MT-101: Decoupling Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Speed DSP and Analog System Design
High-Speed DSP and Analog System Design Thanh T. Tran High-Speed DSP and Analog System Design Thanh T. Tran Texas Instruments Incorporated 12203 Southwest Freeway, MS 722 Stafford, TX 77477 USA ISBN 978-1-4419-6308-6 e-ISBN 978-1-4419-6309-3 DOI 10.1007/978-1-4419-6309-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010926196 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To my family, Nga, Lily, Kevin and Robin Preface This book covers the high-speed DSP and analog system design techniques and highlights common pitfalls causing noise and electromagnetic interfer- ence problems engineers have been facing for many years. The material in this book originated from my high-speed DSP system design guide (Texas Instruments SPRU 889), my system design courses at Rice University and my experience in designing computers and DSP systems for more than 25 years. -
Chapter 6 BUILDING a HOMEBREW
1. Chapter 6, Harris CRYSTAL SETS TO SIDEBAND © Frank W. Harris 2002 Chapter 6 BUILDING A HOMEBREW QRP Among the guys I work, QRPs seem to be the most common homebrew project, second only to building antennas. Therefore this chapter describes a simple QRP design I have settled on. I use my QRPs as stand-alone transmitters or I use them to drive a final amplifier to produce higher power, 25 to 100 watts. It’s true that before you build a transmitter you’ll need a receiver. Unfortunately, a good selective, all-band ham receiver is complicated to build and most guys don’t have the time and enthusiasm to do it. (See chapter 13.) The next chapter describes building a simple, 5 transistor 40 meter receiver which I have used with the QRP below to talk to other hams. This simple receiver will work best during off hours when 40 meters isn’t crowded. It can also be used to receive Morse code for code practice. A 40 meter QRP module. The QRP transmitter above is designed exclusively for 40 meters, (7.000 to 7.300 MHz.) The twelve-volt power supply comes in through the pig-tail wire up on the right. The telegraph key plugs into the blue-marked phono plug socket on the right of the aluminum heat sink. The antenna output is the red-colored socket on the left end of the heat sink. The transmitting frequency of the QRP module is controlled by a quartz crystal. That’s the silver rectangular can plugged into the box on the right front. -
Selecting the Optimal Inductor for Power Converter Applications
Selecting the Optimal Inductor for Power Converter Applications BACKGROUND SDR Series Power Inductors Today’s electronic devices have become increasingly power hungry and are operating at SMD Non-shielded higher switching frequencies, starving for speed and shrinking in size as never before. Inductors are a fundamental element in the voltage regulator topology, and virtually every circuit that regulates power in automobiles, industrial and consumer electronics, SRN Series Power Inductors and DC-DC converters requires an inductor. Conventional inductor technology has SMD Semi-shielded been falling behind in meeting the high performance demand of these advanced electronic devices. As a result, Bourns has developed several inductor models with rated DC current up to 60 A to meet the challenges of the market. SRP Series Power Inductors SMD High Current, Shielded Especially given the myriad of choices for inductors currently available, properly selecting an inductor for a power converter is not always a simple task for designers of next-generation applications. Beginning with the basic physics behind inductor SRR Series Power Inductors operations, a designer must determine the ideal inductor based on radiation, current SMD Shielded rating, core material, core loss, temperature, and saturation current. This white paper will outline these considerations and provide examples that illustrate the role SRU Series Power Inductors each of these factors plays in choosing the best inductor for a circuit. The paper also SMD Shielded will describe the options available for various applications with special emphasis on new cutting edge inductor product trends from Bourns that offer advantages in performance, size, and ease of design modification. -
Introduction What Is a Polymer Capacitor?
ECAS series (polymer-type aluminum electrolytic capacitor) No. C2T2CPS-063 Introduction If you take a look at the main board of an electronic device such as a personal computer, you’re likely to see some of the six types of capacitors shown below (Fig. 1). Common types of capacitors include tantalum electrolytic capacitors (MnO2 type and polymer type), aluminum electrolytic capacitors (electrolyte can type, polymer can type, and chip type), and MLCC. Figure 1. Main Types of Capacitors What Is a Polymer Capacitor? There are many other types of capacitors, such as film capacitors and niobium capacitors, but here we will describe polymer capacitors, a type of capacitor produced by Murata among others. In both tantalum electrolytic capacitors and aluminum electrolytic capacitors, a polymer capacitor is a type of electrolytic capacitor in which a conductive polymer is used as the cathode. In a polymer-type aluminum electrolytic capacitor, the anode is made of aluminum foil and the cathode is made of a conductive polymer. In a polymer-type tantalum electrolytic capacitor, the anode is made of the metal tantalum and the cathode is made of a conductive polymer. Figure 2 shows an example of this structure. Figure 2. Example of Structure of Conductive Polymer Aluminum Capacitor In conventional electrolytic capacitors, an electrolyte (electrolytic solution) or manganese dioxide (MnO2) was used as the cathode. Using a conductive polymer instead provides many advantages, making it possible to achieve a lower equivalent series resistance (ESR), more stable thermal characteristics, improved safety, and longer service life. As can be seen in Fig. 1, polymer capacitors have lower ESR than conventional electrolytic Copyright © muRata Manufacturing Co., Ltd. -
Capacitors and Inductors
DC Principles Study Unit Capacitors and Inductors By Robert Cecci In this text, you’ll learn about how capacitors and inductors operate in DC circuits. As an industrial electrician or elec- tronics technician, you’ll be likely to encounter capacitors and inductors in your everyday work. Capacitors and induc- tors are used in many types of industrial power supplies, Preview Preview motor drive systems, and on most industrial electronics printed circuit boards. When you complete this study unit, you’ll be able to • Explain how a capacitor holds a charge • Describe common types of capacitors • Identify capacitor ratings • Calculate the total capacitance of a circuit containing capacitors connected in series or in parallel • Calculate the time constant of a resistance-capacitance (RC) circuit • Explain how inductors are constructed and describe their rating system • Describe how an inductor can regulate the flow of cur- rent in a DC circuit • Calculate the total inductance of a circuit containing inductors connected in series or parallel • Calculate the time constant of a resistance-inductance (RL) circuit Electronics Workbench is a registered trademark, property of Interactive Image Technologies Ltd. and used with permission. You’ll see the symbol shown above at several locations throughout this study unit. This symbol is the logo of Electronics Workbench, a computer-simulated electronics laboratory. The appearance of this symbol in the text mar- gin signals that there’s an Electronics Workbench lab experiment associated with that section of the text. If your program includes Elec tronics Workbench as a part of your iii learning experience, you’ll receive an experiment lab book that describes your Electronics Workbench assignments. -
Soft Ferrites Applications
Ferroxcube Soft Ferrites Applications APPLICATIONS Material requirements: Introduction • Low losses • Defined temperature factor to compensate temperature Soft ferrite cores are used wherever effective coupling drift of capacitor between an electric current and a magnetic flux is required. They form an essential part of inductors and • Very stable with time. transformers used in today’s main application areas: Preferred materials: 3D3, 3H3. • Telecommunications • Power conversion INTERFERENCE SUPPRESSION • Interference suppression. Unwanted high frequency signals are blocked, wanted signals can pass. With the increasing use of electronic The function that the soft magnetic material performs may equipment it is of vital importance to suppress interfering be one or more of the following: signals. FILTERING Material requirements: Filter network with well defined pass-band. • High impedance in covered frequency range. High Q-values for selectivity and good temperature Preferred materials: 3S1, 4S2, 3S3, 3S4, 4C65, 4A11, stability. 4A15, 3B1, 4B1, 3C11, 3E25, 3E5. andbook, halfpage handbook, halfpage U1 U2 load U attenuation U1 (dB) U2 frequency frequency MBW404 MBW403 Fig.1 Filter application. Fig.2 Suppression application. 2008 Sep 01 17 Ferroxcube Soft Ferrites Applications DELAYING PULSES STORAGE OF ENERGY The inductor will block current until saturated. Leading An inductor stores energy and delivers it to the load during edge is delayed depending on design of magnetic circuit. the off-time of a Switched Mode Power Supply (SMPS). Material requirements: Material requirements: • High permeability (µi). • High saturation level (Bs). Preferred materials: 3E25, 3E5, 3E6, 3E7, 3E8, 3E9. Preferred materials: 3C30, 3C34, 3C90, 3C92, 3C96 2P-iron powder. U U handbook, halfpage 1 handbook, halfpage1 U2 U2 SMPS load delay U U U1 U2 U1 U2 time time MBW405 MBW406 Fig.3 Pulse delay application. -
Class D Audio Amplifier Application Note with Ferroxcube Gapped Toroid Output Filter
Class D audio amplifier Application Note with Ferroxcube gapped toroid output filter Class D audio amplifier with Ferroxcube gapped toroid output filter The concept of a Class D amplifier has input signal shape but with larger bridge configuration. Each topology been around for a long time, however amplitude. And audio amplifier is spe- has pros and cons. In brief, a half bridge only fairly recently have they become cially design for reproducing audio fre- is potentially simpler,while a full bridge commonly used in consumer applica- quencies. is better in audio performance.The full tions. Due to improvements in the bridge topology requires two half- speed, power capacity and efficiency of Amplifier circuits are classified as A, B, bridge amplifiers, and thus more com- modern semiconductor devices, appli- AB and C for analog designs, and class ponents. cations using Class D amplifiers have D and E for switching devices. For the become affordable for the common analog classes, each type defines which A Class D amplifier works in the same person.The mainly benefit of this kind proportion of the input signal cycle is way as a PWM power supply, except of amplifier is the efficiency, the theo- used to switch on the amplifying device: that the reference signal is the audio retical maximum efficiency of a class D Class A 100% wave instead of the accurate voltage design is 100%, and over 90% is Class AB Between 50% and 100% reference. achieve in practice. Class B 50% Class C less than 50% Let’s start with an assumption that the Other benefits of these amplifiers are input signal is a standard audio line level the reduction in consumption, their The letter D used to designate the class signal.This audio line level signal is sinu- smaller size and the lower weight. -
Aluminum Electrolytic Vs. Polymer – Two Technologies – Various Opportunities
Aluminum Electrolytic vs. Polymer – Two Technologies – Various Opportunities By Pierre Lohrber BU Manager Capacitors Wurth Electronics @APEC 2017 2017 WE eiCap @ APEC PSMA 1 Agenda Electrical Parameter Technology Comparison Application 2017 WE eiCap @ APEC PSMA 2 ESR – How to Calculate? ESR – Equivalent Series Resistance ESR causes heat generation within the capacitor when AC ripple is applied to the capacitor Maximum ESR is normally specified @ 120Hz or 100kHz, @20°C ESR can be calculated like below: ͕ͨ͢ 1 1 ͍̿͌ Ɣ Ɣ ͕ͨ͢ ∗ ͒ ͒ Ɣ Ɣ 2 ∗ ∗ ͚ ∗ ̽ 2 ∗ ∗ ͚ ∗ ̽ ! ∗ ̽ 2017 WE eiCap @ APEC PSMA 3 ESR – Temperature Characteristics Electrolytic Polymer Ta Polymer Al Ceramics 2017 WE eiCap @ APEC PSMA 4 Electrolytic Conductivity Aluminum Electrolytic – Caused by the liquid electrolyte the conductance response is deeply affected – Rated up to 0.04 S/cm Aluminum Polymer – Solid Polymer pushes the conductance response to much higher limits – Rated up to 4 S/cm 2017 WE eiCap @ APEC PSMA 5 Electrical Values – Who’s Best in Class? Aluminum Electrolytic ESR approx. 85m Ω Tantalum Polymer Ripple Current rating approx. ESR approx. 200m Ω 630mA Ripple Current rating approx. 1,900mA Aluminum Polymer ESR approx. 11m Ω Ripple Current rating approx. 5,500mA 2017 WE eiCap @ APEC PSMA 6 Ripple Current >> Temperature Rise Ripple current is the AC component of an applied source (SMPS) Ripple current causes heat inside the capacitor due to the dielectric losses Caused by the changing field strength and the current flow through the capacitor 2017 WE eiCap @ APEC PSMA 7 Impedance Z ͦ 1 ͔ Ɣ ͍̿͌ ͦ + (͒ −͒ )ͦ Ɣ ͍̿͌ ͦ + 2 ∗ ∗ ͚ ∗ ͍̿͆ − 2 ∗ ∗ ͚ ∗ ̽ 2017 WE eiCap @ APEC PSMA 8 Impedance Z Impedance over frequency added with ESR ratio 2017 WE eiCap @ APEC PSMA 9 Impedance @ High Frequencies Aluminum Polymer Capacitors have excellent high frequency characteristics ESR value is ultra low compared to Electrolytic’s and Tantalum’s within 100KHz~1MHz E.g. -
Effect of Source Inductance on MOSFET Rise and Fall Times
Effect of Source Inductance on MOSFET Rise and Fall Times Alan Elbanhawy Power industry consultant, email: [email protected] Abstract The need for advanced MOSFETs for DC-DC converters applications is growing as is the push for applications miniaturization going hand in hand with increased power consumption. These advanced new designs should theoretically translate into doubling the average switching frequency of the commercially available MOSFETs while maintaining the same high or even higher efficiency. MOSFETs packaged in SO8, DPAK, D2PAK and IPAK have source inductance between 1.5 nH to 7 nH (nanoHenry) depending on the specific package, in addition to between 5 and 10 nH of printed circuit board (PCB) trace inductance. In a synchronous buck converter, laboratory tests and simulation show that during the turn on and off of the high side MOSFET the source inductance will develop a negative voltage across it, forcing the MOSFET to continue to conduct even after the gate has been fully switched off. In this paper we will show that this has the following effects: • The drain current rise and fall times are proportional to the total source inductance (package lead + PCB trace) • The rise and fall times arealso proportional to the magnitude of the drain current, making the switching losses nonlinearly proportional to the drain current and not linearly proportional as has been the common wisdom • It follows from the above two points that the current switch on/off is predominantly controlled by the traditional package's parasitic -
Technical Notes for Electrolytic Capacitor
TECHNICAL NOTES FOR EL ECTROLYTIC CAPACITOR 2. MANUFACTURE OF ALUMINUM ELECTROLYTIC CAPACITOR Raw Aluminum Foil (1) Etching To obtain higher capacitance, surface area of aluminum foil for electrolytic capacitor increases through etching process. In etching process, aluminum foil is applied with DC or Etched Aluminum Foil AC current in a chloride solution to preferentially dissolve the surface. Surface area is increased by 60-150 times for low voltage foils and 10-30 times for high voltage foils. (2) Anodization(Formation of Dielectric Layer) Aluminum foil for electrolytic capacitor is further formed with anodic oxide film (Al2O3) on the surface as dielectric layer. Etched aluminum foil is immersed into a solution Formed Foil including ammonium salt of boric acid or phosphoric acid and applied with DC voltage so that the foil Aluminum Oxide becomes positive and the solution becomes negative. Then aluminum oxide film is formed on the surface in proportion to the applied voltage. The anodic oxide film, having the thickness of 13-15 angstrom/V (1.3-1.5 nm/V), is extremely thin, compact and highly Aluminum Substrate insulating. RUBYCON CORPORATION 2 TECHNICAL NOTES FOR EL ECTROLYTIC CAPACITOR Slitting (3) Slitting Process Etching and Forming are processed with wide roll of master foil. Then the master roll is slitted into individual rolls with specified width as per the specification. Stitching & Winding (4) Stitching and Winding Slit anode and cathode foils after slitting process are stitched with lead tabs and wound into cylindrical element together with spacer paper. Spacer paper is to contain liquid electrolyte that works as real cathode and restores damaged dielectric film, as well as maintaining the distance between anode and cathode foils constant to prevent short circuit. -
Microphonics & Lorentz Detuning: Determined by Cavity/Cryomodule Design and Background Environment
Old Dominion University October 2012 2 2 2 f opt (b 1) fo IRQQ(/) where b oocos V Phase Amplitude Controller Controller Klystron 1.0 Limiter 0.9 0.8 Loop 0.7 Phase Amplitude 0.6 CEBAF 6 GeV Set Point 0.5 Amplitude CEBAF Upgrade Detector 0.4 Cavity 0.3 0.2 Energy Content (Normalized)Content Energy 0.1 Reference Phase 0.0 Phase -1,000 -800 -600 -400 -200 0 200 Set Point Detector Detuning (Hz) • RF Systems • What are you controlling? • Cavity Equations • Control Systems Cavity Models • Algorithms Generator Driven Resonator (GDR) Self Excited Loop (SEL) • Hardware Receiver ADC/Jitter Transmitter Digital Signal Processing • Cavity Tuning & Resonance Control Stepper Motor Piezo • RF Systems are broken RF Control Power down into two parts. Electronics Amplifier • The high power section consisting of the power amplifier and the high power transmission line Waveguide/ (waveguide or coax) Coax • The Low power (level) section (LLRF) consisting of the field and resonance control components Cavity • Think your grandfathers “Hi-Fi” stereo or your guitar amp. • Intensity modulation of DC beam by control grid • Efficiency ~ 50-70% (dependent on operation Triode Tetrode mode) • Gain 10-20 dB • Frequency dc – 500 MHz • Power to 1 MW • Velocity modulation with input Cavity • Drift space and several cavities to achieve bunching • It is highly efficient DC to RF Conversion (50%+) • High gain >50 dB • CW klystrons typically have a modulating anode for - Gain control - RF drive power in saturation • Power: CW 1 MW, Pulsed 5 MW • Frequencies 300 MHz to 10 GHz+ A. Nassiri CW SCRF workshop 2012 • Intensity modulation of DC beam by control grid • It is highly efficient DC to RF Conversion approaching 70% • Unfortunately low gain 22 dB (max) • Power: CW to 80 kW • Frequencies 300 MHz to 1.5 GHz As a tetrode As a klystron A. -
100“ 168\A166\1::: 1:1 162 { 164C 1
US 20060180895Al (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0180895 A1 Chen et al. (43) Pub. Date: Aug. 17, 2006 (54) CAPACITOR DEVICE WITH VERTICALLY (21) Appl. No.: 11/055,933 ARRANGED CAPACITOR REGIONS OF VARIOUS KINDS (22) Filed: Feb. 11, 2005 (75) Inventors: Yueh-You Chen, Hsin-Chu City (TW); Publication Classi?cation Chung-Long Chang, Dou-Liu city (TW); Chih-Ping Chao, Chu-Dong (51) Int. Cl. Town (TW); Chun-Hong Chen, Jhubei H01L 29/93 (2006.01) City (TW) (52) U.S. Cl. .......................................... .. 257/595; 257/E2l Correspondence Address: (57) ABSTRACT DUANE MORRIS, LLP IP DEPARTMENT A capacitor device selectively combines MOM, MIM and 30 SOUTH 17TH STREET varactor regions in the same layout area of an IC. TWo or PHILADELPHIA, PA 19103-4196 (US) more types of capacitor regions arranged vertically on a substrate to form the capacitor device. This increase the (73) Assignee: Taiwan Semiconductor Manufacturing capacitance per unit of the capacitor device, Without occu Company, Ltd. pying an extra layout area. 100“ 168\A166\1::: 1:1 162 { 164C 1:: . 160 158, F I /_\~ ’/'_‘\ 130 Bi- - + - +--E6_,154 /\_ A/A\ 128 i. - + - +--?, 152 122 ' 134 . ,/—\ 142 126 \_/—'—~ . + .. +_-\_, 150 /\'_ ‘/_\ 4 124 i. + - +--—2, 148 120% 118/1- ] 116f 108 112 112 104 10s \ p — /_/ 106 _ m _ 114 l_/114 110 Patent Application Publication Aug. 17, 2006 Sheet 2 0f 2 US 2006/0180895 A1 200“ - + - + + - + - - + - + + - + - FIG. 2 300% 316% + ' + 314“ 312% + + 310v“ ' 308 “w - + - + 306\___ 304“ + + FIG. 3 US 2006/0180895 A1 Aug.