Aeronautics and Space Report of the President

Total Page:16

File Type:pdf, Size:1020Kb

Aeronautics and Space Report of the President Aeronautics and Space Report of the President 1971 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 197 I Activities i W Executive Office of the President National Aeronautics and Space Council Washington, D.C. 20502 PRESIDENT’S MESSAGE OF TRANSMITTAL To the Congress of the United States: I am pleased to transmit herewith a report of our national progress in aero- nautics and space activities during 1971. This report shows that we have made forward strides toward each of the six objectives which I set forth for a balanced space program in my statement of March 7, 1970. Aided by the improvements we have made in mobility, our explorers on the moon last summer produced new, exciting and useful evidence on the structure and origin of the moon. Several phenomena which they uncovered are now under study. Our unmanned nearby observation of Mars is similarly valuable and significant for the advancement of science. During 1971, we gave added emphasis to aeronautics activities which contribute substantially to improved travel conditions, safety and security, and we gained in- creasing recognition that space and aeronautical research serves in many ways to keep us in the forefront of man’s technological achievements. There can be little doubt that the investments we are now making in explora- tions of the unknown are but a prelude to the accomplishments of mankind in future generations. THEWHITE HOUSE, March 1972 iii Table of Contents Page Page I . Progress Toward U.S. Aeronautics and Space XI. Department of Commerce................... 75 Goals in 1971 ............................ 1 National Oceanic and Atmospheric Administra- Introduction ............................... 1 tion ........................ 75 Continued Exploration of the Moon ........... 2 office of Telecommunications.... 85 Exploration of the Planets and the Universe .... 2 Maritime Administration ................ 86 Substantial Reduction in the Cost of Space National Bureau of Standards ............ 86 Operations ............................... 3 XI1. United States Information Agency ........ 89 Extension of Man's Capability To Live and Radio .................................... 90 Work in Space ........................... 3 Press and Publications...................... 90 Practical Ap lications of Space Technology ..... 4 Information Centers and Exhibits ............ 91 International'cooperation .................... 6 XI11. National Science Foundation ................ 92 Aeronautics ................................ 6 XIV. National Academy of Sciences, National Acad- Conclusion ................................ 8 emy of Engineering, National Research I1. National Aeronautics and Space Council ....... 8 council ................................. 96 Studies and Reports ......................... 8 Space Science Board ........................ 96 111 . National Aeronautics and Space Administration. 9 Aeronautics and Space Engineering Boar 97 Manned Space Flight ....................... 10 Division of Behavioral Sciences ......... 97 Space Science and Applications ............... 17 Division of Earth Sciences ............. 97 Advanced Research and Technology ........... 25 Division of Engineering ..................... 98 Tracking and Data Acquisition ............... 38 Division of Physical Sciences ................. 98 International Affairs........................ 41 XV. The Smithsonian Institution ................. 100 Affairs ............................ 43 Smithsonian Astrophysical Observatory.... 101~~~ ?:ExT Utilization ...................... 44 National Museum of Natural History ......... 102 Relations ips With Other Government Agencies . 45 Center for Short-Lived Phenomena ........... 102 IV. Department of Defense ...................... 46 National Air and Space Museum ....... 102 Space Ac tivities............................. 47 XVI . Office of Telecommunications Policy ... 103 Space Ground Support ...................... 49 XVII . Federal Communications Commission ......... 104 Communication Satellites ............. 104 Aeronautics Activities ....................... 49~~ Supporting Research and Technology .......... 52 Radio Astronomy and Space Services ... 105 Relationship With Other Government Agencies . 55 Aeronautical Services ................. 105 V Atomic Energy Commission Maritime Mobile Service.................... 106 . .................. 56 106 Space Electric Power ........................ 56 Amateur Radio Service ..................... Nuclear Rocket Program ..................... 57 Satellite-Based Detection of Nuclear Explosions Appendixes in Space and the Atmosphere ............... 58 A-1 . U.S. Spacecraft Record ..................... 107 VI . Department of State ......................... 58 Supporting Activities ........................ 58 107 VI1. Department of Transportation ................ 62 108 Aviation Safety ............................. 64 116 Air Traffic Control .......................... 64 B. U.S. Applications Satellites, 1958-71 .......... 116 Navigation and Communication .............. 65 C . History of United States and Soviet Manned Apphcations of Space Technology ............. 65 Space FliKhts ............................ 120 VI11. Arms Control and Disarmament Agency ....... 66 D-1 . U.S. Space aunch Vehicles ................. 122 IX. Department of the Interior ................... 67 D-2 . U.S. Successful Launches to Earth Orbit or Be- Aeronautics ................................ 67 yond by Launch Vehicle. 1958-71 .......... 123 Space ..................................... 68 E. Nuclear Power Systems for S ace Application . 123 International Cooperation F-1 . Space Activities of the U.S. 8overnment ...... 124 ................... 71 U.S. Space Budget-New Obligational Author- X . Department of Agriculture ................... 72 ity (chart) ............................... 124 Remote Sensing Program .................... 72 F-2 . Space Activities Budget ..................... 125 International Cooperation ................... 74 Aeronautics Budget ......................... 125 V Progress Toward U.S. Aeronautics and Space in 1971 I Goals Introduction invest substantial resources in space activity: the na- tional thrust to explore the unknown, the desire to The United States has traditionally been, and continues acquire new knowledge, and the realization that space to be, a leader in the world’s aeronautics and space activity has practical and widely-beneficial applica- activities. In large part, this leadership derives from the tions. Space is increasingly coming to be seen as an fact that those activities manifest some very basic arena of human activity, rather than national activity, American characteristics. Americans are pioneers and and therefore a particularly congenial focus for coop- explorers, and space offers the most exciting and most erative undertakings that bring the peoples of the challenging frontier yet left to explore. Americans are world together. competitive people, but people who prefer to compete Six specific Objectives for the U.S.space program, by being successful in activities which benefit mankind, derived from these purposes, have been established. not threaten it. Space competition in the sixties resulted These are : in achievements and capabilities which reflected U.S. 1. continued exploration of the moon; preeminence, but which also have provided benefits, 2. exploration of the planets and the universe; both tangible and intangible, to many throughout the 3. substantial reductions in the cost of space world. Continued US efforts to develop the most ad- operations ; vanced air transports and aeronautical vehicles rep- 4. extension of man’s capability to live and work resents a similar pattern of beneficial competition in space ; which contributes to the quality of life we need and 5. expansion of the practical applications of space enjoy. Americans are practical people, and increas- technology; ingly they are coming to realize that their national 6. greater international cooperation. investment in space and aeronautics has already pro- duced payoffs, in terms of national security, economic This chapter reviews activity in the United States space growth, and an increased quality of life, which justify program in 1971 in terms of progress towards achieving the costs of obtaining them. these six objectives. The past year saw many successes for the United In aeronautics, the most important event of the year States in its aeronautics and space activitieeperhaps was probably the decision to discontinue support for most dramatically, the continuation of manned explo- the supersonic transport. Other elements of aero- ration of the moon after a 14-month interim and the nautical activity during the year included the comple- unmanned reconnaissance of the planet Mars. Inter- tion of a broad study delineating the needs of future national involvement in the U.S. space program in- civil air transport systems and increasing emphasis on creased substantially. The year also saw a national the development of an efficient and environmentally decision to discontinue support for the development of sound air transport system for short distance flights. an American supersonic transport. Military aeronautics programs aimed at providing The United States is proceeding into this decade modern strategic and tactical capabilities continued. with clearly-defined goals and objectives for its civilian Involvement
Recommended publications
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Vostok by Andrew J
    Mercury's Competition: Vostok by Andrew J. LePage May 15, 2000 All through 1959 and into 1960, America's very single space suit-clad cosmonaut in a semi reclined public Mercury manned space program was making ejection seat which served a dual purpose: During the slow but steady progress (see Giving Mercury early phases of ascent, this seat could safely eject the Wings in the September 1, 1999 issue of cosmonaut away from the craft in case of a problem. SpaceViews). While it was quite clear that the Soviet Because of weight restrictions, the capsule could not Union also planned to send men into space, it was carry a large enough parachute to guarantee a soft difficult to sort the facts from the stream of enough landing for the pilot at the end of a normal propaganda. That began to change on May 15, 1960 mission. Instead a forced landing procedure was with the launch of Korabl Sputnik 1 (Spaceship developed where, after reentry was done, the Satellite 1) also referred to as "Sputnik 4" in the cosmonaut ejected from the descent module at an West. altitude of 7 kilometers (23,000 feet). He then used his own parachute to make a soft landing separate Carrying a dummy cosmonaut in a 312 by 369 from the more quickly falling descent module. kilometer (194 by 229 mile) orbit inclined 65 degrees to the equator, Korabl Sputnik 1 was the long awaited During the flight, the cabin interior maintained an inaugural flight of Mercury's competition. Although oxygen-nitrogen atmosphere at a pressure of one bar the actual configuration of the spacecraft would (15 psi) like on the ground.
    [Show full text]
  • European Astronaut Selection ESA Prepares for the Missions of the 21 St Century
    European Astronaut Selection ESA prepares for the missions of the 21 st century With the selection of its first astronauts ESA’s human spaceflight activities in 1978 and the first Spacelab mission are now entering a new era, with ESA in 1983, the European Space Agency astronauts working aboard the (ESA) took its first steps into human International Space Station (ISS), spaceflight. The advent of the Columbus Columbus starting operations, and orbital laboratory project required a the new ‘ATV’ cargo ship delivering second selection of astronauts in 1992. fresh supplies to the Station. The exploration of the Solar System will be one of humanity’s most exciting adventures in the near future. All of the world’s spacefaring nations are preparing for this huge enterprise, and an astronaut corps is essential for Europe, thanks to ESA, to take part in this endeavour. Now is the time for ESA to seek new talents to reinforce its astronaut team, to prepare for missions to the ISS, the Moon and beyond. T The Selection | How? When? Where? h e S e l e c t i o n How can I apply? You can apply online via the ESA web portal (www.esa.int/ astronautselection). Registration is in two steps: • pre-registration: provide identity information and a JAR-FCL 3, Class 2 medi- cal examination certificate, from an Aviation Medical Examiner who has been certified by his/her national Aviation Medical Authority; • a password then allows you to access the application form. T The Selection | How? When? Where? h e S e l e • initial selection according to basic criteria; c t i What are the o • psychological tests for selected candidates; n • second round of psychological tests and interviews; steps in the • medical tests; selection • job interview.
    [Show full text]
  • Centaur D-1A Pamphlet (1973)
    • l:Intf.LN3~ UO!S!A!O 9:JedsoJ8t/ J!eAUOJ ''o'l:I3N3~ S:::ml\l'o'NAC ... ) Imagination has been the hallmark of the Cen­ taur program since its inception. Centaur was the vehicle selected to satisfy man's quest for knowledge in space. Already it has sent Survey­ or to probe the moon's surface. Mariner to chart the planet Mars, the Orbiti ng Astronomical Observatory to scan the stars without inter­ ference from the earth's atmosphere, and Pioneer to Jupiter and beyond. Centaur will also be called upon to launch other spacecraft to continue to unlock the secrets of the planets, such as Mariner for Venus and Mercury in 1973, Viking Orbiter/Lander spacecraft to Mars in 1975, and advanced Mariners to Jupiter and Saturn in 1977. Centaur has not only flown scientific missions but also ones with application for solving more tangible problems, such as Applications Tech­ nology Satellites and the Intelsat communica­ tions satellite. Centaur has also been chosen to deliver domestic and military communication satellites to synchronous orbit beginning in 1975. Because man's curiosity will never be satisfied, Convair Aerospace stands ready to respond to the challenges of tomorrow with the same imag­ inative design and quality craftsmanship embod­ ied in Centaur. K. E. Newton Vice President & Program Director Launch Vehicle Programs CONTENTS INTRODUCTION Introduction A little over a decade ago, Centaur began the first evolutionary steps from conventional Centaur Structure and Major Systems 3 Structure 4 rocketry to the high-energy-fueled vehicles of Propulsion 5 oxygen/hydrogen. Centaur faced numerous Reaction Control 6 problems, many of them demanding solutions Guidance 7 beyond the then current state of the art.
    [Show full text]
  • Jacques Tiziou Space Collection
    Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through
    [Show full text]
  • 9538\Ariel View.Pdf
    Cover story.qxd 2/5/07 4:59 pm Page 14 An Ariel view of UK spacecraft It’s 40 years since t was 5 May 1967, just before 12pm, when a satellite was designed by the Space Scout rocket was launched from NASA’s West- Department of the Royal Aircraft Estab- the first UK designed and I ern Test Range in California, witnessed by a lishment (RAE), Farnborough, with group of British scientists and engineers wit- British Aircraft Corporation and GEC as manufactured satellite nessed. The successful launch assured the precious the main industrial contractors. cargo – and the engineers – a place in UK engi- At the time, relatively little was known was launched. How has neering history. about the space environment, although Sitting atop the four stage Scout was Ariel III the RAE did simulate vacuum, radiation – the first entirely UK built satellite and third in and thermal effects on Ariel and its pay- the UK satellite industry an Anglo-American cooperative space research load. Meanwhile, thanks to the RAE’s SkyLark programme to extend atmospheric and ionos- rockets, which had been providing upper atmos- developed? pheric investigations. The small observatory car- phere research data since 1957, many of the test ried five British experiments and a tape recorder payloads used by Ariel had been proved in rocket Vanessa Knivett to obtain data. launch and simply required adaptation. Sputnik 1, the first man made satellite, had Ariel III was approximately 66in high and 30in explores. been launched almost 10 years earlier, on 4 Octo- in diameter. Four booms hinged out from the ber 1957.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Desind Finding
    NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application.
    [Show full text]
  • Unit 5 Space Exploration
    TOPIC 8 People in Space There are many reasons why all types of technology are developed. In Unit 5, you’ve seen that some technology is developed out of curiosity. Galileo built his telescope because he was curious about the stars and planets. You’ve also learned that some technologies are built to help countries fight an enemy in war. The German V-2 rocket is one example of this. You may have learned in social stud- ies class about the cold war between the United States and the for- mer Soviet Union. There was no fighting with guns or bombs. However, these countries deeply mistrusted each other and became very competitive. They tried to outdo and intimidate each other. This competition thrust these countries into a space race, which was a race to be the first to put satellites and humans into space. Figure 5.57 Space shuttle Atlantis Topic 8 looks at how the desire to go into space drove people to blasts off in 1997 on its way to dock produce technologies that could make space travel a reality. with the Soviet space station Mir. Breaking Free of Earth’s Gravity Although space is only a hundred or so kilometres “up there,” it takes a huge amount of energy to go up and stay up there. The problem is gravity. Imagine throwing a ball as high as you can. Now imagine how hard it would be to throw the ball twice as high or to throw a ball twice as heavy. Gravity always pulls the ball back to Earth.
    [Show full text]
  • Solar Radiation (SOLRAD) Satellite Summary Table As of 26 March 2004
    Solar Radiation (SOLRAD) Satellite Summary Table as of 26 March 2004 Satellite Name Launch Date Transmitter(s) Vanguard 3 18 September 1959 108.00 Mc/s 30 mW FM/PM IRIG 2, 3, 4 & 5 Explorer 7 13 October 1959 19.9915 Mc/s 660 mW FM/AM IRIG 2, 3, 4 & 5 Solrad Dummy 13 April 1960 Inert Test Article Sun Ray 1 22 June 1960 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 Sun Ray 2 30 November 1960 (Failure) 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 here Sun Ray 3 29 June 1961 (Partial failure) 108.00 Mc/s Sun Ray 4 24 January 1962 (Failure) 108.09 Mc/s 100 mW FM/AM Sun Ray 4B 26 April 1962 (Failure) 108.00 Mc/s 100 mW FM/AM 20 inch sp Sun Ray 5 Not Launched Sun Ray 6 15 June 1963 136.890 MHz 100 mW FM/AM SolRad 7A 11 January 1964 136.887 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 7B 9 March 1965 136.800 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 8 19 November 1965 137.41 MHz 1W Stored data playback Explorer 30 136.44 MHz 100mW 24 inch sphere Solar Explorer A 136.53 MHz 100mW SolRad 9 5 March 1968 136.41 MHz 500 mW Stored data playback Explorer 37 136.52 MHz 150 mW Primary RT FM/AM IRIG 3 to 8 Solar Explorer B 137.59 MHz 150 mW RT FM/AM IRIG 3 to 7, 12 PCM SolRad 10 8 July 1971 136.38 MHz 250 mW 5W on cmd TM2 - PCM/PM or Stored Data or Stellrad on cmd Explorer 44 137.71 MHz 250 mW TM1 - PAM/PCM/FM/PM RT analog (chs 4-8, COSPAR Ch 7) Solar Explorer-C and digital PCM (ch 12) SolRad 11A & 14 March 1976 137.44 MHz 5W (11A), 136.53 MHz 5W (11B) SolRad 11B 102.4 bps PCM/BiØ-L/PM convolutional encoded (R=½, k=7) Early X-ray missions Name Vanguard 3 Launch Date 1959 September 18.22 UTC SAO ID 1959 ? (Eta) COSPAR ID 1959-07A Catalog No.
    [Show full text]
  • Space Junk: K-12 Educator's Guide
    K-12 Educator’s Guide K-12 Educator’s Guide Table of Contents: Satellite History..................... 4 Try This: Astrolabe................. .13 Careers in Science................ 7 Puzzle: Crossword...................14 Try This: Clean-Up................ 10 Puzzle: Word Search...............15 Try This: Orbital Fun............. 11 Resources for Teachers..........16 Try This: Satellite Tracking.......12 Science Standards..................18 This K-12 Educator’s Guide includes supplemental information and activities to help extend the learning experience associated with watching Space Junk. The film tells the story of a growing ring of orbiting debris located 22,000 miles above Earth—a troubling legacy of 50 years of launching our dreams into space. That debris field casts a shadow over the future of space exploration. This Educator’s Guide presents a historical timeline of satellite launches and the background science to help learners understand the physics of space junk. Space Junk also challenges students to imagine solutions to the problems we now face in space. While the film’s message is a cautionary tale, it also seeks to inspire a new age of innovation. Today’s K-12 students are tomorrow’s scientists and engineers who will forge the future of space exploration and discovery. This Guide also includes hands-on activities and a complete presentation of how the film can be used to support classroom learning in context with the National Science Education Standards. Learning Goals for K-12 Students: • The basic physical principles of orbital mechanics have enabled a half-century of rapid innovation in satellite technology, impacting our daily lives. • Actions have consequences. The benefits of satellite technology have been great, but the orbital debris field has grown to become a new and pressing challenge.
    [Show full text]
  • Front Matter (PDF)
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON A. MATHEMATICAL AND PHYSICAL SCIENCES Volume 343 pp. 159-287 Number 1633 PRLAAZ 343 (1633) 159-287 (1975) 29 April 1975 A D iscussion on the scientific results from the P rospero and A r iel 4 satellites PUBLISHED BY THE ROYAL SOCIETY 6 CARLTON HOUSE TERRACE LONDON SW1Y 5AG NOTICE TO CONTRIBUTORS TO PROCEEDINGS AND PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY The Royal Society welcomes suitable communications for publication in its scientific journals: papers estimated to occupy up to 24 printed pages are con­ sidered for the Proceedings and longer papers and those with numerous or large illustrations for the Philosophical Transactions. Detailed advice on the preparation of papers to be submitted to the Society is given in a leaflet available from the Executive Secretary, The Royal Society, 6 Carlton House Terrace, London swiy 5AG. The ‘Instructions to authors’ are also printed in every fifth volume of the Proceedings A and B (volume numbers ending in o or 5). The basic requirements are: a paper should be as concise as its scientific content allows and grammatically correct; standard nomenclature, units and symbols should be used; the text (including the abstract, the list of references and figure descriptions) should be in double spaced typing on one side of the paper; any diagrams should be drawn in a size to permit blockmaking at a reduction to about one half linear, the lettering being inserted not on the original drawings but on a set of copies; where photographs are essential the layout should be designed to give the most effective presentation.
    [Show full text]