Journal Vol21 No106 Pp311-340

Total Page:16

File Type:pdf, Size:1020Kb

Journal Vol21 No106 Pp311-340 Vol. Vol. 21 No. 106 Journal of the Radio Research Laboratories 1974 Printed Printed in Tokyo, Japan pp. 311-340 UDC 523. 7: 525 “1972.08 ” SOLAR-TERRESTRIAL DISTURBANCES OF AUGUST 1972 4. 4. SOLAR X-RAY FLARES AND THEIR CORRESPONDING SUDDEN IONOSPHERIC DISTURBANCES By Mitsuo OHSHIO (Received (Received Feb. 22, 1973) ABSTRACT Four Four solar X-ray flares which occurred early in August, 1972, were large, being being inferred from sudden ionospheric disturbances caused by the pertinent flares. The time variations of the solar X-ray flux intensity observed could not be obtained obtained at the maximum stage of these four events owing to the artificial satel- lite lite eclipse and/or the saturation of the detector. Both of estimation from extra- polation polation in the shape of time variation and from the maximum phase deviation of of the normalized sudden phase anomaly (SP A) observed show that the maximum solar solar X-ray (1 ~8 A) flare flux intensities or the maximum enhanced ones for August August 4 and 7 were as large as to exceed 1 erg cm-2 s-1. Their decreasing stages stages were as long as to last more than half a day. The use of a flare model valid valid for the arrival of solar ionizing agents of the largest class during the pertinent pertinent period showed that the enhanced electron density in the ionosphere was larger larger than the quiet one by about two orders at the altitude of 70 km and by 2 to to 1 times at the altitude of 90 to 120 km. is It supposed that in these four events, particularly particularly in August 4 and 7 events, solar extreme ultraviolet ray flares also occurred occurred to cause all kinds of sudden ionospheric disturbances on their largest scale. scale. 1. 1. Introduction Early in August, 1972, large-scale solar eruptions seen rarely occurred, also caused various large-scale disturbances both on the solar disk and in the earth ’S ionosphere and magnetosphere, and increased the cogmtion on the solar-terr 田 trial physics physics which had never been experienced hitherto. In this paper, the disturbed phenomena in the pertinent period are described in terms of solar X-ray fl.ares and sudden ionospheric disturbanc 白. Since the data on sudden ionospheric disturbances disturbances were limited to those observed at the Laboratories, the data could not help receiving restriction largely in space and in time, but the event on August 7 depended upon foreign data. In spite of many restrictions, the con- sideration sideration on the elongation of the relation of magnitude of sudden ionospheric 311 311 312 M. Ohshio disturbances disturbances to enhanced solar ionizing intensities which has been given by the author author and the estimation for the presumed maximum enhanced flux intensities of of solar ionizing agent owing to the saturation of the observed data and/or to the the artificial satellite eclipse are compared and investigated. Further, enhanced electron electron densities in the ionosphere are estimated by a flare model valid for the arrival arrival of solar ionizing agents of the largest class during the pertinent period. 2. 2. Data Used The data used on solar ionizing agents completely depended upon the results of of solar X-ray flux intensities with wavelength ranges, 1~ 8, 8~ 20, and 0.5rv3 A observed observed by solar X-ray monitoring satellites, SOLRAD 10-Explorer 44 and SOLRAD 9・Explorer 37, under the superintendence of R. W. Kreplin, U.S. Naval Research Laboratory. ci >~( 8) Out of the data on sudden ionospheric disturbances observed at the Labora- tories, tories, the available radio wave propagational circuits and their geographical disposition disposition are shown in Table 1 and Fig. 1. Further, the event on August 7 depended upon the sudden phase anomalies (SPA's) on the circuits received in Sao Paulo and with small representative solar zenith angles. K;ndof N。。 f SIO's SIO's C"c 凶IS Mo•ks ~Vl.i:. SPA 8(1 。INUBO) ー一一一- -\ SPA 1 (lo HIRAISO )ー・----- \ SWF 4(1o HIRAISO) ---・ Fig. Fig. 1. Geographical disposition of radio wave propagational cir- cuits cuits received at the Radio Research Laboratories, available for detecting detecting sudden ionospheric disturbances. Out of the circuits shown, shown, those given in Table 1 are adopted. The Loran-C circuit, circuit, IWOJIMA-HIRAISO, and the SWF circuit, SHEP- PARTON-HIRAISO, PARTON-HIRAISO, are superposed each other on the map. Table Table 1. Available radio wave propagational circuits detecting sudden ionospheric disturbances. Transmitting Site Receiving Site Distance along the LKαorロrmnDPnNhι Kind Call R11;dia Location Great Remarks Sign 向 gd ほ tion HV Circle of of Name 円し 剖 1 Frequency Name (Geographic or ∞ ノ Power (km) SID ’s Abbr・. (kW) Coordinate) 52°22'N 16. OkHz Fr 巴quency RUGBY GBR 001°1l'W 40 9550 Standard めと白培、・ NORTH 21°49 ’S WEST NWC 22. 3kHz 1000 6990 U CAPE 114°10 ’E S42寸 10.2kHz 35 。42 ’N Omega 21°24 ’N INUBO HAIKU・ HAIKU 12. 2kHz 2 140°52' E 6100 Navigation 町、足』 157°50 ’W 13. 6kHz SPA 44°39 ’N NV2Hhh CUTLER NAA 067°17'W 17.SkHz 1000 10640 『 JIM 48°12 ’N 18.6kHz 250 bbw CREEK NPG 121°55 ’W 7620 同門司旬。 qOpnunHu。。nJuqonLooNE H RA Y GU O h 24°4S'N A- IWOJIMA 100 kHz 4000 司自ム組処 1290 Loran-C . 141°20' E bNhhHaahbuwN 、111tilia 35°41 ’N 21MHz( 3-13) EJV TEHERAN Te 051°25' E lOMHz(13- 3) 7700 -- t SHEPP AR- 36°20' s 、〆H官・ RA v-Qu O 36 。22'N i A A SWF Sh 18MHz( O・- 8) 100 } ・s100 TON 145°25 ’E lht 140°38 ’E ’ 18MHz(20- 6) fll 12°03 ’S ト LIMA Li 15MHz( 6- 8) 10 tJ 15380 077°03 ’w llMHz( 8-13) NOTES: 1. The value of Distance along the Great Circle (km) is rounded in the first place. 2. 2. The number within the parentheses successive to the frequency of SWF denotes time interval (U. T.) during during when the frequency had been transmitted in July and August 1972. ωHω 314 M. Ohshio 3. 3. Time Variations of Solar X-ray Flux Intensities There are shown in Fig. 2 the observed hourly average so!ar X-ray flux intensities intensities F (A.1 ~ん t) with wavelength ranges, A.=1 ~8 and 8~ 20 A from July 25 till till August 16, 1972. It is immediately noticed in the figure that there are four giant giant X-ray flares conspicuous in both ranges. Out of them, two, one, and one flares flares are situated on August 2, 4, and 7, respectively. Also on August 11 a 宜are with large F(S ~ 20 A ,の is recognized; however, the flare is indistinct in terms of F(l ~sA ,め. If the above-described four flares are paid attention to, each each F(l ~8 A) of these maximum values exceeds 10-1 erg cm-2 s一九 and conversely the the flares whose maximum values of F(l ~ 8 A, t) exceed 10-1 erg cm-2 s-1 are limited limited to the above-described four flares in the period shown in the. pertinent figure. figure. They have 1.72 ×10-1, 1.29 × 10 1, 3.43 ×10-1, and 4.56 × 10-1 erg cm-2 s-1 in their their maximum values in the order of time, even in their hourly average F(l ~ 8 A, t). It is conjectured, therefore, that these flares are still larger in their instantaneous instantaneous maximum flux intensities Fm(l ~ 8 A, tm). In this sense, so far as solar-terrestrial solar-terrestrial disturbed phenomena early in August, 1972, are discussed from the the point of view of solar X-ray flares, th 白 e will be called four giant solar X-ray 但ares worth noticing. They are named solar X-ray flare event Nos. 1. 2, 3, and 4 in the order of lapse of time. As seen in Fig. 2, the flux intensities at the starting time, t,, of these flares, F,(1 ~sA t,) ’s are as large as other flares existing actually to whose Fm(l ~ s A, t,) ’s the the values of F ,(1 ~ sA, t,) ’s correspond. <4J,<•J Especially, large are F ,(1 ~ sA, t,) ’s in in Event Nos. 2 and 1 and F,(8 ~20A, t,) ’s for 4 events. These values are difficult to to be recognized as the quiet values of flux intensities in terms of long-term variations variations of flux intensities. If t,(A.1 ~ん Event No. 1) is retroactive, F(A.1 ~ん, t) decreases decreases gradually as a whole including even flares with smaller hourly average maximum flux intensities than F ,(A.1 ~ん t,, Event No. 1). Though on July 28 a medium scale of flare occurs, F(A.1 ~-< u, t) still decreases, and on July 25 the mini- mum value which seems validly to have reached a quiet value is found out in terms of the whole tendency. The day when the flux intensities seem to have reached reached their quiet value throughout the above 司 described four giant flares is August 16 especially in F(8 ~ 20 A,の. The 21 days of the period, therefore, will be discussed that the solar X-ray would have been in a disturbed period even if if no large flares had occurred. Thus, the minute observation of solar X-ray flux flux intensities will be an index to the prediction of solar disk disturbances.
Recommended publications
  • STUDIES on HARD X-RAY EMISSION from SOLAR FLARES and on Cyclotrop ~- RADIATION from a COLD Magnelt)Pllima
    STUDIES ON HARD X-RAY EMISSION FROM SOLAR FLARES AND ON CYCLOTROp ~- RADIATION FROM A COLD MAGNElt)PLliMA PETER HOYNG 30VST: Solar flare of 7 August 1972, taken 0.5 A offband Ha at UT 1520:20. field of viev 3' x 4' (courtesy Big Bear Solar Observatory) STELLINGEN Het elektromagnetische veld in een willekeurig medium is op na- tuurlijke -wijze splitsbaar in stralingsvelden (index s) en Coulomb- velden (index c) -. ->->-->-->- 1 S •"*• **•_ p = D [p ^ o] ; J=J + J ; J =--— -r— D [div J - o] ; c s sec 4TT dt c s -> -+.-•-»•-* -+• E - E + E ; B = 3 [B Ho]. se s c Beide deelvelden met hun bronnen voldoen aan de volledige Maxwell vergelijkingen: div. D = o; div B ~ o div D = 4TTO s 3 c ' c -* 13-* rot E = -—•=— B rot E = o s c at s c * 4T -* 1 J •* rot H = J + — T— D s c s c ót s Het verdient aanbeveling bij de behandeling van elektromagnetische problemen deze splitsing vóóraf uit te voeren en (zonodig) beide vergelijkingssystemen gescheiden op te lossen. II Het leidt ir. principe tot onjuiste resultaten wanneer men bij de berekening van het uitgestraalde vermogen per eenheid van ruimte- hoek een scalaire uitdrukking als uitgangspunt neemt -- zoals bij- .-r -f 3-f- •+• voorbeeld . E"J d r, de arbeid verricht door het door J opgewekte elektrische veld. dit proefschrift, hoofdstuk VI. UI Het onlangs door Molodensky gegeven bewijs van de stabiliteit van het randwaardeprobleem van een krachtvrij magnetisch veld is onjuist; veeleer wordt nogmaals aangetoond dat zeer kritische beoordeling onontbeerlijk is om een tijdschrift op peil te houden.
    [Show full text]
  • Aeronautics and Space Report of the President
    Aeronautics and Space Report of the President 1971 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 197 I Activities i W Executive Office of the President National Aeronautics and Space Council Washington, D.C. 20502 PRESIDENT’S MESSAGE OF TRANSMITTAL To the Congress of the United States: I am pleased to transmit herewith a report of our national progress in aero- nautics and space activities during 1971. This report shows that we have made forward strides toward each of the six objectives which I set forth for a balanced space program in my statement of March 7, 1970. Aided by the improvements we have made in mobility, our explorers on the moon last summer produced new, exciting and useful evidence on the structure and origin of the moon. Several phenomena which they uncovered are now under study. Our unmanned nearby observation of Mars is similarly valuable and significant for the advancement of science. During 1971, we gave added emphasis to aeronautics activities which contribute substantially to improved travel conditions, safety and security, and we gained in- creasing recognition that space and aeronautical research serves in many ways to keep us in the forefront of man’s technological achievements. There can be little doubt that the investments we are now making in explora- tions of the unknown are but a prelude to the accomplishments of mankind in future generations. THEWHITE HOUSE, March 1972 iii Table of Contents Page Page I . Progress Toward U.S.
    [Show full text]
  • Solar Radiation (SOLRAD) Satellite Summary Table As of 26 March 2004
    Solar Radiation (SOLRAD) Satellite Summary Table as of 26 March 2004 Satellite Name Launch Date Transmitter(s) Vanguard 3 18 September 1959 108.00 Mc/s 30 mW FM/PM IRIG 2, 3, 4 & 5 Explorer 7 13 October 1959 19.9915 Mc/s 660 mW FM/AM IRIG 2, 3, 4 & 5 Solrad Dummy 13 April 1960 Inert Test Article Sun Ray 1 22 June 1960 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 Sun Ray 2 30 November 1960 (Failure) 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 here Sun Ray 3 29 June 1961 (Partial failure) 108.00 Mc/s Sun Ray 4 24 January 1962 (Failure) 108.09 Mc/s 100 mW FM/AM Sun Ray 4B 26 April 1962 (Failure) 108.00 Mc/s 100 mW FM/AM 20 inch sp Sun Ray 5 Not Launched Sun Ray 6 15 June 1963 136.890 MHz 100 mW FM/AM SolRad 7A 11 January 1964 136.887 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 7B 9 March 1965 136.800 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 8 19 November 1965 137.41 MHz 1W Stored data playback Explorer 30 136.44 MHz 100mW 24 inch sphere Solar Explorer A 136.53 MHz 100mW SolRad 9 5 March 1968 136.41 MHz 500 mW Stored data playback Explorer 37 136.52 MHz 150 mW Primary RT FM/AM IRIG 3 to 8 Solar Explorer B 137.59 MHz 150 mW RT FM/AM IRIG 3 to 7, 12 PCM SolRad 10 8 July 1971 136.38 MHz 250 mW 5W on cmd TM2 - PCM/PM or Stored Data or Stellrad on cmd Explorer 44 137.71 MHz 250 mW TM1 - PAM/PCM/FM/PM RT analog (chs 4-8, COSPAR Ch 7) Solar Explorer-C and digital PCM (ch 12) SolRad 11A & 14 March 1976 137.44 MHz 5W (11A), 136.53 MHz 5W (11B) SolRad 11B 102.4 bps PCM/BiØ-L/PM convolutional encoded (R=½, k=7) Early X-ray missions Name Vanguard 3 Launch Date 1959 September 18.22 UTC SAO ID 1959 ? (Eta) COSPAR ID 1959-07A Catalog No.
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • National Security and the U.S. Naval Research Laboratory, Seventy Years of Scince for the Navy and the Nation (1923-1993)
    Naval Research Laboratory AD-A277 703 Washington, DC 20375-5320 liilli llllIl1lll1ll1lll1 NRL/FR/1003--94-959 National Security and the U.S. Naval Research Laboratory Seventy Years of Science for the Navy and the Nation (1923-1993) AELECTEDTIC D. J. DEYOUNG APR 011994 Office of Strategic Planning Executive Directorate March 29, 1994 94-09981 [9Approved for public release; distributionunlimited. 9 4 1 29 The Naval Research Laboratory (NRL) was officially established on July 2, 1923, as the Naval Experimental and Research Laboratory. In the following seven decades, research efforts have expanded from the two original areas of scientific endeavor, radio and underwater sound, to 19 broad areas that encompass many diverse fields. NRL is the Navy's Corporate Laboratory and is under the command of the Chief of Naval Research. The Laboratory occupies its original site on the banks of the Potomac River in the southwest corner of Washington, D.C. Since NRL's establishment, the number of buildings has expanded from the original five to more than 170, and the main Laboratory site has expanded from 27.5 to 129 acres. The original group of about 20 employees has grown to more than 3900, including those at the main site and at 14 field sites. On January 14, 1992, the Naval Oceanographic and Atmospheric Research Laboratory (with sites in both Mississippi and California) was merged with NRL as part of the U.S. Navy's post-Cold War research, development, technology, and engineering RDT&E) consolidation efforts. This merger brought facilities and personnel at Bay St. Louis, Mississippi, and Monterey, California, under NRL management.
    [Show full text]
  • NASA-TM-84835) NASA 1981 £ HC10GRAPHY INDEX J(National Aeronautics and Space Administration) 248 P HC A11/MF A01 CSCL I)5B
    , (NASA-TM-84835) NASA 1981 £ HC10GRAPHY INDEX j(National Aeronautics and Space Administration) 248 p HC A11/MF A01 CSCL i)5B, .1 / * B2 32316 TABLE OF SUBJECT Apollo 7 Selected Pictures ............................ XS^i^-Oil^"5^ ............ 141 Apollo 8 Selected Pictures ............................... rTT^T^TT .; .............. 142 Apollo 9 Selected Pictures ...................................................... 143 Apollo 10 Selected Pictures ...................................................... 146 Apollo 1 1 Selected Pictures ...................................................... 147 Apollo 12 Selected Pictures ...................................................... 150 Apollo 13 Selected Pictures ...................................................... 153 Apollo 14 Selected Pictures .................................. .^-^ , : v -^. .......... 155 Apollo 15 Selected Pictures 158 Apollo 16 Selected Pictures 161 Apollo 17 Selected Pictures 165 ASTPSelected Pictures 175 Astronaut Candidates 131 Astronaut Portraits 124 Astronomy 215 Aviation ............... ..................... ... 204 Lunar Surface Photographs ......................... -T. .«»j. n~:'. Vf) .... ^W. 132 TABLE OF CONTENTS PAGE SUBJECT NO. Major Launches 2 Mariner VI 134 Mariner VII 135 Mariner IX 136 Mariner X 138 Pioneer 10 180 Pioneer 11 181 Planets & Other Space Phenomena 193 Skylab 1 Selected Pictures 168 Skylab 2 Selected Pictures 169 Skylab 3 Selected Pictures 171 Skylab 4 Selected Pictures .' 173 Space Colony 214 Space Shuttle 207 Viking 1 195 Viking 2 202 Voyager
    [Show full text]
  • 5 Orbit and Ground Track of a Satellite
    5 Orbit and Ground Track of a Satellite 5.1 Position of the Satellite on its Orbit Let (O; x, y, z) be the Galilean reference frame already defined. The satellite S is in an elliptical orbit around the centre of attraction O. The orbital plane P makes a constant angle i with the equatorial plane E. However, although this plane P is considered as fixed relative to in the Keplerian motion, in a real (perturbed) motion, it will in fact rotate about the polar axis. This is precessional motion,1 occurring with angular speed Ω˙ , as calculated in the last two chapters. A schematic representation of this motion is given in Fig. 5.1. We shall describe the position of S in using the Euler angles. 5.1.1 Position of the Satellite The three Euler angles ψ, θ and χ were introduced in Sect. 2.3.2 to specify the orbit and its perigee in space. In the present case, we wish to specify S. We obtain the correspondence between the Euler angles and the orbital elements using Fig. 2.1: ψ = Ω, (5.1) θ = i, (5.2) χ = ω + v. (5.3) Although they are fixed for the Keplerian orbit, the angles Ω, ω and M − nt vary in time for a real orbit. The inclination i remains constant, however. The distance from S to the centre of attraction O is given by (1.41), expressed in terms of the true anomaly v : a(1 − e2) r = . (5.4) 1+e cos v 1 The word ‘precession’, meaning ‘the action of preceding’, was coined by Coper- nicus around 1530 (præcessio in Latin) to speak about the precession of the equinoxes, i.e., the retrograde motion of the equinoctial points.
    [Show full text]
  • NASA Is Not Archiving All Potentially Valuable Data
    ‘“L, United States General Acchunting Office \ Report to the Chairman, Committee on Science, Space and Technology, House of Representatives November 1990 SPACE OPERATIONS NASA Is Not Archiving All Potentially Valuable Data GAO/IMTEC-91-3 Information Management and Technology Division B-240427 November 2,199O The Honorable Robert A. Roe Chairman, Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: On March 2, 1990, we reported on how well the National Aeronautics and Space Administration (NASA) managed, stored, and archived space science data from past missions. This present report, as agreed with your office, discusses other data management issues, including (1) whether NASA is archiving its most valuable data, and (2) the extent to which a mechanism exists for obtaining input from the scientific community on what types of space science data should be archived. As arranged with your office, unless you publicly announce the contents of this report earlier, we plan no further distribution until 30 days from the date of this letter. We will then give copies to appropriate congressional committees, the Administrator of NASA, and other interested parties upon request. This work was performed under the direction of Samuel W. Howlin, Director for Defense and Security Information Systems, who can be reached at (202) 275-4649. Other major contributors are listed in appendix IX. Sincerely yours, Ralph V. Carlone Assistant Comptroller General Executive Summary The National Aeronautics and Space Administration (NASA) is respon- Purpose sible for space exploration and for managing, archiving, and dissemi- nating space science data. Since 1958, NASA has spent billions on its space science programs and successfully launched over 260 scientific missions.
    [Show full text]
  • Spacecraft and Experiments
    NSSDC/ WDC-A-R&S Supplement No. 1 to the January 1974 Report on Active and Planned Spacecraft and Experiments (NASA-TM-X-6991 3) SUPPLEMENT NO. 1 TO N74-3027 THE JANUARY 1974 REPORT ON ACTIVE AND PLANNED SPACECRAFT AND EXPERIMENTS (NASA) CSCL 22A Unclas p5- G3/30 45603 JULY 1974 Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151 NSSDC/WDC-A-R&S NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * GODDARD SPACE FLIGHT CENTER, GREENBELT, MD. NSSDC/WDC-A-R&S 74-12 SUPPLEMENT NO. 1 TO THE JANUARY 1974 REPORT ON ACTIVE AND PLANNED SPACECRAFT AND EXPERIMENTS Edited by Richard Horowitz and Leo R. Davis National Space Science Data Center July 1974 National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Page intentionally left blank PREFACE This supplement to the Report on Active and Planned Spacecraft and Experiments provides the professional community with information on current as well as planned spacecraft activity in a broad range of scientific disciplines. The document provides brief descriptions for spacecraft and experiments that were not listed in the original report or the content of which has significantly changed from that previously reported due to information recently received. Current data regarding expected launch dates and operation and performance data are presented for all spacecraft and experiments that were active or planned as of March 31, 1974. We would like to acknowledge the cooperation of the acquisition scientists and others at the National Space Science Data Center (NSSDC) in obtaining information and offering suggestions for this supplement.
    [Show full text]
  • Hot X-Ray Onsets of Solar Flares
    MNRAS 000, 000{000 (0000) Preprint 13 July 2020 Compiled using MNRAS LATEX style file v3.0 Hot X-ray Onsets of Solar Flares Hugh S. Hudson,1;2? Paulo J. A. Sim~oes,3;1 Lyndsay Fletcher,1;4 Laura A. Hayes,5 Iain G. Hannah1 1SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 2Space Sciences Laboratory, U.C. Berkeley, CA USA 3Centro de R´adio Astronomia e Astrof´ısica Mackenzie, Escola de Engenharia, Universidade Presbiteriana Mackenzie, S~aoPaulo, Brazil 4Rosseland Centre for Solar Physics, University of Oslo, P.O.Box 1029 Blindern, NO-0315 Oslo, Norway 5Solar Physics Laboratory, Code 671, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA June 23, 2020 ABSTRACT The study of the localized plasma conditions before the impulsive phase of a solar flare can help us understand the physical processes that occur leading up to the main flare energy release. Here, we present evidence of a hot X-ray `onset^aA˘Z´ interval of enhanced isothermal plasma temperatures in the range of 10-15 MK up to tens of seconds prior to the flare^aA˘Zs´ impulsive phase. This `hot onset^aA˘Z´ interval occurs during the initial soft X-ray increase and prior to the detectable hard X-ray emission. The isothermal temperatures, estimated by the Geostationary Operational Environmental Satellite (GOES) X-ray sensor, and confirmed with data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), show no signs of gradual increase, and the `hot onset' phenomenon occurs regardless of flare classification or configuration.
    [Show full text]
  • W Qi W 1RA S
    PREFLARE OBSERVATIONS USING THE SKYLAB X-RAY TELESCOPE by BONNIE J. BURATTI Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February, 1977 Signature of Author I Department of Earth and Planetary Sciences, Feb. 4, 1977 Certified by Thesis Supervisor ;i ,1I Accepted by ,- Chairman, Departmental Committee on Graduate Theses WWITLg r-1 qiw 1RA S ABSTPACT In an attempt to better understand the flare build up pro- cess, observations or 19 x-ray solar flares prior to their onsets were made. Images from the Skylab x-ray telescope built by Amer- ican Science and Engineering, Inc. provided unprecedented spatial and temporal resolution of the flare event, Correlation with associated H-0land radio events was done. Almost half the events showed no preflare changes in the active region. In general, energy re- lease was shown to be sudden. ACKNOWLEDGMENTS I would like to express my appreciation to Dr. Stephen Kahler of AS&E and Prof.,Thomas McCord who advised and encouraged me throughout this work and my graduate school studies. Further encouragement and discussion was provided by Dr. Richard Petrasso, Dr. Allen Krieger, and Dr. Robert Huguenin. I am also indebted to Dr. David Rust of AS&E for use of Sac- ramento Peak H-Ok film, and to Silvio Bichisecchi and Peter Hastings for producing the photographic plates. TABLE OF CONTENTS Abstract 2 Acknowledgments 3 Table of Contents 4 List of Figures 5 I. INTRODUCTION AND SUM24ARY 6 II. INSTRUMENTATION 7 Filters 9 Optics 111 The X-ray Images 15 Film 19 The Pulse Height Analyzer 20 III.
    [Show full text]