Advances in Class-I C0G MLCC and SMD Film Capacitors Xilin Xu, Matti Niskala*, Abhijit Gurav, Mark Laps, Kimmo Saarinen*, Aziz Tajuddin, Davide Montanari**, Francesco Bergamaschi**, and Evangelista Boni** KEMET Electronics Corporation, 2835 KEMET Way, Simpsonville, SC 29681 Tel: +01-864-963-6307, Fax: +01-864-963-6492, e-mail:
[email protected] * SMD products, Evox Rifa Group Oyj, a Kemet Company Lars Sonckin kaari 16, 02600 Espoo, Finland Tel: + 358 50 3873205, Fax: + 358 50 83873205, e-mail:
[email protected] ** SMD Products, Arcotronics Group, a Kemet Company via San Lorenzo 19, 40037 Sasso Marconi (Bologna), Italy Tel: +39 51 939 220, Fax: +39 51 939 324, e-mail:
[email protected] ABSTRACT For applications requiring low dielectric losses (or low DF), low acoustic noise (no piezoelectric effect) and good temperature stability of capacitance, the top two choices are Class-I C0G MLCC and SMD film capacitors. There have been recent advances in both C0G MLCCs and SMD film capacitors. The C0G MLCCs have benefited from base metal electrodes (BME) in combination with an improved ability to stack well over 400 layers in the MLCC, and have resulted in cost effective and volumetrically efficient ratings up to 1 μF. The SMD film capacitors have seen significant advances in capacitance and voltage extensions, as well as heat resistance under lead-free soldering conditions. This paper will discuss the technical basis for advances in each of these technologies and give some guidance on the optimum areas (capacitance, size, voltage) for the application of each technology. INTRODUCTION In applications where capacitance needs to be precisely controlled over a wide temperature range with low dielectric losses or low acoustic noise, thru-hole film capacitors have been the optimum choice.