENT (Julie Scholes)………………………………………………..………2 MEETING REPORTS 15th World Congress on Parasitic Plants, 30 June – 5 July 2019, Amsterdam, the Netherlands.………….……..2 MISTLETOE (VISCUM ALBUM) AND ITS HOSTS IN BRITAIN (Brian Spooner)……………………………10 PHELIPANCHE AEGYPTIACA IN WESTERN IRAN (Alireza Taab)……………………………………………12 NEW AND CURRENT PROJECTS Delivering high-yielding, disease-resistant finger millet to farmers…………………………………………….…..13 N2AFRICA – new Striga project – update……………………………………………………………………….…...14 Striga asiatica Madagascar fieldwork summary 2019……………………………………………………………......14 Pea (Pisum sativum) breeding for disease and pest resistance ………………………………………………….......15 REQUEST FOR SEEDS OF OROBANCHE CRENATA (Gianniantonio Domina)…………………………...…..15 PRESS REPORTS Metabolite stimulates a crop while suppressing a weed………………………………………………………….…..16 Dodder plant poses threat to trees and crops (in Kenya)………………………………………………………...….17 PhD OPPORTUNITY AT NRI (Jonne Rodenburg)…………………………………………………………………18 THESIS Sarah Huet. An overview of Phelipanche ramosa seeds: sensitivity to germination stimulants and microbiome profile. …………………………………………………………………………………………………………………..18 BOOK REVIEW Strigolactones – Biology and Applications. Ed. by Hinanit Koltai and Cristina Prandi. (Koichi Yoneyama) …………………………………………………………………………………………………………………………....19 -
Higher Seed Number Compensates for Lower Fruit Set in Deceptive Orchids
Journal of Ecology 2016, 104, 343–351 doi: 10.1111/1365-2745.12511 Higher seed number compensates for lower fruit set in deceptive orchids Judit Sonkoly1*, Anna E. Vojtko2,Jacint Tok€ olyi€ 3,Peter Tor€ ok€ 4,Gabor Sramko5,6, Zoltan Illyes 7 and Attila Molnar V.5 1Department of Ecology, University of Debrecen, H-4032, Debrecen, Hungary; 2Department of Tisza Research, Centre for Ecological Research, MTA, H-4026 Debrecen, Hungary; 3MTA-DE “Lendulet€ ” Behavioural Ecology Research Group, University of Debrecen, H-4032 Debrecen, Hungary; 4MTA-DE Biodiversity and Ecosystem Services Research Group, University of Debrecen, H-4032 Debrecen, Hungary; 5Department of Botany, University of Debrecen, H-4032 Debrecen, Hungary; 6MTA-ELTE-MTM Ecology Research Group, H-1117 Budapest, Hungary; and 7Mindszenty Youth House, H-8900, Zalaegerszeg-Botfa, Hungary Summary 1. Floral deception is widespread in orchids, with more than one-third of the species being polli- nated this way. The evolutionary success of deceptive orchids is puzzling, as species employing this strategy are thought to have low reproductive success (less flowers yielding fruits) because of low pollination rates. However, direct measurements of total seed production in orchids – which is a bet- ter measure of reproductive success – are scarce due to the extremely small size of their seeds. 2. Here, we quantified seed numbers in 1015 fruits belonging to 48 orchid species from the Pannon- ian ecoregion (central Europe) and obtained fruit set and thousand-seed weight data for these species from the literature. We used phylogenetic comparative methods to test the hypothesis that deceptive species should compensate for their lower fruit set by having either more flowers, larger seeds or more seeds in a fruit. -
Extent and Reasons for Meadows in South Bohemia Becoming Unsuitable for Orchids
142 European Journal of Environmental Sciences EXTENT AND REASONS FOR MEADOWS IN SOUTH BOHEMIA BECOMING UNSUITABLE FOR ORCHIDS ZUZANA ŠTÍPKOVÁ1,2,* and PAVEL KINDLMANN1,2 1 Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, 60300 Brno, Czech Republic 2 Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic * Corresponding author: [email protected] ABSTRACT Decline in wet grasslands, which in the past resulted particularly from the intensification of agriculture, was accompanied by the loss of a lot of populations of organisms, including protected and endangered species of plants and animals associated with these habitats e.g. terrestrial orchids. The survival of populations of many species of European orchids is strongly dependent on appropriate site management, especially regular mowing or grazing. In addition, humans can negatively affect the persistence of orchid populations in various ways, such as conversion of orchid meadows into building areas, dams, roads etc. or the intensive use of fertilizers and contamination of areas by fertilisers from nearby fields. Comparison of historical data with the present distribution of orchids can reveal a lot about the main reasons for the decline in this endangered group of plants. Here we present an extensive study of the persistence of 192 historical orchid sites in South Bohemia, with particular reference to the 5 commonest species of orchids, Anacamptis morio, Dactylorhiza majalis, Epipactis helleborine, Epipactis palustris and Platanthera bifolia. We show that the most abundant species at the sites studied was Dactylorhiza majalis. E. palustris, A. morio and P. -
Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae. -
Orchid Atlas-For-Print20130918
Page 1 Bittern Countryside Community Interest Company An Atlas and Guide to the Orchids of the Arnside & Silverdale AONB Supporting the Arnside & Silverdale Area of Outstanding Natural Beauty Bittern Countryside Community Interest Company Registered Office: The Old Station Building, Arnside, LA5 0HG Registered number 6363720 © Bittern Countryside Community Interest Company, September 2013 Produced with assistance from the Arnside & Silverdale AONB Sustainable Development Fund Website:http://www.arnsidesilverdaleaonb.org.uk/AONB/Support/Bittern-Countryside-CIC.html Page 2 An Atlas and Guide to the Orchids of the AONB by Ann Kitchen, September 2013 Why have an Atlas and what is it for? For over 35 years the flora of the Arnside and Silverdale AONB has been recorded. First by Dr Margaret Baeker and Charles Bromley Webb followed by Julie Clarke who records for the BSBI. Geoffrey Halliday recorded the Cumbrian tetrads (2km squares) and Eric Greenwood the Lancashire ones for their Floras. Ken and I first got involved when we helped Charles Bromley Webb put all his records onto a computer. Julie and I went on to follow in his footsteps as the botanical recorders for the Arnside and District Natural History Society. Aided by a willing band of amateur botanists we have tried to record every species growing in each one-kilometre square (Monad) of the AONB and to record its progress through time. I suspect that there is still plenty out there to be discovered. We have not managed to cover all the squares. This is an attempt to make some of the knowledge we have gained available to the wider public.