Development of Scenarios for Drinking Water Produced from Groundwater and Surface Water for Use in the Pesticide Registration Procedure of Ethiopia

Total Page:16

File Type:pdf, Size:1020Kb

Development of Scenarios for Drinking Water Produced from Groundwater and Surface Water for Use in the Pesticide Registration Procedure of Ethiopia Alterra Wageningen UR Alterra Wageningen UR is the research institute for our green living environment. P.O. Box 47 We offer a combination of practical and scientific research in a multitude of Development of scenarios for drinking 6700 AA Wageningen disciplines related to the green world around us and the sustainable use of our living The Netherlands environment, such as flora and fauna, soil, water, the environment, geo-information T +31 (0) 317 48 07 00 and remote sensing, landscape and spatial planning, man and society. water produced from groundwater and www.wageningenUR.nl/en/alterra The mission of Wageningen UR (University & Research centre) is ‘To explore surface water for use in the pesticide Alterra Report 2674 the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 1566-7197 nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the registration procedure of Ethiopia domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading P.I. Adriaanse, M.M.S. Ter Horst, B.M. Teklu, J.W. Deneer, A. Woldeamanuel and J.J.T.I. Boesten organisations in its domain worldwide. The integral approach to problems and the cooperation between the various disciplines are at the heart of the unique Wageningen Approach. Development of scenarios for drinking water produced from groundwater and surface water for use in the pesticide registration procedure of Ethiopia P.I. Adriaanse, M.M.S. Ter Horst, B.M. Teklu, J.W. Deneer, A. Woldeamanuel and J.J.T.I. Boesten This research was partly funded by the Dutch Ministry for Foreign Affairs/Development Cooperation (project 5237663-03). Alterra Wageningen UR Wageningen, May 2015 Alterra report 2674 ISSN 1566-7197 Adriaanse, P.I., M.M.S. Ter Horst, B.M. Teklu, J.W. Deneer, A. Woldeamanuel and J.J.T.I. Boesten, 2015. Development of scenarios for drinking water produced from groundwater and surface water for use in the pesticide registration procedure of Ethiopia. Wageningen, Alterra Wageningen UR (University & Research centre), Alterra report 2674. 310 pp.; 42 fig.; 40 tab.; 24 ref. In the Pesticide Risk Reduction Programme Ethiopia the evaluation of risks of pesticides present in drinking water for man and cattle was selected as a priority protection goal. In cooperation with the Plant Health Regulatory Department of the Ministry of Agriculture of Ethiopia and other Ethiopian stakeholders Alterra developed a procedure to assess the risks for drinking water caused by pesticides, used according to Good Agricultural Practices (GAP). To do so, ‘realistic worst case’ scenarios were developed, that intend to protect man and cattle in 99% of all possible situations in Ethiopia. For groundwater three scenarios representing wells in aquifers in the Ethiopian highlands or Rift Valley margins were developed and for surface water three scenarios representing small rivers in the highlands or temporay stagnant ponds were developed. The scenarios were linked to crops on which pesticides are used that score high on acute, chronic or local chronic risk for man. In addition other agro-environmental conditions were defined, such as precipitation, soil, and land use management. The groundwater scenarios were parameterised in the EuroPEARL metamodel to calculate leaching concentrations to groundwater, whereas the surface water scenarios make use of the runoff model PRZM, the EU-FOCUS spray drift deposition table and the surface water model TOXSWA to calculate the concentration in the small river or pond scenarios. The concentration calculations use 33 years of meteorological data for the selected scenario sites of both groundwater and surface water. Example calculations for seven high risk compounds (dimethoate, endosulfan, deltamethrin, 2,4-D, malathion, atrazine and chlorothalonil) on e.g. barley, wheat, teff, maize, cotton, potatoes (Irish and sweet) and faba beans indicated that for the considered application schemes risks exist for drinking water produced from groundwater for atrazine. For surface water no acute toxicity risks exist, but for dimethoate used on barley and faba beans chronic toxicity risks exist. Keywords: pesticide registration, Ethiopia, risks for drinking water, groundwater scenarios, surface water scenarios, EuroPEARL metamodel, FOCUS_PRZM model, FOCUS_TOXSWA model The pdf file is free of charge and can be downloaded via the website www.wageningenUR.nl/en/alterra (scroll down to Publications - Alterra reports). Alterra does not deliver printed versions of the Alterra reports. 2015 Alterra (an institute under the auspices of the Stichting Dienst Landbouwkundig Onderzoek), P.O. Box 47, 6700 AA Wageningen, The Netherlands, T +31 (0)317 48 07 00, E [email protected], www.wageningenUR.nl/en/alterra. Alterra is part of Wageningen UR (University & Research centre). • Acquisition, duplication and transmission of this publication is permitted with clear acknowledgement of the source. • Acquisition, duplication and transmission is not permitted for commercial purposes and/or monetary gain. • Acquisition, duplication and transmission is not permitted of any parts of this publication for which the copyrights clearly rest with other parties and/or are reserved. Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report. Alterra report 2674 | ISSN 1566-7197 Photo cover: Shutterstock Contents List of abbreviations 7 Preface 9 Summary 11 1 Introduction 15 1.1 Country of Ethiopia 15 1.2 Pesticide registration in Ethiopia 16 1.3 Structure of the report 17 2 Outline of the exposure scenario development procedure 18 2.1 Roadmap for developing scenarios for drinking water produced from groundwater and surface water 18 2.2 Target variables of the exposure assessments 21 2.2.1 Protection goals 21 2.2.2 Risk management decisions 22 2.2.3 Operational decisions 23 2.3 Position in the tiered assessment scheme 24 3 Approach to estimate risks for drinking water produced from surface water and groundwater 25 3.1 Introduction and general principles 25 3.2 Acute and chronic risks for drinking water produced from groundwater and surface water 27 3.3 Definition of exposure scenarios and probability in time and space 28 4 Agro-environmental characteristics and identification of the most relevant pesticides and crops 31 4.1 Geography, crops, soils, meteorology and agro-ecological zones in Ethiopia 31 4.2 Ranking of pesticide risk for surface water 40 4.3 Ranking of pestide risk for groundwater 44 5 Identification of scenario zones and drinking water protection goals 47 5.1 Choice for scenario zones 47 5.2 Groundwater 49 5.2.1 Options for protection goals and selection 49 5.2.2 Conceptual models for protection goals and association to scenario zones 50 5.3 Surface water 52 5.3.1 Options for protection goals, selection and association to scenario zones 52 5.3.2 Conceptual models for protection goals 53 6 Selected models/modules 56 6.1 EuroPEARL metamodel for leaching to groundwater 56 6.2 Models and modules for calculation of concentrations in surface water 57 6.2.1 Spray drift deposition: EU_FOCUS tables 57 6.2.2 Runoff, erosion and subsurface drainage: FOCUS_PRZM_SW model 58 6.2.3 Behaviour in streams: FOCUS_stream metamodel 58 6.2.4 Behaviour in ponds: slightly adapted FOCUS_TOXSWA model 59 7 Design of scenario selection procedure 60 7.1 Drinking water produced from groundwater 60 7.2 Drinking water produced from surface water 62 8 Selection of scenarios for specific protection goals in Ethiopia 67 8.1 Groundwater scenarios for Ethiopia 67 8.1.1 Introduction 67 8.1.2 Input for the EuroPEARL metamodel 67 8.1.3 Application of the scenario location selection procedure 68 8.1.4 Results for the groundwater protection goals 69 8.2 Surface water scenarios for Ethiopia 72 8.2.1 Introduction 72 8.2.2 Application of the scenario selection procedure 72 8.2.3 Results of the scenario selection procedure for the surface water protection goals 73 9 Calculation of concentrations in groundwater and surface water 76 9.1 Groundwater 76 9.2 Surface water 76 9.2.1 Type of concentration and percentiles 76 9.2.2 Procedure for small streams 78 9.2.3 Procedure for temporary ponds 78 10 Ground water scenarios: Parameterisation of the EuroPEARL model 80 11 Surface water scenarios: Parameterisation of the FOCUS_PRZM model 82 11.1 Introduction 82 11.2 Soil and Runoff Curve Numbers (FOCUS R4 scenario) 82 11.3 Meteorological data 83 11.4 Crop data 84 11.5 Irrigation 87 11.6 Remaining PRZM input 88 11.7 PRZM example input file 88 12 Surface water scenarios: Parameterisation of the FOCUS_stream metamodel and the adapted FOCUS_TOXSWA model 89 12.1 FOCUS_stream metamodel 89 12.1.1 Variable water and pesticide fluxes 89 12.1.2 Base flow 89 12.2 The adapted FOCUS_TOXSWA model 89 12.2.1 Introduction 89 12.2.2 The EU FOCUS R1 pond 89 12.2.3 Water temperatures 90 12.2.4 Base flow 91 12.2.5 Spray drift deposition 91 12.2.6 Pesticide properties 91 12.2.7 Sediment segmentation 91 13 Example calculations 93 13.1 Selection of compounds 93 13.2 Groundwater: exposure and risks for drinking water 95 13.3 Surface water: exposure and risks for drinking water 98 14 Calculation of risks using the PRIMET_Registration_Ethiopia_1.1 software 114 15 Conclusions and recommendations 116 15.1 General conclusions 116 15.2 Recommendations 117 References 119 Appendix 4.1 Background information on the
Recommended publications
  • STUDIES on HARD X-RAY EMISSION from SOLAR FLARES and on Cyclotrop ~- RADIATION from a COLD Magnelt)Pllima
    STUDIES ON HARD X-RAY EMISSION FROM SOLAR FLARES AND ON CYCLOTROp ~- RADIATION FROM A COLD MAGNElt)PLliMA PETER HOYNG 30VST: Solar flare of 7 August 1972, taken 0.5 A offband Ha at UT 1520:20. field of viev 3' x 4' (courtesy Big Bear Solar Observatory) STELLINGEN Het elektromagnetische veld in een willekeurig medium is op na- tuurlijke -wijze splitsbaar in stralingsvelden (index s) en Coulomb- velden (index c) -. ->->-->-->- 1 S •"*• **•_ p = D [p ^ o] ; J=J + J ; J =--— -r— D [div J - o] ; c s sec 4TT dt c s -> -+.-•-»•-* -+• E - E + E ; B = 3 [B Ho]. se s c Beide deelvelden met hun bronnen voldoen aan de volledige Maxwell vergelijkingen: div. D = o; div B ~ o div D = 4TTO s 3 c ' c -* 13-* rot E = -—•=— B rot E = o s c at s c * 4T -* 1 J •* rot H = J + — T— D s c s c ót s Het verdient aanbeveling bij de behandeling van elektromagnetische problemen deze splitsing vóóraf uit te voeren en (zonodig) beide vergelijkingssystemen gescheiden op te lossen. II Het leidt ir. principe tot onjuiste resultaten wanneer men bij de berekening van het uitgestraalde vermogen per eenheid van ruimte- hoek een scalaire uitdrukking als uitgangspunt neemt -- zoals bij- .-r -f 3-f- •+• voorbeeld . E"J d r, de arbeid verricht door het door J opgewekte elektrische veld. dit proefschrift, hoofdstuk VI. UI Het onlangs door Molodensky gegeven bewijs van de stabiliteit van het randwaardeprobleem van een krachtvrij magnetisch veld is onjuist; veeleer wordt nogmaals aangetoond dat zeer kritische beoordeling onontbeerlijk is om een tijdschrift op peil te houden.
    [Show full text]
  • 19710023003.Pdf
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) X-625-71-308 PkEFRlil NASA T1:1 X- ELECTRON AND POSITIVE ION DENSITY ALTITUDE DISTRIBUTIONS IN THE EQUATORIAL Q REGION A. C. AIKIN R. A. GOLDBERG Y. V. SOMAYAJULU Aq ^F q "9,>/ #44#i4 a^F/j/F C-r; AI!riICT 1471 Jp ,32479 Ole °o (ACCESSi JN N MBCR) (THR 0 'i (NASA CR R TMX OR AD NUMBER) (CATEGORY) --- GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND - it %0 ELECTRON AND POSITIVE ION DENSITY ALTITUDE DISTRIBUTIONS IN THE EQUATORIAL D REGION by A. C. Aikin R. A. Goldberg • Laboratory for .Planetary Atmospheres NASA/Goddard !7nace Flight Center Greenb?.. , Maryland and Y. V. Somayajulu National Physical Laboratory New Delhi, India ABSTRACT Three simultaneous rocket measurements of P region ionization sources and electron and ion densities have been made in one day.
    [Show full text]
  • Solar Radiation (SOLRAD) Satellite Summary Table As of 26 March 2004
    Solar Radiation (SOLRAD) Satellite Summary Table as of 26 March 2004 Satellite Name Launch Date Transmitter(s) Vanguard 3 18 September 1959 108.00 Mc/s 30 mW FM/PM IRIG 2, 3, 4 & 5 Explorer 7 13 October 1959 19.9915 Mc/s 660 mW FM/AM IRIG 2, 3, 4 & 5 Solrad Dummy 13 April 1960 Inert Test Article Sun Ray 1 22 June 1960 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 Sun Ray 2 30 November 1960 (Failure) 108.00 Mc/s 40 mW FM/AM IRIG Ch 4 & Ch 5 here Sun Ray 3 29 June 1961 (Partial failure) 108.00 Mc/s Sun Ray 4 24 January 1962 (Failure) 108.09 Mc/s 100 mW FM/AM Sun Ray 4B 26 April 1962 (Failure) 108.00 Mc/s 100 mW FM/AM 20 inch sp Sun Ray 5 Not Launched Sun Ray 6 15 June 1963 136.890 MHz 100 mW FM/AM SolRad 7A 11 January 1964 136.887 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 7B 9 March 1965 136.800 MHz 100 mW FM/AM IRIG Ch 3 to 8 SolRad 8 19 November 1965 137.41 MHz 1W Stored data playback Explorer 30 136.44 MHz 100mW 24 inch sphere Solar Explorer A 136.53 MHz 100mW SolRad 9 5 March 1968 136.41 MHz 500 mW Stored data playback Explorer 37 136.52 MHz 150 mW Primary RT FM/AM IRIG 3 to 8 Solar Explorer B 137.59 MHz 150 mW RT FM/AM IRIG 3 to 7, 12 PCM SolRad 10 8 July 1971 136.38 MHz 250 mW 5W on cmd TM2 - PCM/PM or Stored Data or Stellrad on cmd Explorer 44 137.71 MHz 250 mW TM1 - PAM/PCM/FM/PM RT analog (chs 4-8, COSPAR Ch 7) Solar Explorer-C and digital PCM (ch 12) SolRad 11A & 14 March 1976 137.44 MHz 5W (11A), 136.53 MHz 5W (11B) SolRad 11B 102.4 bps PCM/BiØ-L/PM convolutional encoded (R=½, k=7) Early X-ray missions Name Vanguard 3 Launch Date 1959 September 18.22 UTC SAO ID 1959 ? (Eta) COSPAR ID 1959-07A Catalog No.
    [Show full text]
  • Gamma-Ray and Neutrino Astronomy
    Sp.-V/AQuan/1999/10/07:19:58 Page 207 Chapter 10 γ -Ray and Neutrino Astronomy R.E. Lingenfelter and R.E. Rothschild 10.1 Continuum Emission Processes ............. 207 10.2 Line Emission Processes ................. 208 10.3 Scattering and Absorption Processes .......... 213 10.4 Astrophysical γ -Ray Observations ........... 216 10.5 Neutrinos in Astrophysics ................ 235 10.6 Current Neutrino Observatories ............. 237 10.1 CONTINUUM EMISSION PROCESSES Important processes for continuum emission at γ -ray energies are bremsstrahlung, magneto- bremsstrahlung, and Compton scattering of blackbody radiation by energetic electrons and positrons [1–6]. 10.1.1 Bremsstrahlung The bremsstrahlung luminosity spectrum of an optically thin thermal plasma of temperature T in a volume V is [3] 1/2 π 6 π 2 32 e 2 mc 2 L(ν)brem = Z neniVg(ν, T ) exp(−hν/kT), 3m2c4 3kT where the index of refraction is assumed to be unity, m is the electron mass, Z is the mean atomic 1/2 charge, ne and ni are the electron and ion densities, and the Gaunt factor g(ν, T ) ≈ (3kT/πhν) for hν>kT and T > 3.6 × 105 Z 2 K, or −38 2 −1/2 −1 −1 L(ν)brem ≈ 6.8 × 10 Z neniVg(ν, T )T exp(−hν/kT) erg s Hz . 207 Sp.-V/AQuan/1999/10/07:19:58 Page 208 208 / 10 γ -RAY AND NEUTRINO ASTRONOMY 10.1.2 Magnetobremsstrahlung The synchrotron luminosity spectrum of an isotropic, optically thin nonthermal distribution of −S relativistic electrons with a power-law spectrum, N(γ ) = N0γ , interacting with a homogeneous magnetic field of strength, H,is[5] .
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • Multi-Wavelength Observations of the Spatio-Temporal Evolution of Solar
    Multi-Wavelength Observations of the Spatio-Temporal Evolution of Solar Flares with AIA/SDO: II. Hydrodynamic Scaling Laws and Thermal Energies Markus J. Aschwanden Lockheed Martin Advanced Technology Center, Org. ADBS, Bldg.252, 3251 Hanover St., Palo Alto, CA 94304, USA; e-mail: [email protected] and Toshifumi Shimizu Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan; e-mail: [email protected] ABSTRACT In this study we measure physical parameters of the same set of 155 M and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure (DEM) analysis to determine the flare peak emission measure EMp, peak temperature Tp, electron density np, and thermal energy Eth, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M and X-class flares are: log(EMp)= 47.0 50.5, T =5.0 17.8 MK, n =4 109 9 1011 cm−3, and thermal energies of E = − p − p × − × th 1.6 1028 1.1 1032 erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) × − × scaling law T 2 n L and H T 7/2L−2 during the peak time t of the flare density n , when p ∝ p ∝ p p energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant, and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts powerlaw distributions for all physical parameters, which we demonstrate with numerical Monte-Carlo simulations as well as with analytical calculations.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Journal Vol21 No106 Pp311-340
    Vol. Vol. 21 No. 106 Journal of the Radio Research Laboratories 1974 Printed Printed in Tokyo, Japan pp. 311-340 UDC 523. 7: 525 “1972.08 ” SOLAR-TERRESTRIAL DISTURBANCES OF AUGUST 1972 4. 4. SOLAR X-RAY FLARES AND THEIR CORRESPONDING SUDDEN IONOSPHERIC DISTURBANCES By Mitsuo OHSHIO (Received (Received Feb. 22, 1973) ABSTRACT Four Four solar X-ray flares which occurred early in August, 1972, were large, being being inferred from sudden ionospheric disturbances caused by the pertinent flares. The time variations of the solar X-ray flux intensity observed could not be obtained obtained at the maximum stage of these four events owing to the artificial satel- lite lite eclipse and/or the saturation of the detector. Both of estimation from extra- polation polation in the shape of time variation and from the maximum phase deviation of of the normalized sudden phase anomaly (SP A) observed show that the maximum solar solar X-ray (1 ~8 A) flare flux intensities or the maximum enhanced ones for August August 4 and 7 were as large as to exceed 1 erg cm-2 s-1. Their decreasing stages stages were as long as to last more than half a day. The use of a flare model valid valid for the arrival of solar ionizing agents of the largest class during the pertinent pertinent period showed that the enhanced electron density in the ionosphere was larger larger than the quiet one by about two orders at the altitude of 70 km and by 2 to to 1 times at the altitude of 90 to 120 km.
    [Show full text]
  • Voyager Dans L'espace
    Extrait de la publication ’aventure spatiale ne date pas Ld’hier. Tout a commencé avec un pigeon et des feux d’artifice avant que la Seconde Guerre mondiale puis la Guerre froide n’ouvrent l’âge des fusées et n’offrent à l’humanité de réaliser son vieux rêve : aller dans l’espace. L’espace est à la fois proche – cent kilomètres à peine au-dessus de nous – et presque hors de portée. En effet, ce sont cent kilomètres qu’il faut parcourir verticalement, en bravant la loi de la gravité. Quand s’arracher du sol quelques secondes n’est déjà pas une mince affaire, le quitter complètement est un défi, relevé depuis quelques décennies seulement. Aujourd’hui, alors qu’aller fureter dans le Système solaire paraît presque banal, chaque départ de lanceur reste un véritable exploit technologique et humain. Le livre de Yaël Nazé explique quels innom- brables problèmes il faut résoudre pour se lancer dans cette aventure : comment choisir la bonne route dans un univers où tout est en mouvement et où les lignes droites n’existent pas ? Pourquoi faut-il décoller à un moment, pas à un autre ? Quel est le prix de la conquête spatiale ? Quels en sont les risques pour les hommes et les machines ? Et d’ailleurs… pourquoi aller dans l’espace ? Un guide passionnant pour tous les amoureux de l’astronautique et des étoiles. Spécialiste des étoiles massives, récompensée plusieurs fois pour ses actions de vulgarisation scientifique, Yaël Nazé est astrophysicienne FNRS au « Liège Space Research Institute » de l’Université de Liège. JEU DISPONIBLE SUR LA VERSION PAPIER.
    [Show full text]
  • Case File Copy
    NASA TECHNICAL MEMORANDUM NASA TA4 X-53991. CASE FILE COPY A SOLAR X-RAY ASTRONOMY SUMMARY AND B I BL IOGRAPHY By Robert M. Wilson John M. Reynolds Stanley A. Fields Space Sciences Laboratory January 1970 NASA George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama MSFC - Form ,3190 (September 1968) TABLE OF CONTENTS Page INTRODUCTION .................................... 1 BIBLIOGRAPHY.................................... 3 AUTHORINDEX .................................... 83 SUBJECTINDEX ................................... 87 APPENDIX ....................................... 90 LIST OF TABLES Table Title Page A.1 . Tabulation of Rocket and Balloon Solar X-Ray Flight Experiments ................................. 91 A.2 . Tabulation of Satellite Solar X-Ray Flight Experiments .... 94 A.3 . Tabulation of Observed Solar Spectral Lines ( 1- to 100-8) by Flight Experiment ........................... 96 0 A.4 . List of Observed Solar Spectral Lines (I- to iOO-A) ...... 114 DEFINITION OF SYMBOLS Symbol Definition Crystals: CaFz Calcium fluoride CaS04:Mn Calcium sulfate: manganese EDDT Ethylene diamine d-tartrate KA P Potassium acid phthallate LiF Lithium fluoride ML 1VIagnesium lignocerate (multilayer film) NaI Sodium iodide NaI(T1) Sodium iodide (thallium ) OHS Octadecyl hydrogen succinate Elements: A1 Aluminum Ar Argon B Boron Be Beryllium C C arbon Ca C alc ium C I Chlorine Cr Chronlium DEFINITION OF SYMBOLS (Continued) Symbol Definition Elements: F Fluorine Fe Iron H Hydrogen He Helium Li Lithium Mg Magnesium Mn Manganese
    [Show full text]
  • National Security and the U.S. Naval Research Laboratory, Seventy Years of Scince for the Navy and the Nation (1923-1993)
    Naval Research Laboratory AD-A277 703 Washington, DC 20375-5320 liilli llllIl1lll1ll1lll1 NRL/FR/1003--94-959 National Security and the U.S. Naval Research Laboratory Seventy Years of Science for the Navy and the Nation (1923-1993) AELECTEDTIC D. J. DEYOUNG APR 011994 Office of Strategic Planning Executive Directorate March 29, 1994 94-09981 [9Approved for public release; distributionunlimited. 9 4 1 29 The Naval Research Laboratory (NRL) was officially established on July 2, 1923, as the Naval Experimental and Research Laboratory. In the following seven decades, research efforts have expanded from the two original areas of scientific endeavor, radio and underwater sound, to 19 broad areas that encompass many diverse fields. NRL is the Navy's Corporate Laboratory and is under the command of the Chief of Naval Research. The Laboratory occupies its original site on the banks of the Potomac River in the southwest corner of Washington, D.C. Since NRL's establishment, the number of buildings has expanded from the original five to more than 170, and the main Laboratory site has expanded from 27.5 to 129 acres. The original group of about 20 employees has grown to more than 3900, including those at the main site and at 14 field sites. On January 14, 1992, the Naval Oceanographic and Atmospheric Research Laboratory (with sites in both Mississippi and California) was merged with NRL as part of the U.S. Navy's post-Cold War research, development, technology, and engineering RDT&E) consolidation efforts. This merger brought facilities and personnel at Bay St. Louis, Mississippi, and Monterey, California, under NRL management.
    [Show full text]
  • NASA-TM-84835) NASA 1981 £ HC10GRAPHY INDEX J(National Aeronautics and Space Administration) 248 P HC A11/MF A01 CSCL I)5B
    , (NASA-TM-84835) NASA 1981 £ HC10GRAPHY INDEX j(National Aeronautics and Space Administration) 248 p HC A11/MF A01 CSCL i)5B, .1 / * B2 32316 TABLE OF SUBJECT Apollo 7 Selected Pictures ............................ XS^i^-Oil^"5^ ............ 141 Apollo 8 Selected Pictures ............................... rTT^T^TT .; .............. 142 Apollo 9 Selected Pictures ...................................................... 143 Apollo 10 Selected Pictures ...................................................... 146 Apollo 1 1 Selected Pictures ...................................................... 147 Apollo 12 Selected Pictures ...................................................... 150 Apollo 13 Selected Pictures ...................................................... 153 Apollo 14 Selected Pictures .................................. .^-^ , : v -^. .......... 155 Apollo 15 Selected Pictures 158 Apollo 16 Selected Pictures 161 Apollo 17 Selected Pictures 165 ASTPSelected Pictures 175 Astronaut Candidates 131 Astronaut Portraits 124 Astronomy 215 Aviation ............... ..................... ... 204 Lunar Surface Photographs ......................... -T. .«»j. n~:'. Vf) .... ^W. 132 TABLE OF CONTENTS PAGE SUBJECT NO. Major Launches 2 Mariner VI 134 Mariner VII 135 Mariner IX 136 Mariner X 138 Pioneer 10 180 Pioneer 11 181 Planets & Other Space Phenomena 193 Skylab 1 Selected Pictures 168 Skylab 2 Selected Pictures 169 Skylab 3 Selected Pictures 171 Skylab 4 Selected Pictures .' 173 Space Colony 214 Space Shuttle 207 Viking 1 195 Viking 2 202 Voyager
    [Show full text]